Microlocal analysis of **d**-plane transform on the Euclidean space

Hiroyuki CHIHARA(千原 浩之)

College of Education University of the Ryukyus

Analysis on Metric Space Seminar
Okinawa Institute of Science and Technology
9 June 2021

Contents

- 1. **d**-plane transform and FBP (p.3-10)
- 2. Review of microlocal analysis (p.11-18)
- 3. The canonical relation of **d**-plane transform (p.19-23)
- 4. Microlocal analysis related to streaking artifacts (p.24-34)
- 5. Discussions (p.35)

References (p.36-37)

1-1. **d**-plane transform

- $n = 2, 3, 4, \ldots, d = 1, \ldots, n-1$.
- The Grassmannian $G_{d,n}$ is the set of all d-dimensional vector subspaces of \mathbb{R}^n . dim $G_{d,n} = d(n-d)$.
- The affine Grassmannian G(d, n) is the set of all d-dimensional planes in \mathbb{R}^n , that is, $G(d, n) = \{x'' + \sigma : \sigma \in G_{d,n}, x'' \in \sigma^{\perp}\}$. $N(d, n) := \dim G(d, n) = (d+1)(n-d)$. $x'' + \sigma$ is sometimes denoted by (σ, x'') .
- Denote $\mathbf{x} = \mathbf{x}' + \mathbf{x}'' \in \sigma \oplus \sigma^{\perp} = \mathbb{R}^n$. The \mathbf{d} -plane transform of $\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}' + \mathbf{x}'') = \mathcal{O}(\langle \mathbf{x} \rangle^{-\mathbf{d}-\varepsilon})$ is defined by

$$\mathcal{R}_{d}f(\sigma, \mathbf{x}'') = \int_{\sigma} f(\mathbf{x}' + \mathbf{x}'') d\mathbf{x}', \tag{1}$$

where $\langle \mathbf{x} \rangle = \sqrt{1 + |\mathbf{x}|^2}$ and $d\mathbf{x}'$ is the Lebesgue measure on σ .

• $\mathcal{R}_1 f$ is said to be the X-ray transform of f, and $\mathcal{R}_{n-1} f$ is said to be the Radon transform f.

1-2. Filtered back-projection

The formal adjoint of \mathcal{R}_d is given by

$$\mathcal{R}_{d}^{*}\varphi(\mathbf{x}) = \frac{1}{C(d,n)} \int_{\{\Xi \in G(d,n): \mathbf{x} \in \Xi\}} \varphi(\Xi) d\mu(\Xi)$$
$$= \frac{1}{C(d,n)} \int_{O(n)} \varphi(\mathbf{x} + \mathbf{k} \cdot \sigma) d\mathbf{k},$$

where $\mathbf{x} \in \mathbb{R}$, $\varphi \in \mathbf{C}(\mathbf{G}(\mathbf{d}, \mathbf{n}))$, $\mathbf{C}(\mathbf{d}, \mathbf{n}) = (\mathbf{4}\pi)^{d/2}\Gamma(\mathbf{n}/2)/\Gamma((\mathbf{n} - \mathbf{d})/2)$, $\mathbf{d}\mu$ and $\mathbf{d}\mathbf{k}$ are normalized measure, and $\sigma \in \mathbf{G}_{\mathbf{d},\mathbf{n}}$.

Proposition 1 (FBP (filtered back-projection))

For
$$f(\mathbf{x}) = \mathcal{O}(\langle \mathbf{x} \rangle^{-d-\varepsilon})$$
,

$$f = (-\Delta_{\mathbf{x}})^{d/2} \mathcal{R}_{d}^{*} \mathcal{R}_{d} f = \mathcal{R}_{d}^{*} (-\Delta_{\mathbf{x}''})^{d/2} \mathcal{R}_{d} f, \qquad (2)$$

where $-\Delta_{\mathbf{x}} = -\partial_{\mathbf{x}_1}^2 - \dots - \partial_{\mathbf{x}_n}^2$, and $-\Delta_{\mathbf{x}''}$ is the Laplacian on σ^{\perp} .

1-3. Range of the *d*-plane transform

Proposition 2

 $\mathcal{R}_d: \mathscr{D}(\mathbb{R}^n) o \mathscr{D}_H(G(d,n))$ is bijective, where $\mathscr{D}_H(G(d,n))$ is the set of all $\varphi \in \mathscr{D}(G(d,n))$ with the following conditions: for any $k=0,1,2,\ldots$, there exists a homogeneous polynomial P_k on \mathbb{R}^n of degree k such that for any $\sigma \in G_{d,n}$,

$$P_k(\xi'') = \int_{\sigma^{\perp}} \varphi(\sigma, \mathbf{x}'') (\xi'' \cdot \mathbf{x}'')^k d\mathbf{x}'', \quad \xi'' \in \sigma^{\perp}.$$

Note that if $f(x) \in \mathcal{D}(\mathbb{R}^n)$, then we can define $P_k(\xi)$ by

$$P_k(\xi) := \int_{\mathbb{R}^n} f(x) (\xi \cdot x)^k dx, \quad \xi \in \mathbb{R}^n.$$

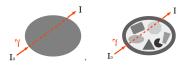
For any $\sigma \in \mathbf{G_{d,n}}$ and $\xi'' \in \sigma^{\perp}$,

$$P_k(\xi'') = \int_{\sigma^{\perp}} \left(\int_{\sigma} f(x' + x'') dx' \right) (\xi'' \cdot x'')^k dx''.$$

1-4. CT scanner

Consider the following situation on \mathbb{R}^2 :

- Here is an object whose attenuation coefficient distribution is f(x).
- The X-ray beam is supposed to have no width, and traverses the object along a line γ . I_0 and I denote the intensities of the beam before and after passing through the object respectively.

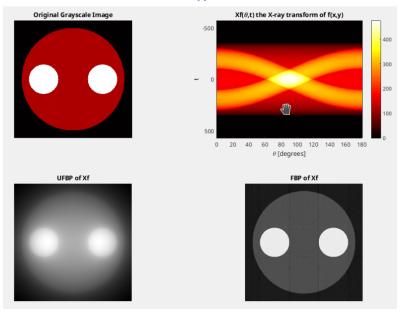


If the object is uniform, that is, ${\it f}={\it d}\cdot\chi_{\Omega}$ and the travel length in the object is ℓ , then the Beer-Lambert law obtains

$$\log\left(\frac{I_0}{I}\right) = d \cdot \ell = \int_{\gamma} f = \mathcal{R}_1 f(\gamma).$$

The same formula can be obtained for more general f, and we can regard $\mathcal{R}_1 f(\gamma)$ as the measurement of CT scanners.

1-5. MATLAB illustrates \mathcal{R}_1 , UFBP and FBP.



1-6. Beam hardening

- There are some factors causing artifacts in CT images: beam width, partial volume effect, beam hardening, noise in measurements, numerical errors and etc.
- In the formulation of CT scanners in Page 6, the X-ray is supposed to be monochromatic with a fixed energy, say $E_0 > 0$.
- Actually, however, the X-ray beam has a wide range of energy \boldsymbol{E} and the attenuation coefficient distribution $f_{\boldsymbol{E}}$ depends on \boldsymbol{E} . This is described by the spectral function $\rho(\boldsymbol{E})$ which is a probability density function of $\boldsymbol{E} \in [0, \infty)$. The formulation of the measurements of CT scanners becomes

$$\log\left(\frac{I_0}{I}\right) = -\log\left\{\int_0^\infty \rho(E)\exp(-\mathcal{R}_1 f_E)dE\right\}.$$

If f_E is independent of E, that is, $f_E = f_{E_0}$, then

$$\log\left(\frac{\textit{I}_0}{\textit{I}}\right) = -\log\left\{\exp(-\mathcal{R}_1\textit{f}_{\textit{E}_0})\cdot\int_0^\infty \rho(\textit{E})\textit{dE}\right\} = \mathcal{R}_1\textit{f}_{\textit{E}_0}.$$

1-7. Metal streaking artifacts

Consider a simple model of the beam hardening:

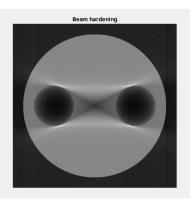
$$\begin{split} \rho(\mathbf{E}) &= \frac{1}{2\epsilon} \chi_{[\mathbf{E}_0 - \epsilon, \mathbf{E}_0 + \epsilon]}(\mathbf{E}), \\ \mathbf{f}_{\mathbf{E}}(\mathbf{x}) &= \mathbf{f}_{\mathbf{E}_0}(\mathbf{x}) + \alpha(\mathbf{E} - \mathbf{E}_0) \chi_{\mathbf{D}}(\mathbf{x}), \end{split}$$

where f_{E_0} is an attenuation coefficient distribution of human tissue, ε and α are small positive constants, and D is a metal region. Then the measurement becomes

$$P = \mathcal{R}_1 f_{E_0} - \log \left\{ \frac{\sinh(\alpha \varepsilon \mathcal{R}_1 \chi_D)}{\alpha \varepsilon \mathcal{R}_1 \chi_D} \right\}$$
$$= \mathcal{R}_1 f_{E_0} + \sum_{k=1}^{\infty} A_k (\alpha \varepsilon \mathcal{R}_1 \chi_D)^{2k}.$$

- Park-Choi-Seo (CPAM, 2017) proved that the metal streaking artifacts occur and they are described in the wave front set.
- Palacios-Uhlmann-Wang (SIAM J. Math. Anal., 2018) proved that the streaking artifacts are conormal distributions.

1-8. MATLAB illustrates metal streaking artifacts.



- Left: $\mathcal{R}_1^*(-\Delta_{x''})(\mathcal{R}_1f_{E_0}+\alpha\varepsilon\mathcal{R}_1\chi_D)$.
- Right: $\mathcal{R}_1^*(-\Delta_{x''}) \left\{ \mathcal{R}_1 f_{E_0} \frac{1}{3} (\alpha \varepsilon \mathcal{R}_1 \chi_D)^2 \right\}$.

2-1. Wave front set of distributions

Definition 3 (wave front set)

Let X be a manifold. For $u \in \mathscr{D}'(X)$ and $(x,\xi) \in T^*X \setminus 0$, we say that $(x,\xi) \not\in WF(u)$ if there exists $\phi \in C_0^\infty(X)$ with $\phi(y) \neq 0$ near y = x and a conic neighborhood of V at $\eta = \xi$ such that

$$\widehat{\phi u}(\eta) = \mathcal{O}(\langle \eta \rangle^{-M})$$
 for $\eta \in V$, $M = 1, 2, 3, \dots$

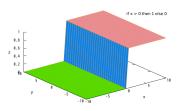
In other words,

$$\Sigma_{x}(u) := \bigcap_{\phi(x) \neq 0} \{ \eta \in T_{x}^{*}X \setminus 0 : \widehat{\phi u}(\eta) \neq \mathcal{O}(\langle \eta \rangle^{-\infty}) \},$$

$$\mathsf{WF}(u) := \{ (x, \xi) \in T^{*}X \setminus 0 : \xi \in \Sigma_{x}(u) \}.$$

2-2. The characteristic function of a half-plane

Set f(x, y) = 1 if x > 0, 0 otherwise in \mathbb{R}^2 :



Let $\phi(x, y) \in \mathscr{D}(\mathbb{R}^2)$.

- If $\phi(\mathbf{0}, \mathbf{y}) = \mathbf{0}$, then $\widehat{\phi f}(\xi, \eta) = \widehat{\phi}(\xi, \eta)$ or $\widehat{\phi f}(\xi, \eta) = \mathbf{0}$. We have $\widehat{\phi f}(\xi, \eta) = \mathcal{O}(\langle \xi; \eta \rangle^{-\infty})$, where $\langle \xi; \eta \rangle = \sqrt{1 + |\xi|^2 + |\eta|^2}$.
- If $\phi(0, y) \neq 0$, then

$$\widehat{\phi f}(\xi, \eta) = \operatorname{const} \cdot \operatorname{pv} \int_{\mathbb{R}} \frac{\widehat{\phi}(\zeta, \eta)}{\xi - \zeta} d\zeta.$$

• Then $WF(f) = \{(0, y, \xi, 0) \mid y, \xi \in \mathbb{R}, \xi \neq 0\}.$

2-3. Conormal distributions

Definition 4 (Conormal distributions)

Let X be an N-dimensional manifold, and let Y be a closed submanifold of X. $u \in \mathscr{D}'(X)$ is said to be conormal with respect to Y of degree m if

$$L_1\cdots L_M u \in {}^{\infty}H^{\mathrm{loc}}_{(-m-N/4)}(X)$$

for all M = 0, 1, 2, ... and all vector fields $L_1, ..., L_M$ tangential to Y. Denote by $I^m(X, N^*Y)$ or $I^m(N^*Y)$, the set of all distributions on X conormal with respect to Y of degree m.

$$\|u\|_{{}^{\infty}H_{(s)}(\mathbb{R}^{N})}:=\sup_{j=0,1,2,...}\left(\int_{X_{j}}\langle\xi
angle^{2s}|\hat{u}(\xi)|^{2}d\xi
ight)^{1/2},$$
 $X_{0}:=\{|\xi|<1\}, \qquad X_{j}:=\{2^{j-1}\leqq|\xi|<2^{j}\}, \quad (j=1,2,3,...).$

2-4. Conormal distributions and oscillatory integrals

Proposition 5 (Characterization of conormal distributions)

Let X be an N-dimensional manifold, and let Y be a closed submanifold of X with $\operatorname{codim} Y = k$. Fix arbitrary $y \in Y$ and choose local coordinates $x = (x', x'') \in \mathbb{R}^k \times \mathbb{R}^{N-k}$ such that x(y) = 0 and Y is represented $\{x' = 0\}$ locally. For $u \in I^{m+k/2-N/4}(N^*Y)$ there exists an amplitude $a(x'', \zeta') \in S^m(\mathbb{R}^{N-k} \times \mathbb{R}^k)$ such that

$$u(x) = \int_{\mathbb{R}^k} e^{ix'\cdot \xi'} a(x'', \xi') d\xi'$$
 near $x = 0$.

Here $S^m(\mathbb{R}^{N-k} \times \mathbb{R}^k)$ is the set of all smooth functions on $\mathbb{R}^{N-k} \times \mathbb{R}^k$ such that for any compact set K in \mathbb{R}^{N-k} and multi-indices α , β

$$|\partial_{\mathbf{x}''}^{\beta}\partial_{\xi'}^{\alpha}a(\mathbf{x}'',\xi')| \leq C_{\mathbf{K}\alpha\beta}\langle \xi \rangle^{m-|\alpha|} \quad \text{for} \quad (\mathbf{x}'',\xi') \in \mathbf{K} imes \mathbb{R}^{\mathbf{K}}$$

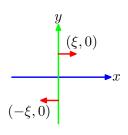
with some positive constant $C_{K\alpha\beta}$.

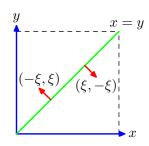
2-5. Examples of conormal distributions

- $f(x, y) \in I^{-1}(N^*(\{x=0\})).$
- ullet If $m{a}(m{x},m{\xi})\in m{S}^{m{m}}(\mathbb{R}^{m{N}} imes\mathbb{R}^{m{N}}),$ then

$$\mathbf{K}(\mathbf{x},\mathbf{y}) = \int_{\mathbb{R}^{N}} \mathbf{e}^{\mathbf{i}(\mathbf{x}-\mathbf{y})\cdot \xi} \mathbf{a}(\mathbf{x},\xi) d\xi \in \mathbf{I}^{m}(\mathbf{N}^{*}\Delta),$$

where $\Delta = \{(\mathbf{x}, \mathbf{x}) : \mathbf{x} \in \mathbb{R}^{N}\}.$





2-6. non-degenerate phase functions

Definition 6 (non-degenerate phase functions)

Let \mathbf{X} be an \mathbf{N} -dimensional manifold. We say that $\varphi(\mathbf{X}, \theta) \in \mathbf{C}^{\infty}(\mathbf{X} \times \mathbb{R}^k \setminus \{\mathbf{0}\}; \mathbb{R})$ is a non-degenerate phase function if

- $\varphi(x, t\theta) = t\varphi(x, \theta)$ for $(x, \theta) \in X \times \mathbb{R}^k \setminus \{0\}$ and t > 0.
- $d\varphi(x,\theta) \neq 0$.
- If $\varphi'_{\theta}(\mathbf{x}, \theta) = \mathbf{0}$, then $\operatorname{rank}[\mathbf{d}\varphi'_{\theta}(\mathbf{x}, \theta)] \equiv \mathbf{k}$.

In this case $C_{\varphi} = \{(\mathbf{x}, \theta) : \varphi'_{\theta}(\mathbf{x}, \theta) = \mathbf{0}\}$ is an **N**-dimensional submanifold of $\mathbf{X} \times \mathbb{R}^{k} \setminus \{\mathbf{0}\}$. Set $\Lambda_{\varphi} := \{(\mathbf{x}, \varphi'_{\mathbf{x}}(\mathbf{x}, \theta)) : \varphi'_{\theta}(\mathbf{x}, \theta) = \mathbf{0}\}$. Then

$$C_{\varphi} \ni (\mathbf{X}, \theta) \mapsto (\mathbf{X}, \varphi_{\mathbf{X}}'(\mathbf{X}, \theta)) \in \Lambda_{\varphi}$$

is a diffeomorphism and Λ_{φ} becomes a conic Lagrangian submanifold of $T^*X \setminus \mathbf{0}$, that is, a conic submanifold with $d\xi \wedge dx \equiv \mathbf{0}$.

2-7. Lagrangian distributions

The notion of conormal distributions is generalized as follows.

Definition 7 (Lagrangian distribution)

Let Λ be a conic Lagrangian submanifold of $T^*X \setminus 0$. $I^m(X, \Lambda) = I^m(\Lambda)$ is the set of all $u \in \mathscr{D}'(X)$ satisfying

- WF(u) $\subset \Lambda$.
- For any $(\mathbf{x_0}, \xi_0) \in \Lambda$ there exist a non-degenerate phase function $\varphi(\mathbf{x}, \theta)$ and an amplitude $\mathbf{a}(\mathbf{x}, \theta) \in \mathbf{S}^{m+N/4-k/2}(\mathbf{X} \times \mathbb{R}^k)$ such that $\Lambda = \Lambda_{\varphi}$ and

$$u(x) = \int e^{i\varphi(x,\theta)} a(x,\theta) d\theta$$
 near (x_0,ξ_0) .

2-8. Fourier integral operators

Let X and Y be manifolds, and let Λ be a conic Lagrangian submanifold of $T^*(X \times Y) \setminus 0$. For $K(x, y) \in I^m(X \times Y, \Lambda)$,

$$Au(x) := \int_{Y} K(x, y) u(y) dy, \quad u \in \mathscr{D}(Y)$$

defines a linear operator of $\mathcal{D}(Y)$ to $\mathcal{E}(X)$. **A** is said to be a Fourier integral operator. Locally **A** is given by

$$Au(x) := \iint e^{i\varphi(x,y,\theta)} a(x,y,\theta) u(y) dy d\theta.$$

with some $\varphi(x, y, \theta)$ and $a(x, y, \theta)$. If the principal part of a does not vanish, then A is called an elliptic FIO.

 $\Lambda' := \{(x, y; \xi, \eta) : (x, y; \xi, -\eta) \in \Lambda\}$ is said to be the canonical relation of A. We have $WF(Au) \subset \Lambda' \circ WF(u)$ and if A is elliptic then $WF(Au) = \Lambda' \circ WF(u)$ holds.

3-1. $T^*G(d, n)$

Lemma 8

 $T^*G(d,n)$ is expressed as $\{(\sigma, \mathbf{x}''; \eta_1'', \dots, \eta_d'', \xi'') : \sigma \in G_{d,n}, \mathbf{x}'', \eta_1'', \dots, \eta_d'', \xi'' \in \sigma^{\perp}\}.$

Proof. Fix an arbitrary $(\sigma, \mathbf{x}'') \in \mathbf{G}(\mathbf{d}, \mathbf{n})$. The set of (co-)tangent vectors corresponding to σ is a $\mathbf{d}(\mathbf{n} - \mathbf{d})$ -dimensional vector space since $\sigma \in \mathbf{G}_{\mathbf{d},\mathbf{n}}$. There exists an orthonormal system $\{\omega_1,\ldots,\omega_d\} \subset \mathbb{S}^{n-1}$ such that $\sigma = \operatorname{span}\langle \omega_1,\ldots,\omega_d\rangle$. If we replace ω_j by $\mathbf{c}\omega_j$ with $\mathbf{c} \in \mathbb{R} \setminus \{\mathbf{0}\}$, σ does not change. Hence (co-)tangent vector η_j corresponding to ω_j belongs to ω_j^\perp . Since σ is independent of the choice of $\{\omega_1,\ldots,\omega_d\} \subset \mathbb{S}^{n-1}$, (co-)tangent vectors η_1,\ldots,η_d corresponding to σ belong $\omega_1^\perp\cap\cdots\cap\omega_d^\perp=\sigma^\perp$.

Notation. The orthogonal projection of \mathbb{R}^n onto $\sigma \in G_{d,n}$ is denoted by π_{σ} .

3-2. The canonical relation of the *d*-plane transform

Theorem 9

 \mathcal{R}_d is an elliptic Fourier integral operator whose distribution kernel belongs to

$$I^{0+(n-d)/2-(N(d,n)+n)/4}(G(d,n)\times\mathbb{R}^n;\Lambda_{\phi}),$$

$$m+\frac{k}{2}-\frac{N}{4}=0+\frac{n-d}{2}-\frac{N(d,n)+n}{4}=-\frac{d(n-d+1)}{4}.$$

$$\Lambda'_{\phi}=\{(\sigma,y-\pi_{\sigma}y,y;\pm|\pi_{\sigma}u|\eta,0,\ldots,0,\eta,\eta):$$

$$\sigma\in G_{d,n},y\in\mathbb{R}^n,\eta\in\sigma^{\perp}\}$$

$$=\{(\sigma,x'',x''+t\omega;t\xi,0,\ldots,0,\xi,\xi):$$

$$(\sigma,x'')\in G(d,n),t\in\mathbb{R},\omega\in\sigma\cap\mathbb{S}^{-1},\xi\eta\in\sigma^{\perp}\}.$$

3-3. Fourier slice theorem

For any $\sigma \in G_{d,n}$ and $\xi \in \sigma^{\perp}$,

$$\begin{split} &\int_{\sigma^{\perp}} \mathbf{e}^{-\mathbf{i}\mathbf{x}''\cdot\xi} \mathcal{R}_{d} f(\sigma,\mathbf{x}'') d\mathbf{x}'' = \int_{\sigma^{\perp}} \int_{\sigma} \mathbf{e}^{-\mathbf{i}\mathbf{x}''\cdot\xi} f(\mathbf{x}'+\mathbf{x}'') d\mathbf{x}' d\mathbf{x}'' \\ &= \int_{\sigma^{\perp}} \int_{\sigma} \mathbf{e}^{-\mathbf{i}(\mathbf{x}'+\mathbf{x}'')\cdot\xi} f(\mathbf{x}'+\mathbf{x}'') d\mathbf{x}' d\mathbf{x}'' = \hat{\mathbf{f}}(\xi''). \end{split}$$

The for any $(\sigma, \mathbf{x''}) \in \mathbf{G}(\mathbf{d}, \mathbf{n})$,

$$\mathcal{R}_{d}f(\sigma, \mathbf{x}'') = \frac{1}{(2\pi)^{n-d}} \int_{\sigma^{\perp}} e^{i\mathbf{x}'' \cdot \xi} \hat{\mathbf{f}}(\xi'') d\xi$$

$$= \frac{1}{(2\pi)^{n-d}} \int_{\sigma^{\perp}} \int_{\mathbb{R}^{n}} e^{i(\mathbf{x}'' - \mathbf{y}) \cdot \xi} \mathbf{f}(\mathbf{y}) d\mathbf{y} d\xi$$

$$= \frac{1}{(2\pi)^{n-d}} \int_{\sigma^{\perp}} \int_{\mathbb{R}^{n}} e^{i\phi(\sigma, \mathbf{x}'', \mathbf{y}, \xi)} \mathbf{f}(\mathbf{y}) d\mathbf{y} d\xi,$$

$$\phi(\sigma, \mathbf{x}'', \mathbf{y}, \xi) = (\mathbf{x}'' - \mathbf{y}) \cdot \xi, \quad (\sigma, \mathbf{x}'') \in \mathbf{G}(\mathbf{d}, \mathbf{n}), \mathbf{y} \in \mathbb{R}^{n}, \xi \in \sigma^{\perp}.$$

It suffices to show that ϕ is a non-degenerate phase function.

3-4. $\phi(\sigma, \mathbf{x}'', \mathbf{y}, \eta)$ is a phase function.

• Critical points $\phi'_{\xi} = 0$:

For
$$((\sigma, \mathbf{x}''), \mathbf{y}, \Xi) \in \mathbf{G}(\mathbf{d}, \mathbf{n}) \times \mathbb{R}^{\mathbf{n}} \times \mathbb{R}^{\mathbf{n}}$$
, set $\Psi_1(\sigma, \mathbf{x}'', \mathbf{y}, \Xi) := \phi(\sigma, \mathbf{x}'', \mathbf{y}, \Xi - \pi_\sigma \Xi)$. Then
$$\Psi_1 = (\mathbf{x}'' - \mathbf{y}) \cdot (\Xi - \pi_\sigma \Xi) = (\mathbf{x}'' - \mathbf{y} + \pi_\sigma \mathbf{y}) \cdot \Xi,$$

$$\phi'_{\xi} = \nabla_{\Xi} \Psi_1|_{\Xi = \xi} = \mathbf{x}'' - (\mathbf{y} - \pi_\sigma \mathbf{y}).$$

- Non-degeneracy rank $d\phi'_{\xi} \equiv n d$: $\phi''_{\xi y} = -I_n + \pi_{\sigma}$ implies rank $\phi''_{\xi y} \equiv n - d$ and rank $d\phi'_{\xi} \equiv n - d$.
- non-vanishing $d\phi \neq 0$ for $\xi \neq 0$: Since $\phi'_{\gamma} = \xi \neq 0$ for $\xi \neq 0$, $d\phi \neq 0$ for $\xi \neq 0$.

3-5. Λ'_{ϕ}

Let us express $\sigma \in G_{d,n}$ by $\sigma = \operatorname{span}\langle \omega_1, \ldots, \omega_d \rangle$. By using the similar arguments in the previous page, we have at the critical points $\mathbf{x''} = \mathbf{y} - \pi_{\sigma}\mathbf{y}$

$$(\sigma, \mathbf{x''}, \mathbf{y}; \phi'_{\sigma, \mathbf{x''}}, -\phi'_{\mathbf{y}}) = (\sigma, \mathbf{x''}, \mathbf{y}; (\mathbf{y} \cdot \omega_1, \dots, \mathbf{y} \cdot \omega_d, \mathbf{1})\xi, \xi).$$

By using a rotation on σ , we can choose $\{\omega_1, \ldots, \omega_d\}$ such that

$$\mathbf{y} \cdot \mathbf{\omega_1} = \pm |\mathbf{\pi}_{\sigma} \mathbf{y}|, \quad \mathbf{y} \cdot \mathbf{\omega_2} = \cdots = \mathbf{y} \cdot \mathbf{\omega_d} = \mathbf{0}.$$

We have at the critical points $\mathbf{x''} = \mathbf{y} - \pi_{\sigma} \mathbf{y}$

$$(\sigma, \mathbf{x}'', \mathbf{y}; \phi'_{\sigma, \mathbf{x}''}, -\phi'_{\mathbf{y}}) = (\sigma, \mathbf{x}'', \mathbf{y}; (\pm |\pi_{\sigma}\mathbf{y}|, \mathbf{0}, \dots, \mathbf{0}, \mathbf{1})\xi, \xi).$$

This completes the proof of Theorem 9.

4-1. Main Theorem

- Suppose that the metal region $D \subset \mathbb{R}^n$ is a disjoint union of D_j $(j=1,\ldots,J)$ which are simply connected, strictly convex and bounded with smooth boundaries $\Sigma_j := \partial D_j$. Set $\Sigma := \partial D$.
- For $j \neq k$ \mathcal{L}_{jk} denotes the set of hyperplanes tangential to Σ_j and Σ_k . Set $\mathcal{L} := \cup \mathcal{L}_{jk}$.
- $\bullet \ \chi_{D_j} \in \textit{\textbf{I}}^{-1+1/2-n/4}(\textit{\textbf{N}}^*\Sigma_j), \, \chi_{\textit{\textbf{D}}} \in \textit{\textbf{I}}^{-1+1/2-n/4}(\textit{\textbf{N}}^*\Sigma) \ (\text{c.f.} \ \textit{\textbf{f}}(\textit{\textbf{x}}.\textit{\textbf{y}})).$

Theorem 10

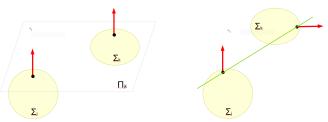
Away from Σ , the nonlinear part of the CT image

$$f_{MA} := f_{CT} - f_{E_0} = \sum_{k=1}^{\infty} A_k (a\varepsilon)^{2k} \mathcal{R}_d^* (-\Delta_{x''})^{d/2} [(\mathcal{R}_d \chi_D)^{2k}]$$

belongs to $I^{-(d+3)/2+1/2-n/4}(N^*\mathcal{L})$, and its principal symbol does not vanish. This means that f_{MA} causes the metal streaking artifacts.

4-2. Illustration of Theorem 10

- Park-Choi-Seo (CPAM, 2017) proved that $\mathbf{WF}(\mathbf{F}_{MA}) = \mathbf{N}^* \mathcal{L}$ for $(\mathbf{n}, \mathbf{d}) = (\mathbf{2}, \mathbf{1})$.
- Theorem 10 is the generalization of Palacios-Uhlmann-Wang (SIAM J. Math. Anal., 2018) for $(\mathbf{n}, \mathbf{d}) = (\mathbf{2}, \mathbf{1})$.
- If Σ_j and Σ_k have a common tangent hyperplane Π_{jk} , then their microlocal singularities, which are in the same conormal direction, spread all over Π_{jk} .
- If Σ_j and Σ_k have a common tangent **d**-plane with $\mathbf{d} \leq \mathbf{n} \mathbf{2}$ and the directions of their microlocal singularities are different, then no nonlinear effect occurs.



4-3. The canonical transform of **D**

We need to consider

$$(\mathcal{R}_d\chi_D)^2 = \sum_{j=1}^J (\mathcal{R}_d\chi_{D_j})^2 + 2\sum_{1\leq j< k\leq J} \mathcal{R}_d\chi_{D_j}\cdot\mathcal{R}_d\chi_{D_k}$$

$$\Lambda_{\phi}' \circ N^* \Sigma_j = \{ (\sigma, y - \pi_{\sigma} y, y; (\pm | \pi_{\sigma} y |, 0, ..., 0, 1) \eta) : \\ (y, \eta) \in N^* \Sigma_j \setminus 0, \sigma \in G_{d,n}, \sigma \subset \eta^{\perp} \}.$$

Set

$$\begin{aligned} \mathbf{S}_{j} &:= \pi_{\mathbf{G}(d,n)}(\Lambda_{\phi}' \circ \mathbf{N}^{*} \Sigma_{j}) \\ &= \{ (\sigma, \mathbf{y} - \pi_{\sigma} \mathbf{y}) : \mathbf{y} \in \Sigma_{j} \setminus \mathbf{0}, \sigma \in \mathbf{G}_{d,n}, \sigma \subset \mathbf{T}_{\mathbf{y}} \Sigma_{j} \}. \end{aligned}$$

Lemma 11

- codim $S_j = 1$, and $N^*S_j = \Lambda'_{\phi} \circ N^*\Sigma_j$.
- If $j \neq k$ and $S_i \cap S_k \neq \emptyset$, then S_i intersects S_k transversally.

4-4. $S_i \cap S_k$ and its conormal bundle

If $(\sigma, \mathbf{x}'') \in \mathbf{S}_j \cap \mathbf{S}_k$, then there exist $\mathbf{y}_j \in \Sigma_j$ and $\mathbf{y}_k \in \Sigma_k$ such that $\sigma \subset \mathbf{T}_{\mathbf{y}_j} \Sigma_j \cap \mathbf{T}_{\mathbf{y}_k} \Sigma_k$ and $\mathbf{x}'' = \mathbf{y}_j - \pi_\sigma \mathbf{y}_j = \mathbf{y}_k - \pi_\sigma \mathbf{y}_k$. Using the same notation we set for $\mathbf{I} = \mathbf{d}, \dots, \mathbf{n} - \mathbf{1}$

$$(\textbf{\textit{S}}_{\textit{j}} \cap \textbf{\textit{S}}_{\textit{k}})_{\textit{l}} := \{(\sigma, \textbf{\textit{x}}'') \in \textbf{\textit{S}}_{\textit{j}} \cap \textbf{\textit{S}}_{\textit{k}} : \dim(\textbf{\textit{T}}_{\textit{\textit{Y}}_{\textit{j}}} \Sigma_{\textit{j}} \cap \textbf{\textit{T}}_{\textit{\textit{Y}}_{\textit{k}}} \Sigma_{\textit{k}}) = \textit{l}\}.$$

Lemma 12

- If $N_{y_j}^*\Sigma_j = N_{y_k}^*\Sigma_k$, then $T_{y_j}\Sigma_j = T_{y_k}\Sigma_k$ and I = n-1.
- $\operatorname{codim}(S_i \cap S_k)_I = d(n-I-1) + 2.$

Set
$$S_{jk} := (S_j \cap S_k)_{n-1}$$
. Then $\operatorname{codim} S_{jk} = 2$, and

$$N^* S_{jk} = \{ (\sigma, \mathbf{x}''; (t, 0, ..., 0, 1)\eta) : (\sigma, \mathbf{x}'') \in S_{jk}, t \in \mathbb{R}, \eta \in N_{y_i}^* \Sigma_j \setminus \mathbf{0} \},$$

$$(t,0,\ldots,0,1)\eta=\frac{t_k-t}{t_k-t_j}(t_j,0,\ldots,0,1)\eta+\frac{t-t_j}{t_k-t_j}(t_k,0,\ldots,0,1)\eta.$$

4-5. Interaction near $(S_i \cap S_k)_I (I < n-1)$

Theorem 9 implies that $\mathcal{R}_{d\chi_{D_{j}}} \in I^{-(d+2)/2+1/2-N(d,n)/4}(N^{*}S_{j})$. We show that we can neglect the interaction near $(S_{j} \cap S_{k})_{I}$ (I < n-1). Fix an arbitrary $\Xi \in (S_{j} \cap S_{k})_{I}$. We can choose local coordinates $(x, y, z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N(d,n)-2}$ such that $\Xi = 0$. $u \in I^{-\mu}(N^{*}S_{j})$ and $v \in I^{-\mu}(N^{*}S_{k})$ are given by

$$u = \int_{\mathbb{R}} e^{ix\xi} a(y, z, \xi) d\xi, \quad v = \int_{\mathbb{R}} e^{iy\eta} b(x, z, \eta) d\eta,$$

and since $\langle \xi \rangle^{-N} \langle \eta \rangle^{-N} \langle D_x \rangle^N \langle D_y \rangle^N e^{i(x\xi+y\eta)} = e^{i(x\xi+y\eta)}$

$$uv = \iint_{\mathbb{R}^2} e^{i(x\xi + y\eta)} a(y, z, \xi) b(x, z, \eta) d\xi d\eta$$
$$= \iint_{\mathbb{R}^2} e^{i(x\xi + y\eta)} \frac{\langle D_y \rangle^N a(y, z, \xi)}{\langle \xi \rangle^N} \frac{\langle D_x \rangle^N b(x, z, \eta)}{\langle \eta \rangle^N} d\xi d\eta$$

for any N > 0 near 0.

4-6. Paired Lagrangian distributions

Definition 13 (Paired Lagrangian distributions)

Let $\mu, \nu \in \mathbb{R}$, and let Λ_0 , Λ_1 be conic Lagrangian submanifold of $T^*X \setminus 0$. We say that $u \in \mathscr{D}'(X)$ belongs to $I^{\mu,\nu}(\Lambda_0,\Lambda_1)$ if $\mathrm{WF}(u) \subset \Lambda_0 \cup \Lambda_1$ and away from $\Lambda_0 \cap \Lambda_1$

$$u \in I^{\mu+\nu}(\Lambda_0 \setminus \Lambda_1), \quad u \in I^{\mu}(\Lambda_1).$$

Lemma 14 (Greenleaf-Uhlmann, 1993)

Let X be an N-dimensional manifold, and let Y, Z be submanifolds of X with codim $Y = k_1$ and codim $Z = l_1$ respectively. Suppose $Y \cap Z$ and set codim $Y \cap Z = k_1 + k_2 = l_1 + l_2$. Then

$$I^{\mu+k_1/2-N/4}(N^*Y) \cdot I^{\nu+k_1/2-N/4}(N^*Z)$$

 $\subset I^{\mu+k_1/2-N/4,\nu+k_2/2}(N^*(Y\cap Z),N^*Y)$
 $+I^{\nu+l_1/2-N/4,\mu+l_2/2}(N^*(Y\cap Z),N^*Z).$

4-7. Outline of Proof of Theorem 10

- Set $\mathscr{A} := \sum_{j \neq k} I^{-(d+2)/2 + 1/2 N(d,b)/4, -(d+2)/2 + 1/2} (N^* S_{jk}, N^* S_j).$
- Note that $I^{-(d+2)/2+1/2-N(d,b)/4}(N^*S_i) \subset \mathscr{A}$.
- Lemma 14 proves that $(\mathcal{R}_d \chi_D)^2 \in \mathscr{A}$.
- It follows that \mathscr{A} is an algebra. In particular

$$P_{MA} := \sum_{k=1}^{\infty} A_k (\alpha \varepsilon)^{2k} (\mathcal{R}_d \chi_D)^{2k} \in \mathscr{A}.$$

Applying Lemma 15 to P_{MA}, we prove Theorem 10.

Lemma 15

 $\mathcal{R}_{d}^{*}(-\Delta_{\mathbf{x}''})^{d/2}$ is a FIO of order $\frac{\mathbf{n}+\mathbf{N}(\mathbf{d},\mathbf{n})}{\mathbf{4}}-\frac{\mathbf{n}-\mathbf{d}}{\mathbf{2}}$ with a canonical relation $(\Lambda'_{\phi})^{*}:=\{(\mathbf{x},\mathbf{y},\xi,\eta):(\mathbf{y},\mathbf{x},;\eta,\xi)\in\Lambda'_{\phi}\}$, and $(\Lambda'_{\phi})^{*}\circ\mathbf{N}^{*}\mathbf{S}_{\mathbf{j}}=\mathbf{N}^{*}\Sigma_{\mathbf{j}},(\Lambda'_{\phi})^{*}\circ\mathbf{N}^{*}\mathbf{S}_{\mathbf{jk}}=\mathbf{N}^{*}\mathscr{L}_{\mathbf{jk}}.$

4-8. $I^{\mu,\nu}(N^*S_{jk}, N^*S_j)$ is given by oscillatory integrals.

If $u \in I^{-(d+2)/2+1/2-N(d,b)/4,-(d+2)/2+1/2}(N^*S_{jk},N^*S_j)$, we can choose local coordinates $(x,y,z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N(d,n)-2}$ and find $a(x,y,z,\xi,\eta)$ such that $S_j = \{x=0\}, S_{jk} = \{x=y=0\}$,

$$\partial_{\mathbf{x},\mathbf{y},\mathbf{z}}^{\gamma}\partial_{\xi}^{\alpha}\partial_{\eta}^{\beta}\mathbf{a}(\mathbf{x},\mathbf{y},\mathbf{z},\xi,\eta)=\mathcal{O}(\langle\xi;\eta\rangle^{-(d+2)/2-\alpha}\langle\eta\rangle^{-(d+2)/2-\beta}),$$

$$u(x, y, z) = \iint_{\mathbb{R}^2} e^{i(x\xi+y\eta)} a(x, y, z, \xi, \eta) d\xi d\eta$$

near (x, y, z) = 0. Such a class of symbols is denoted by \mathcal{B}_d . We shall evaluate the products of such paired Lagrangian distributions. To show that \mathscr{A} is an algebra, we shall check that U_d is closed under convolutions in ξ and η .

Pick up $\psi(t) \in \pmb{C}^\infty(\mathbb{R})$ such that $0 \leqq \psi(t) \leqq 1$, $\psi(t) = 1$ for $|t| \leqq 1/2$, $0 < \psi(t) < 1$ for 1/2 < |t| < 3/4, $\psi(t) = 0$ for $|t| \geqq 3/4$. Then $1 - \psi(t) = 1$ for $|t| \geqq 3/4$, $0 < 1 - \psi(t) < 1$ for 1/2 < |t| < 3/4, $1 - \psi(t) = 0$ for $|t| \leqq 1/2$.

4-9.
$$(I^{\mu,\nu}(N^*S_{jk},N^*S_j))^2 \subset \mathscr{A}$$

Suppose that there exists $b(x, y, z, \xi, \eta) \in U_d$ such that

$$\mathbf{v}(\mathbf{x},\mathbf{y},\mathbf{z}) = \iint_{\mathbb{R}^2} \mathbf{e}^{i(\mathbf{x}\xi+\mathbf{y}\eta)} \mathbf{b}(\mathbf{x},\mathbf{y},\mathbf{z},\xi,\eta) d\xi d\eta.$$

Then

$$egin{aligned} \mathbf{u}\mathbf{v} &= \iint_{\mathbb{R}^2} \mathbf{e}^{\mathbf{i}(\mathbf{x}\xi+\mathbf{y}\eta)} \mathbf{c}_1(\mathbf{x},\mathbf{y},\mathbf{z},\xi,\eta) \, \mathrm{d}\xi \, \mathrm{d}\eta, \ & \mathbf{c} &= \iint_{\mathbb{R}^2} \mathbf{a}(\mathbf{x},\mathbf{y},\mathbf{z},\xi-\zeta,\eta-\lambda) \, \mathbf{b}(\mathbf{x},\mathbf{y},\zeta,\lambda) \, \mathrm{d}\zeta \, \mathrm{d}\lambda. \end{aligned}$$

It suffices to show that $c_1 \in U_d$.

Set
$$\Phi(\xi, \eta, \zeta, \lambda) := \psi\left(\frac{\langle \xi - \zeta, \eta - \lambda \rangle}{\langle \xi; \eta \rangle}\right), \Psi(\eta, \lambda) := \psi\left(\frac{\langle \eta - \lambda \rangle}{\langle \eta \rangle}\right).$$

- $|(\xi, \eta)| \sim |(\zeta, \lambda)|$ for $\Phi > \mathbf{0}$.
- $\langle \xi \zeta, \eta \lambda \rangle \ge \langle \xi; \eta \rangle / 2$ for $1 \Phi > 0$.
- $\partial_{\tau}^{\alpha}\partial_{\lambda}^{\beta}\Phi = \mathcal{O}(\langle \xi \zeta, \eta \lambda \rangle^{-\alpha \beta}).$

4-10. $c_1 \in U_d$

Note that $\partial_{\zeta}(\boldsymbol{g}(\xi-\zeta))=-\partial_{\zeta}(\boldsymbol{g}(\xi-\zeta))$. Using

$$1 = \Phi \Psi + (1 - \Phi)\Psi + \Phi(1 - \Psi) + (1 - \Phi)(1 - \Psi),$$

we deduce that

$$\begin{split} \partial_{\mathbf{x},\mathbf{y},\mathbf{z}}^{\gamma} \partial_{\xi}^{\alpha} \partial_{\eta}^{\beta} \boldsymbol{c} &= \sum_{\gamma' \leq \gamma} \boldsymbol{C}(\gamma') \iint_{\mathbb{R}^{2}} \boldsymbol{a}_{\gamma'}^{\alpha,\beta} \boldsymbol{b}_{\gamma-\gamma'} \boldsymbol{d}\zeta \boldsymbol{d}\lambda \\ \iint_{\mathbb{R}^{2}} \boldsymbol{a}_{\gamma'}^{\alpha,\beta} \boldsymbol{b}_{\gamma-\gamma'} \boldsymbol{d}\zeta \boldsymbol{d}\lambda &= \iint_{\mathbb{R}^{2}} \boldsymbol{a}_{\gamma'} \partial_{\zeta}^{\alpha} \partial_{\lambda}^{\beta} (\boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{b}_{\gamma-\gamma'}) \boldsymbol{d}\zeta \boldsymbol{d}\lambda \\ &+ \iint_{\mathbb{R}^{2}} \boldsymbol{a}_{\gamma'}^{\alpha,0} \partial_{\lambda}^{\beta} ((\mathbf{1} - \boldsymbol{\Phi}) \boldsymbol{\Psi} \boldsymbol{b}_{\gamma-\gamma'}) \boldsymbol{d}\zeta \boldsymbol{d}\lambda \\ &+ \iint_{\mathbb{R}^{2}} \boldsymbol{a}_{\gamma'}^{0,\beta} \partial_{\zeta}^{\alpha} (\boldsymbol{\Phi} (\mathbf{1} - \boldsymbol{\Psi}) \boldsymbol{b}_{\gamma-\gamma'}) \boldsymbol{d}\zeta \boldsymbol{d}\lambda \\ &+ \iint_{\mathbb{R}^{2}} \boldsymbol{a}_{\gamma'}^{\alpha,\beta} (\mathbf{1} - \boldsymbol{\Phi}) (\mathbf{1} - \boldsymbol{\Psi}) \boldsymbol{b}_{\gamma-\gamma'} \boldsymbol{d}\zeta \boldsymbol{d}\lambda \\ &= \mathcal{O}(\langle \xi; \eta \rangle^{-(d+2)/2-\alpha} \langle \eta \rangle^{-(d+2)/2-\beta}). \end{split}$$

4-11.
$$I^{\mu,\nu}(N^*S_{jk},N^*S_{j})\cdot I^{\mu,\nu}(N^*S_{jk},N^*S_{k})\subset \mathscr{A}$$

Suppose that there exists $b(x, y, z, \eta, \xi) \in U_d$ such that

$$v(x,y,z) = \iint_{\mathbb{R}^2} e^{i(x\xi+y\eta)}b(x,y,z,\eta,\xi)d\xi d\eta.$$

Then

$$egin{aligned} oldsymbol{u} oldsymbol{v} &= \iint_{\mathbb{R}^2} \mathbf{e}^{i(x\xi+y\eta)} oldsymbol{p}(x,y,z,\xi,\eta) \, d\xi d\eta, \ oldsymbol{p} &= \iint_{\mathbb{R}^2} oldsymbol{a}(x,y,z,\xi-\zeta,\eta-\lambda) oldsymbol{b}(x,y,\lambda,\zeta) \, d\zeta d\lambda. \end{aligned}$$

In the same way as in the previous page we have

$$\partial_{x,y,z}\partial_{\xi}\alpha\partial_{\eta}^{\beta}p=\mathcal{O}(\langle\xi\rangle^{-(d+2)/2-\alpha}\langle\eta\rangle^{-(d+2)/2-\beta}).$$

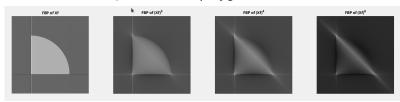
If we set

$$q(x, y, z, \xi, \eta) := \psi\left(\frac{\langle \xi \rangle}{\langle \eta \rangle}\right) p, \quad r(x, y, z, \eta, \xi) := p - q,$$

then $q, r \in U_d$, which implies $I \cdot I' \subset I + I'$.

5. Discussions

- $P_{MA} \not\in \mathcal{R}_d(\mathscr{E}'(\mathbb{R}^n))$.
- Palacios-Uhlmann-Wang (SIAM J. Math. Anal., 2018) studied the case that D_1, \ldots, D_J are convex polygons in \mathbb{R}^2 .



When D_1, \ldots, D_J are convex polyhedra in \mathbb{R}^3 , the situation is more complicated.

- Theorem 9 might be useful to studying limited data problem.
- It might be worth studying these topics in the setting of some kind of Riemannian manifolds.

References 1

- d-plane transform
 - S. Helgason, "Integral Geometry and Radon Transforms", Springer-Verlag, New York, NY, 2011.
- FIOs and Lagrangian distributions
 A. Grigis and J. Sjöstrand, "Microlocal Analysis for Differential Operators: An Introduction", Cambridge University Press, Cambridge, 1994.
- Conormal distributions
 L. Hörmander, "The Analysis of Linear Partial Differential Operators III", Springer-Verlag, Berlin, 1985.
- The canonical relations of the X-ray transform on \mathbb{R}^2 E. T. Quinto, *Singularities of the X-Ray transform and limited data tomography in* \mathbb{R}^2 *and* \mathbb{R}^3 , SIAM Journal on Mathematical Analysis, **24** (1993), pp.1215–1225.

References 2

- Tomography (beam hardening and etc)
 C. L. Epstein, "Introduction to the mathematics of medical imaging, Second edition", SIAM, Philadelphia, 2008.
- Paired Lagrangian distributions
 A. Greenleaf and G. Uhlmann, Recovering singularities of a potential from singularities of scattering data, Comm. Math. Phys., 157 (1993), pp.549–572.
- Microlocal analysis of beam hardening on R²
 H. S. Park, J. K. Choi and J. K. Seo, *Characterization of metal artifacts in X-ray computed tomography*, Comm. Pure Appl. Math., 70 (2017), pp.2191—2217.
- Microlocal analysis of beam hardening on R²
 B. Palacios, G. Uhlmann and Y. Wang, Quantitative analysis of metal artifacts in X-ray tomography, SIAM J. Math. Anal., 50 (2018), pp.4914–4936.