2024
- Ran-GTP assembles a specialized spindle structure for accurate chromosome segregation in medaka early embryos
Kiyomitsu A, Nishimura T, Hwang SJ, Ansai S, Kanemaki MT, Tanaka M, Kiyomitsu T.
Nature Communications 2024 Feb 1;15(1):981. doi: 10.1038/s41467-024-45251-w
https://www.nature.com/articles/s41467-024-45251-w
2023
- Ran-GTP assembles a specialized spindle structure for accurate chromosome segregation in medaka early embryos
Kiyomitsu A, Nishimura T, Hwang SJ, Ansai S, Kanemaki MT, Tanaka M, Kiyomitsu T.
bioRxiv: https://biorxiv.org/cgi/content/short/2023.07.20.549960v1 - NuMA deficiency causes micronuclei via checkpoint-insensitive k-fiber minus-end detachment from mitotic spindle poles
Van Toorn, M. Gooch, A. Boerner. S, Kiyomitsu T.
Current Biology 2023 Jan.4:S0960-9822(22)1917-0. doi: 10.1016/j.cub.2022.12.017. Online ahead of print.
PMID: 36626904 https://www.cell.com/current-biology/fulltext/S0960-9822(22)01917-0?rss=yes - Using Optogenetics to Spatially Control Cortical Dynein Activity in Mitotic Human Cells
Kiyomitsu T.
Methods in Molecular Biology. 2023;2623:73-85. doi: 10.1007/978-1-0716-2958-1_5.
PMID:36602680 https://link.springer.com/protocol/10.1007/978-1-0716-2958-1_5
2022
- NuMA deficiency causes micronuclei via checkpoint-insensitive k-fiber minus-end detachment from mitotic spindle poles
Van Toorn, M. Gooch, A. Boerner. S,Kiyomitsu T.
bioRxiv, 2022 https://biorxiv.org/cgi/content/short/2022.10.04.510904v1
2021
- Ran-GTP is non-essential to activate NuMA for spindle pole focusing, but dynamically polarizes HURP near chromosomes. in Current Biology
Tsuchiya, K. Hayashi, H. Nishina, M. Okumura, M. Sato, Y. Kanemaki, M.T. Goshima, G. Kiyomitsu T.
Current Biology 2021 Jan 11;31(1):115-127.e3 https://www.cell.com/current-biology/fulltext/S0960-9822(20)31504-9 - The Nuclear Mitotic Apparatus (NuMA) Protein: A Key Player for Nuclear Formation, Spindle Assembly, and Spindle Positioning.
Kiyomitsu T, and Boerner, S.
Frontiers in Cell and Developmental Biology. 2021 Apr 1;9:653801.https://www.frontiersin.org/articles/10.3389/fcell.2021.653801/full?utm_source=F-NTF&utm_medium=EMLX&utm_campaign=PRD_FEOPS_20170000_ARTICLE
-------- Move to OIST as an Assistant Professor (PI) (4.2020) ———
2020
- Kiyomitsu T*, Optogenetic Reconstitution: Light-Induced Assembly of Protein Complexes and Simultaneous Visualization of Their Intracellular Functions. Make Life Visible. (2020), 55-64
2019
- Kiyomitsu T*. The cortical force-generating machinery: how cortical spindle-pulling forces are generated. Curr Opin Cell Biol. (2019) Oct;60:1-8
2018
- Okumura M, Natsume T, Kanemaki MT, Kiyomitsu T*. Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble. eLife. (2018) May 31;7:e36559.
2017
- Tungadi EA, Ito A, Kiyomitsu T, Goshima G. Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2. J Cell Sci. (2017) Nov 1;130(21):3676-3684.
2016
- Kiyomitsu T*. Analyzing Spindle Positioning Dynamics in Cultured Cells. Methods Mol Biol. (2016) 1413:239-52.
- Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. Cell Rep. (2016) Apr 5;15(1):210-218.
2015
- Kiyomitsu T*. Mechanisms of daughter cell-size control during cell division. Trends Cell Biol. (2015) May;25(5): 286-95.
-------- Move to Nagoya University as an Assistant Professor (non-PI) (8.2013) --------
2013
-
Kiyomitsu T*, Cheeseman IM*. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell. (2013) Jul 18;154(2):391-402.
2012
- Kiyomitsu T, Cheeseman IM. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol. (2012) Feb 12;14(3):311-7.
2011
- Kiyomitsu T*, Murakami H, Yanagida M*. Protein interaction domain mapping of human kinetochore protein Blinkin reveals a consensus motif for binding of spindle assembly checkpoint proteins Bub1 and BubR1. Mol Cell Biol. (2011) Mar;31(5):998-1011.
2010
- Schmidt JC, Kiyomitsu T, Hori T, Backer CB, Fukagawa T, Cheeseman IM. Aurora B kinase controls the targeting of the Astrin-SKAP complex to bioriented kinetochores. J Cell Biol. (2010) Oct 18;191(2):269-80.
- Kiyomitsu T, Iwasaki O, Obuse C, Yanagida M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J Cell Biol. (2010) Mar 22;188(6):791-807.
-------- Move to Whitehead Institute/MIT as a postdoc (4.2010) --------
2009
-
Bolanos-Garcia VM, Kiyomitsu T, D'Arcy S, Chirgadze DY, Grossmann JG, Matak-Vinkovic D, Venkitaraman AR, Yanagida M, Robinson CV, Blundell TL. The crystal structure of the N-terminal region of BUB1 provides insight into the mechanism of BUB1 recruitment to kinetochores. Structure. (2009) Jan 14;17(1):105-16.
2007
- Kiyomitsu T, Obuse C, Yanagida M. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev Cell. (2007) Nov;13(5):663-676.
- Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell. (2007) Jan;12(1):17-30.
2004
- Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol. (2004) Nov; 6(11):1135-41.
2003
- Goshima G, Kiyomitsu T, Yoda K, Yanagida M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol. (2003) Jan 6;160(1):25-39.