Neuronal Molecular Signaling
The aim of this course is to discuss some of the major molecular signaling pathways from the periphery to the cell bodies in neurons. The students are expected to achieve a basic understanding of long-range molecular signaling in neurons and the experimental techniques available for its investigation.
Review receptor signaling and its associated signaling cascades and transcriptional responses as well as peripheral local translation of signaling molecules. Discuss the mechanisms of active transport utilized by the neurons to convey organelles and signaling complexes from the plasma membrane to the nucleus, with a focus on the dynein machinery and retrograde axonal transport. Learn about links between defects in axonal trafficking and neurodegenerative diseases and between local translation of the response to axonal injury and the induction of a regenerative program, in both peripheral and central nervous systems. In the laboratory, learn and use the most recent techniques for neuronal cell culture and the live imaging and quantifying of intracellular transport. Journal clubs develop critical analysis of recent research papers in the field of molecular neuronal signaling and anterograde/retrograde messenger transport.
This course is targeted to students who want to deepen their understanding of neuronal axonal signaling and get some hands-on experience in intracellular trafficking live imaging.
1. Receptor signaling in neurons
2. Second messengers and intracellular signaling cascades
3. Peripheral local translation
4. Journal club held by students part1
5. Intracellular molecular transport – anterograde transport
6. Intracellular molecular transport – retrograde transport
7. Neuronal transcriptional responses
8. Neurodegenerative diseases linked to transport defects
9. Journal club held by students part2
10. Signaling mechanisms in injury and regeneration
11. Experimental techniques to image axonal transport and translation
12. Laboratory on axonal transport (cell culture and preparation)
13. Laboratory on axonal transport (imaging)
14. Laboratory on axonal transport (data analysis)
15. Final Exam
Practical laboratory course + data analysis 20%; Presentation 50%; Final exam 30%
Basic knowledge of cellular biology and neurobiology.
Passing “Introduction to Neuroscience” or equivalent is required.
Purves, Augustine, Fitzpatrick, Hall, Lamantia and White: Neuroscience, 5th or 6th edition
This course is an advanced course for neuroscience. It assumes a basic knowledge of cellular biology and neurobiology.