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Abstract

This thesis concerns representation theory of the symmetric groups and related algebras.
In recent years, the study of the “quiver Hecke algebras”, constructed indepen-

dently by Khovanov and Lauda and by Rouquier, has become extremely popular. In
this thesis, our motivation for studying these graded algebras largely stems from a
result of Brundan and Kleshchev – they proved that (over a field) the KLR algebras
have cyclotomic quotients which are isomorphic to the Ariki–Koike algebras, which
generalise the Hecke algebras of type A, and thus the group algebras of the symmetric
groups. This has allowed the study of the graded representation theory of these alge-
bras. In particular, the Specht modules for the Ariki–Koike algebras can be graded; in
this thesis we investigate graded Specht modules in the KLR setting.

First, we conduct a lengthy investigation of the (graded) homomorphism spaces
between Specht modules. We generalise the row and column removal results of Lyle and
Mathas, producing graded analogues which apply to KLR algebras of arbitrary level.
These results are obtained by studying a class of homomorphisms we call dominated.
Our study provides us with a new result regarding the indecomposability of Specht
modules for the Ariki–Koike algebras.

Next, we use homomorphisms to produce some decomposability results pertaining
to the Hecke algebra of type A in quantum characteristic two.

In the remainder of the thesis, we use homogeneous homomorphisms to study some
graded decomposition numbers for the Hecke algebra of typeA. We investigate graded
decomposition numbers for Specht modules corresponding to two-part partitions. Our
investigation also leads to the discovery of some exact sequences of homomorphisms
between Specht modules.
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Introduction

In group theory, the symmetric groups are among the most classically studied; their

importance stems from Cayley’s Theorem – every group may be embedded in some

symmetric group. Their presence permeates mathematics – from algebra to combina-

torics, and even areas of physics, the symmetric groups’ ubiquity can be felt. A common

perspective when studying groups is the study of their representations, or actions on

vector spaces.

Despite the strength of Cayley’s Theorem, when studying the representation the-

ory of finite groups, the symmetric groups are especially suitable candidates. Their

inherently vast amount of internal symmetry gives rise to their combinatorial nature;

studying them via combinatorics eliminates the need for much of the heavy-duty ma-

chinery often seen in group theory.

Over the complex numbers, the representation theory of the symmetric group dates

back over a century, with the influences of Young [44] and Specht [42] still visible today

– the combinatorics of tableaux and indeed the construction of Specht modules were

their contributions. Decades later, in the 1970s, James developed much of our modern

standpoint on the subject. In particular, James constructed all irreducible modules over

arbitrary fields, as quotients of Specht modules. An excellent introduction to the subject

can be found in [24].

Later, in the series of papers [12, 13, 14], Dipper and James laid the foundations for

and built up the theory of the Iwahori–Hecke algebras of symmetric groups, or Hecke

algebras of typeA. Their principal motivation for studying these algebras was that their
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10 Introduction

modular representation theory provides a bridge between that of the symmetric groups

and that of the general linear groups GLn.q/ over fields of non-defining characteristic –

that is, over any field whose characteristic does not divide q. In the case of defining

characteristic, such a connection has been known since the work of Schur over a century

ago, via his construction of the algebras which now bear his name.

Almost a decade later, Ariki and Koike [2] generalised these Hecke algebras beyond

type A; here they defined Hecke algebras for the complex reflection group G.l; 1; n/ D

Z=lZ oSn. This theory of Ariki–Koike algebras was further developed in [3], among

others, and a survey of the subject can be found in [34]. At around the same time,

the idea was independently generalised even further to the cyclotomic Hecke algebras of

Broué and Malle [6]; here, they constructed Hecke algebras for a larger set of complex

reflection groups, including some of the exceptional types, motivated by the modular

representation theory of algebraic groups. Ariki also generalised his construction to all

complex reflection groups G.l; p; n/ in [1].

In 2009, Khovanov and Lauda [27], and independently, Rouquier [39], defined a

family of Z-graded algebras which categorify the negative part of quantum groups

associated to Kac–Moody algebras. These algebras are known as quiver Hecke algebras,

or KLR algebras; in this thesis we shall favour the latter name. Khovanov and Lauda’s

construction of these algebras was purely diagrammatic, whereas Rouquier presented

them algebraically, and in more generality. Remarkably, Brundan and Kleshchev [8]

were able to show that the Ariki–Koike algebras were isomorphic to certain cyclotomic

quotients of these KLR algebras (of affine type A) – this result yields a grading on the

Ariki–Koike algebras; in particular, in positive characteristic the group algebras of the

symmetric groups are non-trivially Z-graded! This, in part, has given rise to the KLR

algebras receiving an abundance of attention since their inception.

In this thesis, Brundan and Kleshchev’s isomorphism is seen as our main motivation

for studying the KLR algebras. They allow us to study the graded representation theory

of the Hecke algebras of type A and, more generally, of the Ariki–Koike algebras. We

place an emphasis on studying the (graded) representation theory of these algebras via
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(graded) homomorphisms between their Specht modules. We shall begin, in Chapter 1,

with a detailed background of all necessary material. We will introduce our main

players – the symmetric groups, Hecke algebras of type A, Ariki–Koike algebras and

KLR algebras – and outline the combinatorics and representation theory relevant to

their study. We shall also give a brief overview of graded algebras.

In Chapter 2, we look at the KLR algebras of affine type A in full generality. Here,

we study the graded homomorphism spaces between Specht modules. Fayers and Lyle

[18] and Lyle and Mathas [30] proved row and column removal theorems for these ho-

momorphism spaces, for the symmetric groups and Hecke algebras respectively, in the

ungraded setting. In this chapter, we provide graded versions of these theorems, while

at the same time generalising them to higher levels so that they apply to all (degenerate)

Ariki–Koike algebras. More precisely, we prove analogues of these theorems for the

KLR algebras of affine type A.

In fact, our results apply not to all homomorphisms between two given Specht

modules but only to those of a certain type, which we call dominated homomorphisms.

However, in many cases (for example, for the symmetric group in odd characteristic)

every homomorphism between two Specht modules is dominated, so our results ap-

ply generally; in particular, via the Brundan–Kleshchev isomorphism, we recover the

original row and column removal theorems of Fayers and Lyle and of Lyle and Mathas.

Along the way, we produce a new result that Specht modules for the Ariki–Koike

algebras are always indecomposable, under some minor conditions. This chapter is

based on joint work with Fayers, and appears in [19]. The main result of the chapter is

Theorem 2.30 (generalised graded column removal).

In Chapter 3, largely taken from [43], we make a contribution to the problem of

determining which Specht modules are decomposable. Here, we concentrate on the

level 1 (i.e. the Hecke algebra of type A) situation. Over any field whose characteristic

is not 2, it is known that Specht modules for the symmetric group are indecomposable.

Likewise, when the quantum characteristic of a Hecke algebra of type A is not 2, an

identical statement holds true. We determine which Specht modules indexed by hook
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partitions are decomposable in quantum characteristic 2. This is achieved from the

KLR algebra perspective, though we do not invoke any graded machinery here; instead,

the bulk of the work involves constructing an endomorphism for a Specht module

and using it to decompose the Specht module into generalised eigenspaces. The result

arrived at is Theorem 3.41, which states that when char.F/ ¤ 2, the Specht module

S.a;1b/ is indecomposable if and only if aC b is even or b D 2 or 3 with char.F/ j da
2
e.

Next, in Chapter 4, we study the graded decomposition numbers corresponding to

two-part partitions, for Hecke algebras of type A. Once again, we make extensive use

of homomorphisms in our endeavour. This chapter contains work which is in progress;

here we present a complete solution to the problem in quantum characteristic 2, along

with an interesting result regarding exact sequences of homomorphisms between Specht

modules.

Finally, Chapter 5 is an attempt at generalising the results of Chapter 2. We con-

centrate on attempting to prove that in level 1 when e D 2, all homomorphisms are

dominated, subject to an extra condition on the partition indexing the domain. Our

approach begins with us proving a graded branching rule for restriction to a subalge-

bra, generalising existing results of this flavour. Using this, we are able to prove our

desired result with the aid of three conjectures which put conditions on the indexing

tableaux occurring in the image of a generator under a homomorphism. We end with

a conjecture which extends this beyond level 1.

We conclude the thesis with an index of notation for the reader’s reference.



Chapter 1

Background

In this chapter we recall some background and set up some notation.

1.1 The symmetric group

Let Sn denote the symmetric group of degree n. Let s1; : : : ; sn�1 denote the standard

Coxeter generators of Sn, i.e. si is the transposition .i; i C 1/. Given w 2 Sn, a reduced

expression for w is an expression w D si1 : : : sil with l as small as possible; we call

l D l.w/ the length of w.

We will need to use two natural partial orders on Sn. If w; x 2 Sn, then we say

that x is smaller than w in the left order (and write x 6L w) if l.w/ D l.wx�1/C l.x/;

this is equivalent to the statement that there is a reduced expression for w which has a

reduced expression for x as a suffix.

More important will be the Bruhat order on Sn: if w; x 2 Sn, then we say that w is

smaller than x in the Bruhat order (and write w 4 x) if there is a reduced expression for

x which has a (possibly non-reduced) expression for w as a subsequence. In fact [23,

Theorem 5.10], if w 4 x, then every reduced expression has a reduced expression for w

as a subsequence.

The following proposition gives an alternative characterisation of the Bruhat order.

Proposition 1.1 [23, �5.9]. Suppose w; x 2 Sn. Then w 4 x if and only if there are w D

13



14 1.2. The Iwahori–Hecke algebra

w0; w1; : : : ; wr D x such that for each 1 6 i 6 r we have wi D .ui ; vi /wi�1, where 1 6 ui <

vi 6 n and w�1i�1.ui / < w
�1
i�1.vi /.

Later we shall need the following lemma; in fact, this is a special case of Deodhar’s

‘property Z’ [11, Theorem 1.1].

Lemma 1.2. Suppose w; x 2 Sn with x � w. If l.siw/ < l.w/ while l.six/ > l.x/, then

six 4 w.

Proof. Since l.siw/ < l.w/,w has a reduced expression s beginning with si . We can find a

reduced expression for x as a subexpression of s, and this subexpression cannot include

the first term si , since l.six/ > l.x/. So we can add the initial si to the subexpression to

get a reduced expression for six as a subexpression of s. �

Occasionally, it will be useful to talk about fully commutative elements of the sym-

metric group:

Definition 1.3. We call an element w 2 Sn fully commutative if we can go from any

reduced expression for w to any other via application of only the commuting braid

relations sisj D sj si for ji � j j > 1.

We end this section by defining some very natural and useful homomorphisms.

Suppose 1 6 m 6 n and 0 6 k 6 n�m, and define the homomorphism shiftk W Sm ! Sn

by si 7! siCk for every i . Note that if k D 0, this is the natural embedding.

1.2 The Iwahori–Hecke algebra

We will fix a field F throughout this thesis.

Definition 1.4. For any q 2 F we define the Iwahori–Hecke algebra H D HF;q.Sn/ of the

symmetric group Sn (also referred to as the Hecke algebra of type A) to be the unital
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associative F-algebra with presentation

$

T1; : : : ; Tn�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
.Ti � q/.Ti C 1/ D 0 for 1 6 i 6 n� 1

TiTj D TjTi for 1 6 i < j � 1 6 n� 2

TiTiC1Ti D TiC1TiTiC1 for 1 6 i 6 n� 2

%

:

Remark. Note that setting q D 1 recovers the Coxeter presentation for the symmetric

group. The degenerate case q D 0 behaves very differently, and so we will assume that

q ¤ 0 throughout.

Definition 1.5. Define e 2 f2; 3; 4; : : : g to be the smallest integer such that 1C qC q2C

� � � C qe�1 D 0. If no such integer exists, we define e D 1. We call e the quantum

characteristic of H.

An excellent introduction to these algebras and their representation theory can be

found in [33].

1.3 The Ariki–Koike algebras

The Iwahori–Hecke algebras, or Hecke algebras of type A are deformations of the sym-

metric group. Soon after their study by Dipper and James, this theme was extended

to studying Hecke algebras of type B . In 1994, Ariki and Koike [2] further generalised

this work; they defined Hecke algebras for the complex reflection groups Z=lZ oSn,

or type G.l; 1; n/ as given in the Shephard–Todd classification of complex reflection

groups [41].

Definition 1.6. Given parameters q 2 F and Q D .Q1; : : : ;Ql/ 2 F
l , we define the

Ariki–Koike algebra HF;q;Q.Z=lZ oSn/ to be the unital associative F-algebra with pre-
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sentation

 

T0; T1; : : : ; Tn�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

.T0�Q1/.T0�Q2/ : : : .T0�Ql/ D 0

.Ti � q/.Ti C 1/ D 0 for 1 6 i 6 n� 1

T0T1T0T1 D T1T0T1T0

TiTj D TjTi for 0 6 i < j � 1 6 n� 2

TiTiC1Ti D TiC1TiTiC1 for 1 6 i 6 n� 2

!

:

Remark. Setting l D 1, we recover the Hecke algebra of type A. Similarly, when l D 2,

the Hecke algebra of type B may be recovered from this algebra, which generalises

these previous constructions. As in type A, the Ariki–Koike algebra has an associated

quantum characteristic e defined identically. We will again assume throughout that q ¤ 0,

and similarly that Qi ¤ 0 for all i .

Mathas has written a survey [34] of the representation theory of Ariki–Koike algebras

(and the associated cyclotomic q-Schur algebras). A result of particular interest is [15,

Theorem 1.1] – any Ariki–Koike algebra is Morita equivalent to a tensor product of

smaller Ariki–Koike algebras, each with the property that Qi D qai for some integers

ai . Thus, we may assume from now on that we work with Ariki–Koike algebras with

parameters Qi each an integral power of q.

Proposition 1.7. Let Q D .qa1 ; : : : ; qal / for some integers ai . If Q0 D .qb1 ; : : : ; qbl / for

integers bi such that fqa1 ; : : : ; qal g D fqb1 ; : : : ; qbl g as multisets, thenHF;q;Q.Z=lZ oSn/ Š

HF;q;Q0.Z=lZ oSn/.

Remark. The above isomorphism is an obvious consequence of the presentation of

HF;q;Q.Z=lZ oSn/. Though permuting the parameters leaves an isomorphic algebra,

the combinatorics of multipartitions is greatly changed by doing so, and thus the

representation theory is somehow distorted (for example, the set of multipartitions

indexing the simple modules may change).

Note that, strictly speaking, if e D char.F/ we are interested in degenerate Ariki–

Koike algebras, which we do not define here. An analogous Morita equivalence result
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for these degenerations has been proved by Brundan and Kleshchev. Recently, Mathas

has given a unifying definition of the Ariki–Koike algebras and their degenerations in

[35, Definition 1.1.1].

1.4 Lie-theoretic notation

Throughout this thesis e is a fixed element of the set f2; 3; 4; : : : g[ f1g. We denoted by

e the quantum characteristic of the Hecke algebras of type A, and more generally, the

Ariki–Koike algebras; this apparent clash of notation will be resolved later. If e D 1

then we set I WD Z, while if e < 1 then we set I WD Z=eZ; we may identify I

with the set f0; : : : ; e� 1g when convenient. The Cartan matrix .aij /i;j2I is defined by

aij D 2ıi;j � ıi;.jC1/� ıi;.j�1/.

Let � be the quiver with vertex set I and an arrow from i to i � 1 for each i . (Note

that this convention is the same as that in [29], and opposite to that in [8, 10].) The

quiver � is pictured below for some values of e.

0

1

0

1 2

0

1

2

3 0 1 2 3�1

e D 2 e D 3 e D 4 e D1

In the relations we give below, we use arrows with reference to � ; thus we may write

i ! j to mean that e ¤ 2 and j D i � 1, or i � j to mean that e D 2 and j D i � 1.

We adopt standard notation from Kac’s book [26] for the Kac–Moody algebra as-

sociated to the Cartan matrix .aij /i;j2I ; in particular, we have fundamental dominant

weightsƒi and simple roots ˛i for i 2 I , and an invariant symmetric bilinear form . j /

satisfying .ƒi j˛j / D ıi;j and .˛i j˛j / D aij for i; j 2 I . We let QC WD
L
i2I Z>0˛i be

the positive root lattice. For ˛ D
P
i2I ci˛i 2 Q

C, we define the height of ˛ to be
P
i2I ci .

Given ˛; ˇ 2 QC with ˛ D
P
i2I ci˛i and ˇ D

P
i2I di˛i , we write ˛ > ˇ if ci > di for

each i .
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Let I l denote the set of all l-tuples of elements of I . We call an element of I l

an e-multicharge of level l . The symmetric group Sl acts on I l on the left by place

permutations. Given an e-multicharge � D .�1; : : : ; �l/, we define a corresponding

dominant weight ƒ� WD ƒ�1 C � � � Cƒ�l . For ˛ 2 QC, we then define the defect of ˛

(with respect to �) to be

def.˛/ D .ƒ� j˛/� 1
2
.˛ j˛/:

1.5 Multicompositions and multipartitions

A composition is a sequence� D .�1; �2; : : : / of non-negative integers such that�i D 0 for

sufficiently large i . We write j�j for the sum �1C�2C� � � . When writing compositions,

we may omit trailing zeroes and group equal parts together with a superscript. We write

∅ for the composition .0; 0; : : : /. A partition is a composition � for which �1 > �2 > � � � .

We write � ` n to mean � is a partition of n.

Now suppose l 2 N. An l-multicomposition is an l-tuple � D .�.1/; : : : ; �.l// of

compositions, which we refer to as the components of�. We write j�j D j�.1/jC� � �Cj�.l/j,

and say that � is an l-multicomposition of j�j. If the components of � are all partitions,

then we say that � is an l-multipartition. We write P l
n for the set of l-multipartitions of

n. We abuse notation by using ∅ also for the multipartition .∅; : : : ;∅/.

If � and � are l-multicompositions of n, then we say that � dominates �, and write

� Q �, if

j�.1/jC � � �C j�.m�1/jC�
.m/
1 C � � �C�.m/r > j�

.1/
jC � � �C j�.m�1/jC�

.m/
1 C � � �C�.m/r

for all 1 6 m 6 l and r > 0.

If � is an l-multicomposition, the Young diagram Œ�� is defined to be the set

n
.r; c;m/ 2N�N� f1; : : : ; lg

ˇ̌̌
c 6 �.m/r

o
:

We refer to the elements of Œ�� as the nodes of �. We may also refer to .r; c;m/ as the
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.r; c/-node of �.m/. If � 2 P l
n, a node of � is removable if it can be removed from Œ�� to

leave the Young diagram of a smaller l-multipartition, while a node not in Œ�� is addable

if it can be added to Œ�� to form the Young diagram of an l-multipartition.

We adopt an unusual (but in our view, extremely helpful – see Chapter 2) convention

for drawing Young diagrams. We draw the nodes of each component as boxes in the

plane, using the English convention, where the first coordinate increases down the

page and the second coordinate increases from left to right. Then we arrange the

diagrams for the components in a diagonal line from top right to bottom left. For example,

if � D
�
.22/; .2; 12/; .3; 2/

�
2P3

13, then Œ�� is drawn as follows.

We shall use directions such as left and right with reference to this convention; for

example, we shall say that a node .r; c;m/ lies to the left of .r 0; c0; m0/ if eitherm > m0 or

(m D m0 and c < c0). Similarly, we say that .r; c;m/ is above, or higher than, .r 0; c0; m0/

if either m < m0 or (m D m0 and r < r 0).

If � is a partition, the conjugate partition �0 is defined by

�0i D
ˇ̌˚
j > 1 j �j > i

	ˇ̌
:

If � is an l-multipartition, then the conjugate multipartition �0 is given by

�0 D .�.l/
0
; : : : ; �.1/

0
/:

Observe that with our convention, the Young diagram Œ�0�may be obtained from Œ�� by

reflecting in a diagonal line running from top left to bottom right.



20 1.6. Tableaux

Finally, for some parts of this thesis we will be particularly interested in the level 1

case, and therefore partitions (rather than multipartitions). The following definition is

extremely useful in this case:

Definition 1.8. Let � D .�1; �2; : : : / ` n. We say that � is e-regular and write � `e n if it

does not have e equal non-zero parts; i.e. we do not have �i D �iC1 D � � � D �iCe�1 ¤ 0

for any i . Conversely, if � does have e equal non-zero parts we call � e-singular.

1.6 Tableaux

If � 2 P l
n, a �-tableau is a bijection T W Œ�� ! f1; : : : ; ng. We depict a �-tableau T

by drawing the Young diagram Œ�� and filling each box with its image under T. T is

row-strict if its entries increase from left to right along each row of the diagram, and

column-strict if its entries increase down each column. T is standard if it is both row- and

column-strict. We write Std.�/ for the set of standard �-tableaux.

If T is a �-tableau, then we define a �0-tableau T0 by

T0.r; c;m/ D T.c; r; l C 1�m/

for all .r; c;m/ 2 Œ�0�.

We import and modify some notation from [10] and [29]: given a tableau T and

1 6 i; j 6 n, we write i !T j to mean that i and j lie in the same row of the same

component, with j to the right of i . We write i %T j to mean that i and j lie in the same

component of T, with j strictly higher and strictly to the right, and we write i tT j to

mean that either i %T j or j lies in an earlier component than i . The notations i #T j ,

i .T j and i wT j are defined similarly.

There are two standard �-tableaux of particular importance. The tableau T� is the

standard tableau obtained by writing 1; : : : ; n in order down successive columns from

left to right, while T� is the tableau obtained by writing 1; : : : ; n in order along successive

rows from top to bottom. Note that we then have T� D .T�0/0.
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Example. With � D
�
.22/; .2; 12/; .3; 2/

�
we have

T� D 1012
1113

6 9
7
8

1 3 5
2 4

; T� D 1 2
3 4

5 6
7
8

9 1011
1213

:

The symmetric group Sn acts naturally on the left on the set of �-tableaux. Given a

�-tableau T, we define the permutations wT and wT in Sn by

wTT� D T D w
TT�:

We define the column reading word of a tableau T to be the word obtained by reading

the entries of T down successive columns from left to right. Occasionally, the following

result comparing fully commutative elements with the tableaux they correspond to will

be useful.

Lemma 1.9 [5, Theorem 2.1]. Let � ` n. A permutation w 2 Sn is fully commutative if and

only if the column reading word of wT� has no decreasing subsequence of length 3.

Remark. Note that the above definition is independent of the choice of �, since the

column reading word of wT� is. In fact, in [5, Theorem 2.1], the result is not given

in terms of the reading word of a tableau – instead the condition is that there exist

i < j < k with w.i/ > w.j / > w.k/.

Later we shall also need the following lemma; recall that 6L denotes the left order

on Sn.

Lemma 1.10. Suppose � 2P l
n and S; T are �-tableaux with wS 6L wT. If T is standard, then

S is standard.

Proof. Using induction on l.wT/� l.wS/, we may assume l.wT/ D l.wS/C1, which means

in particular that T D siS for some i . Since T is standard, the only way S could fail to be
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standard is if i C 1 occupies the node immediately below or immediately to the right

of i in T. But either possibility means that i occurs before i C 1 in the column reading

word of T. In other words, w�1T .i/ < w�1T .i C 1/, but this means that l.wS/ > l.wT/, a

contradiction. �

Now we introduce a dominance order on tableaux. If S; T are �-tableaux, then we

write S Q T if and only if wS < wT (recall that < denotes the Bruhat order on Sn).

There should be no ambiguity in using the symbol Q for both the dominance order on

multipartitions and the dominance order on tableaux.

There is an alternative description of the dominance order on tableaux which will

be very useful. If T is a �-tableau and 0 6 m 6 n, we define T#m to be the set of nodes

of Œ�� whose entries are less than or equal to m. If T is row-strict, then T#m is the Young

diagram of an l-multicomposition of m, which we call Shape.T#m/. If T is standard,

then Shape.T#m/ is an l-multipartition of m.

Now we have the following proposition. This is proved in the case l D 1 in [33,

Theorem 3.8] (where it is attributed to Ehresmann and James); in fact, the proof in [33]

carries over to the case of arbitrary l without any modification.

Proposition 1.11. Suppose � 2 P l
n and S; T are row-strict �-tableaux. Then S P T if and

only if Shape.S#m/ P Shape.T#m/ for m D 1; : : : ; n.

In Chapter 2, we shall briefly consider a natural analogue of this notion for column-

strict tableaux. Suppose � 2P l
n and T is a column-strict �-tableau; define the diagram

T#m as above, and define T0
#m

to be the ‘conjugate diagram’ to T#m, that is

T0
#m D

˚
.c; r; l C 1� k/

ˇ̌
.r; c; k/ 2 T#m

	
:

Then T0
#m

is the Young diagram of an l-multicomposition of m, which we denote

Shape.T#m/0. Now we have the following statement, which can be deduced from

Proposition 1.11 by conjugating tableaux.
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Proposition 1.12. Suppose � 2P l
n and S; T are column-strict �-tableaux. Then S P T if and

only if Shape.S#m/0 Q Shape.T#m/0 for m D 1; : : : ; n.

1.7 Residues and degrees

In this section we connect the Lie-theoretic set-up above with multipartitions and

tableaux. We fix an e-multicharge � D .�1; : : : ; �l/. We define the residue resA D res� A

of a node A D .r; c;m/ 2N�N� f1; : : : ; lg by

resA D �mC .c � r/ .mod e/:

We say that A is an i -node if it has residue i . Given � 2 P l
n, we define the content of �

to be the element

cont.�/ D
X
A2Œ��

˛resA 2 Q
C:

We then define the defect def.�/ of � to be def.cont.�//.

If T is a �-tableau, we define its residue sequence to be the sequence i.T/ D .i1; : : : ; in/,

where ir is the residue of the node T�1.r/, for each r . The residue sequences of the

tableaux T� and T� will be of particular importance, and we set i� WD i.T�/ and i� WD

i.T�/.

Example. Take � D
�
.22/; .2; 12/; .3; 2/

�
as in the last example, and suppose e D 4 and

� D .1; 2; 0/. Then the residues of the nodes of � are given by the following diagram.

1 2
0 1

2 3
1
0

0 1 2
3 0
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So we have

i� D .0; 3; 1; 0; 2; 2; 1; 0; 3; 1; 0; 2; 1/; i� D .1; 2; 0; 1; 2; 3; 1; 0; 0; 1; 2; 3; 0/:

Now we recall from [10, �3.5] the degree and codegree of a standard tableau. Sup-

pose � 2P l
n and A is an i -node of �. Set

dA.�/ WD

ˇ̌̌̌
ˇ̌̌
8̂<̂
:addable i -nodes of �

strictly below A

9>=>;
ˇ̌̌̌
ˇ̌̌�
ˇ̌̌̌
ˇ̌̌
8̂<̂
:removable i -nodes of

� strictly below A

9>=>;
ˇ̌̌̌
ˇ̌̌ ;

and

dA.�/ WD

ˇ̌̌̌
ˇ̌̌
8̂<̂
:addable i -nodes of �

strictly above A

9>=>;
ˇ̌̌̌
ˇ̌̌�
ˇ̌̌̌
ˇ̌̌
8̂<̂
:removable i -nodes of

� strictly above A

9>=>;
ˇ̌̌̌
ˇ̌̌ :

For T 2 Std.�/ we define the degree of T recursively, setting deg.T/ WD 0 when T is

the unique ∅-tableau. If T 2 Std.�/ with j�j > 0, let A D T�1.n/, let T<n be the tableau

obtained by removing this node and set

deg.T/ WD dA.�/Cdeg.T<n/:

Similarly, define the codegree of T by setting codeg.T/ WD 0 if T is the unique ∅-tableau,

and

codeg.T/ WD dA.�/C codeg.T<n/

for T 2 Std.�/with j�j > 0. We note that the definitions of degree and codegree depend

on the e-multicharge �, and therefore we write deg� and codeg� when we wish to

emphasise �.

Example. Suppose e D 3, � D .1; 1/ and T is the ..2/; .2; 1//-tableau

3 4

1 5
2
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which has residue sequence i.T/ D .1; 0; 1; 2; 2/. Letting A D T�1.5/ D .1; 2; 2/, we find

that dA.�/ D 1 and dA.�/ D �1. Recursively one finds that for the tableau

T<5 D 3 4

1
2

we have deg.T<5/ D 2 and codeg.T<5/ D 1, so that deg.T/ D 3 and codeg.T/ D 0.

The degree, codegree of a standard �-tableau are related to the defect of � by the

following result.

Lemma 1.13 [10, Lemma 3.12]. Suppose � 2P l
n and T 2 Std.�/. Then

deg.T/C codeg.T/ D def.�/:

1.8 Graded algebras

In this thesis we shall be concerned with algebras which are Z-graded. In general, one

can define gradings by any group G, but we limit our definitions to the situation we

are interested in. Recall that we have fixed a field F throughout.

Definition 1.14. Let A be an F-algebra. A (Z-)grading on A is a decomposition A DL
i2ZAi as vector spaces such that AiAj � AiCj for all i; j 2 Z. A (Z-)graded algebra

is an algebra with a chosen grading.

Example. 1. Any algebraA is a graded algebra with the trivial grading – i.e.A D A0.

2. The archetypal example of a graded algebra is A D FŒx�. Here, we define Ai D

hxi iF for all i > 0 and Ai D 0 if i < 0. In particular, A is positively graded.

3. More generally, we can take A to be the ring of Laurent polynomials FŒx; x�1�.

Here we set Ai D hxi iF for all i to obtain a graded algebra structure.

4. LetA DMn�n.F/ – the ring of n by nmatrices over F. SetAi D hEkl j k� l D iiF,

whereEkl is the matrix unit with a 1 in position .k; l/ and zeroes everywhere else.
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Definition 1.15. If a 2 Ai , we say that a is homogeneous of degree i and write deg.a/ D i .

Definition 1.16. Let A be a graded F-algebra and M be an A-module. A grading on

M is a decomposition M D
L
i2ZMi as vector spaces such that AiMj � MiCj for all

i; j 2 Z. A graded module is a module with a chosen grading. We write M for the

module obtained from M by forgetting the grading.

Example. 1. For any graded algebra A, the (left) regular module AA is a graded

A-module.

2. A D FŒx� and M D F2, with x acting as

0B@0 0

1 0

1CA :
Set M1 D h

�
1
0

�
iF, M2 D h

�
0
1

�
iF and Mj D 0 for all j ¤ 1; 2.

3. A DMn�n.F/ and M D Fn. Set Mi D hei iF if 1 6 i 6 n and Mi D 0 otherwise.

Definition 1.17. IfM is a graded module and k 2 Z, defineM hki to be the same module

with .M hki/i DMi�k . We call this a degree shift by k.

Definition 1.18. Let v be an indeterminate. We define the graded dimension of a graded

module M to be

grdimM D
X
i2Z

dimMiv
i :

Note that grdimM hki D vk grdimM .

Definition 1.19. LetA be a graded algebra. We say that a gradedA-module is irreducible,

or simple, if it has no non-trivial proper graded submodules.

Next we quote a useful result which tells us that, in terms of the representation

theory, we do not lose information by considering grading, but in fact gain some.

Theorem 1.20. [38, Theorems 4.4.4(v) & 9.6.8] and [4, Lemma 2.5.3]. Let A be a finite

dimensional graded algebra. Then:
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1. If M is an irreducible graded A-module, then M is an irreducible A-module.

2. If M is an irreducible A-module, then M can be graded; the grading is unique, up to

degree shift and automorphism of M .

Definition 1.21. SupposeA is a graded algebra and letM andN be gradedA-modules.

A map ' W M ! N is a homogeneous homomorphism of degree r if ' is a homomorphism

of A-modules and '.Mi / � NiCr for all i .

Example. If ' is the identity map on ungraded modules M ! M hii, then ' lifts

naturally to a homogeneous homomorphism of degree i .

Proposition 1.22. IfA is a graded algebra andM is a finitely generated (graded)A-module, then

Hom.M;N / can be graded. That is, Hom.M;N / has a basis of homogeneous homomorphisms.

Proof. Suppose M is generated by homogeneous elements x1; x2; : : : ; xr and

' 2 Hom.M;N /. Then ' is completely determined by what it maps the generators

to. Say

'.xi / D
X
j2Z

ni;j where ni;j 2 Nj for each j and only finitely many ni;j are non-zero.

Now, if we define 'j W M ! N to be the map such that 'j .xi / D ni;deg.xi /Cj , then 'j

is a homogeneous linear map of degree j . As only finitely many degrees arise in the

image of ', ' is a sum of finitely many homogeneous maps 'j . To see that each 'j

is a homomorphism, we simply consider degrees; suppose m 2 M is homogeneous.

Then m'j .xi / is homogeneous of degree deg.xi /C j Cdeg.m/. But since ' is a homo-

morphism, we know that m'.xi / D '.mxi / D
P
mni;j and thus that the constituent of

'.mxi / of degree deg.xi /C j Cdeg.m/ is mni;deg.xi /Cj . Thus 'j .mxi / D mni;deg.xi /Cj

and the proof is complete. �

1.9 KLR algebras

We now give the definition of the algebras which will be our main object of study.
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Suppose ˛ 2 QC has height n, and set

I˛ D f i 2 In j ˛i1 C � � �C˛in D ˛g :

Now define H˛ to be the unital associative F-algebra with generating set

fe.i/ j i 2 I˛g[ fy1; : : : ; yng[ f 1; : : : ;  n�1g

and relations

e.i/e.j / D ıi;j e.i/IX
i2I˛

e.i/ D 1I

yre.i/ D e.i/yr I

 re.i/ D e.sr i/ r I

yrys D ysyr I

 rys D ys r if s ¤ r; r C 1I

 r s D  s r if jr � sj > 1I

yr re.i/ D . ryrC1� ıir ;irC1/e.i/I

yrC1 re.i/ D . ryr C ıir ;irC1/e.i/I

 2r e.i/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

0 if ir D irC1;

e.i/ if irC1 ¤ ir ; ir ˙ 1;

.yrC1�yr/e.i/ if ir ! irC1;

.yr �yrC1/e.i/ if ir  irC1;

.yrC1�yr/.yr �yrC1/e.i/ if ir � irC1I
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 r rC1 re.i/ D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

. rC1 r rC1C 1/e.i/ if irC2 D ir ! irC1;

. rC1 r rC1� 1/e.i/ if irC2 D ir  irC1;

. rC1 r rC1Cyr � 2yrC1CyrC2/e.i/ if irC2 D ir � irC1;

. rC1 r rC1/e.i/ otherwise;

for all admissible r; s; i; j .

The affine Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra Hn is defined to

be the direct sum
L
˛ H˛, where the sum is taken over all ˛ 2 QC of height n.

Remarks.

1. We use the same notation for the generators  r and ys for different ˛; when using

these generators, we shall always make it clear which algebra H˛ these generators

are taken from.

2. When e <1, we can modify the above presentation of H˛ to give a presentation

for Hn: we take the generating set fe.i/ j i 2 Ing[ fy1; : : : ; yng[ f 1; : : : ;  n�1g,

and replace the relation
P
i2I˛ e.i/ D 1 with

P
i2In e.i/ D 1. The generator  r

in this presentation is just the sum of the corresponding generators  r of the

individual algebras H˛ in the direct sum
L
˛ H˛, and similarly for ys . When

e D 1 we cannot do this, since the set In is infinite (in fact, Hn is non-unital in

this case).

The following result can easily be checked from the definition of H˛.

Lemma 1.23 [8, Corollary 1]. There is a Z-grading on the algebra H˛ such that for all

admissible r and i ,

deg.e.i// D 0; deg.yr/ D 2; deg. re.i// D �air irC1 :
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Shift maps

Recall from Section 1.1 that shiftk W Sm ! Sn denotes the homomorphism defined by

si 7! siCk . We now define the corresponding maps for the algebras H˛.

Definition 1.24. Suppose 1 6 m 6 n and 0 6 k 6 n�m, and that ˛; ˇ 2 QC with ˛ of

heightnandˇ of heightm. Given i 2 Iˇ , defineJi WD fj 2 I˛ j jsCk D is for 1 6 s 6 mg,

and let e.i/Ck D
P
j2Ji

e.j /. Now define the homomorphism shiftk WHˇ !H˛ by

e.i/ 7! e.i/Ck;  re.i/ 7!  rCke.i/
Ck; yre.i/ 7! yrCke.i/

Ck :

It is easy to check from the definition of H˛ that shiftk is a degree-preserving (non-

unital) homomorphism of algebras. Moreover, the PBW-type basis theorem for H˛ in

[27, Theorem 2.5] and [39, Theorem 3.7] shows that if ˇ 6 ˛ then shiftk is injective

(obviously shiftk is the zero map if ˇ 
 ˛).

Cyclotomic algebras and the Brundan–Kleshchev isomorphism theorem

Given ˛ 2 QC and an e-multicharge � D .�1; : : : ; �l/ 2 I
l , we define H �

˛ to be the

quotient of H˛ by the cyclotomic relations

y
.ƒ� j˛i1 /

1 e.i/ D 0 for i 2 I˛:

The cyclotomic KLR algebra H �
n is then defined to be the sum

L
˛ H �

˛ . Here we sum

over all ˛ 2 QC of height n, though in fact only finitely many of the summands will

be non-zero, so (even when e D 1) H �
n is a unital algebra. Note that the algebra H �

n

depends only on f�1; : : : ; �lg and not on �.

Example. Of particular interest to us in some parts of this thesis will be the case when

l D 1. Here, the cyclotomic relations simplify to

y1 D 0;

e.i/ D 0 for i1 ¤ 0:
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Note that the embedding shift0 passes naturally into the cyclotomic quotients.

Next, we state a stunning result of Brundan and Kleshchev.

Theorem 1.25 [8, Main Theorem]. If e D 1 or e is not divisible by char.F/, and �i � ai

.mod e/, then H �
n is isomorphic to the Ariki–Koike algebra HF;q;Q.Z=lZ oSn/ with q a

primitive eth root of unity and parametersQ D .qai ; : : : ; qal /. Similarly, if e D char.F/, then

H �
n is isomorphic to a degenerate Ariki–Koike algebra; in particular, when l D 1, H �

n is

isomorphic to the group algebra FSn.

As a consequence, the Ariki–Koike algebras, and in particular the Hecke algebras

of type A and (in positive characteristic) FSn are non-trivially Z-graded. This theorem

motivates our choice of notation Hn for the KLR algebra.

Corollary 1.26. Suppose q ¤ q0 2 F are primitive eth roots of unity. Then HF;q;Q.Z=lZ o

Sn/ Š HF;q0;Q.Z=lZ oSn/ as F-algebras.

1.10 Specht modules

We now recall the universal graded row and column Specht modules introduced by

Kleshchev, Mathas and Ram; we closely follow [29, ��5,7], and refer the reader there for

further details.

Fix an e-multicharge �. Suppose � 2 P l
n, and let ˛ D cont.�/. Say that a node

A D .r; c;m/ 2 Œ�� is a column Garnir node if .r; cC 1;m/ 2 Œ��. The column Garnir belt BA

is defined to be the set of nodes

BA D f.s; c;m/ 2 Œ�� j s > rg[ f.s; cC 1;m/ 2 Œ�� j s 6 rg :

Suppose T�.r; c;m/ D a and T�.r; c C 1;m/ D b. Then we define the column Garnir

tableau GA to be the �-tableau which agrees with T� outside of BA and has entries

a; aC 1; : : : ; b in BA in order from top right down to bottom left.

A column (A-)brick is a set of e nodes f.i; j;m/; .iC1; j;m/; : : : ; .iCe�1; j;m/g � BA

such that res.i; j;m/ D resA. Thus BA is a disjoint union of the bricks it contains along
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with less than e nodes at the bottom of column c and less than e nodes at the top of

column cC 1, none of which are contained in a brick.

Example. Let e D 2 and � D ..3; 22; 14/; .2; 1//. Look at the Garnir node A D .3; 1; 1/.

Then

T� D

4 1114
5 12
6 13
7
8
9
10

1 3
2

and GA D

4 6 14
5 7
9 8
10
11
12
13

1 3
2

:

For each w 2 Sn we fix a preferred reduced expression w D sr1 : : : sra , and define

 w WD  r1 : : :  ra . Note that the elements  w may depend on the choice of preferred

reduced expressions, since the  r do not satisfy the braid relations. However, if w is

fully commutative,  w is uniquely determined.

Let k be the number of bricks in BA. Label the bricks B1A; B
2
A; : : : ; B

k
A in BA from top

right to bottom left.

If k > 0, let d be the smallest entry of B1A in GA. For each 1 6 r < k, define brick

transpositions

wrA WD

dCre�1Y
aDdCre�e

.a; aC e/

which transpose the bricks BrA and BrC1A , and the related elements

�rA WD .�1/
e wrA 2H˛ and �rA WD .�

r
AC 1/ 2H˛:

Define GarA to be the set of all column-strict �-tableaux obtained from GA by brick

permutations (i.e. products of elements wrA). We recall some basic facts from [29]:

� Every T 2 GarA nfGAg is standard.

� There exists a unique minimal tableau in GarA, which we denote TA.
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� For each S 2 GarA, we can write wS D uSwTA , where l.wS/ D l.uS/C l.wTA/,

and wS; uS and wTA are all fully commutative (by Lemma 1.9, for example). We

therefore have elements S;  uS and TA of H˛ with S D  uS TA all independent

of choice of reduced expression.

� If uS D w
r1
A w

r2
A : : : w

ra
A then �uSA D �

r1
A �

r2
A : : : �

ra
A is also independent of the choice

of reduced expression, as sr1 : : : sra is fully commutative. If S D TA then by

convention we set �uSA D 1.

Definition 1.27. Let A 2 Œ�� be a column Garnir node. The column Garnir element is

gA WD
X
S2GarA

�
uS
A  TA 2H˛:

In fact, as defined in [29], the column Garnir element gA also involves an idempotent

e.i/ which depends on � and makes gA homogeneous, but this term can be omitted

without affecting the Garnir relation given below.

Example. Continuing the previous example, we have

TA D

4 6 14
5 11
7 12
8
9
10
13

1 3
2

and GarA D fTA; w2ATA; w
1
Aw

2
ATAg. Now

gA D .1C �2AC �
1
A�

2
A/ TA

D .1C .�2AC 1/C .�
1
AC 1/.�

2
AC 1// TA

D .3C 2�2AC �
1
AC �

1
A�

2
A/ TA

D .3C 2 10 11 9 10C 8 9 7 8C 8 9 7 8 10 11 9 10/�

 6 7 8 9 12 11 10:
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Now define the column Specht module S�j� to be the graded H˛-module generated

by the vector z� of degree codeg.T�/ subject to the following relations:

1. e.i�/z� D z�;

2. yrz� D 0 for all r D 1; : : : ; n;

3.  rz� D 0 for all r D 1; : : : ; n� 1 such that r #T� r C 1;

4. gAz� D 0 for all column Garnir nodes A 2 �.

We may relax notation and just write S�, if the e-multicharge � is understood. In

Chapter 2 we shall mostly consider S� as an Hn-module, by setting Hˇ S� D 0 for

ˇ ¤ ˛. Thus we have Hn-modules S�j� for all e-multicharges � and all � 2P l
n.

Remark. In the previous example, our Garnir element involved a superfluous term –

the term �1A D  8 9 7 8 acts as zero on the Specht module’s generator and can thus

be omitted. Similarly, terms arising in the Garnir relations are not, in general, reduced

expressions. Work to clarify reduced expressions for Garnir relations can be found in

[17].

The main purpose of Chapter 2 will be to study the space of Hn-homomorphisms

S� ! S�, for �;� 2P l
n. The following result is obvious from the definitions.

Lemma 1.28. Suppose �;� 2 P l
n, and let ˛ D cont.�/. If HomHn

.S�; S�/ ¤ 0, then

cont.�/ D ˛ (and in particular def.�/ D def.�/), and HomHn
.S�; S�/ D HomH˛

.S�; S�/.

We shall also need to consider row Specht modules; for these, the definitions are

largely obtained by ‘conjugating’ the definitions for column Specht modules. Fix �, �

and˛ as above. Say that a nodeA D .r; c;m/ 2 Œ�� is a row Garnir node if .rC1; c;m/ 2 Œ��,

and define the row Garnir belt

BA D f.r; d;m/ 2 Œ�� j d > cg[ f.r C 1; d;m/ 2 Œ�� j d 6 cg :

This belt is used to define a row Garnir element gA. We refer the reader to [29, Definition

5.8] for the definition of this – it is morally the same as the column Garnir element, with
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conjugation applied throughout. In Chapter 2, where we consider these row Specht

modules, we will note the key facts we need to know about gA.

Now we can define the row Specht module S�, which is the graded H˛-module

generated by the vector z� of degree deg.T�/ subject to the relations

1. e.i�/z� D z�;

2. yrz� D 0 for all r D 1; : : : ; n;

3.  rz� D 0 for all r D 1; : : : ; n� 1 such that r !T� r C 1;

4. gAz� D 0 for all row Garnir nodes A 2 �.

We define basis elements for the row and column Specht modules as follows. Recall

that for each tableau T 2 Std.�/we have fixed a preferred reduced expression sr1 : : : sra

for the permutation wT, and define  T WD  r1 : : :  ra and vT WD  Tz�. Similarly, we fix a

preferred reduced expression st1 : : : stb forwT, and set  T WD  t1 : : :  tb and vT WD  Tz�.

Note that the elements vT and vT may depend on the choice of preferred reduced

expressions, since the  r do not satisfy the braid relations. However, the following

results are independent of the choices made.

Lemma 1.29 [29, Propositions 5.14 & 7.14]. Suppose � 2 P l
n and T 2 Std.�/. Then

deg.vT/ D deg.T/ and deg.vT/ D codeg.T/.

Lemma 1.30 [29, Corollaries 6.24 & 7.20]. Suppose � 2P l
n. Then

˚
vT j T 2 Std.�/

	
is an

F-basis for S�, and fvT j T 2 Std.�/g is an F-basis for S�.

Lemma 1.31 [10, Lemma 4.4]. Suppose � 2P l
n. Then for any T 2 Std.�/, e.i/vT D ıi;iTvT.

In spite of the dependence of these bases on the choices of preferred reduced ex-

pressions, we refer to the bases
˚
vT j T 2 Std.�/

	
and fvT j T 2 Std.�/g as the standard

bases for S� and S� respectively.

For the remainder of this section we summarise some basic results about the action

of H˛ on S�. Many of these results are cited from [10], where they are stated for row
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Specht modules. In this thesis we concentrate as far as possible on column Specht

modules, so we translate all the results to this setting. Throughout we fix � 2P l
n, and

let  1; : : : ;  n�1 refer to the generators of H˛, where ˛ D cont.�/. Recall that if S; T are

standard �-tableaux, then we write S Q T to mean that wS < wT.

Lemma 1.32 [10, Theorem 4.10(i)]. Suppose T 2 Std.�/, and sj1 : : : sjr is any reduced

expression for wT. Then  j1 : : :  jr z� � vT is a linear combination of basis elements vU for

U C T.

Lemma 1.33 [10, Lemma 4.9]. Suppose T 2 Std.�/ and that j � 1!T j or j � 1 #T j . Then

 j�1vT is a linear combination of basis elements vU for U C T.

Lemma 1.34 [10, Lemma 4.8]. Suppose T 2 Std.�/ and 1 6 i 6 n. Then yivT is a linear

combination of basis elements vU for U C T.

We’ll use Lemmas 1.32 and 1.34 to prove the following similar result, which is

suggested but not proved in the proof of [10, Theorem 4.10].

Lemma 1.35. Suppose T 2 Std.�/ and j � 1wT j . Then  j�1vT is a linear combination of

basis elements vU for U P T.

We begin with the following simple observation.

Lemma 1.36. Suppose T 2 Std.�/. Then j �1wT j if and only ifwT has a reduced expression

beginning with sj�1.

Proof. Both conditions are equivalent to the condition that w�1T .j � 1/ > w�1T .j /. �

Proof of Lemma 1.35. By Lemma 1.36, wT has a reduced expression of the form

sj�1sk1 : : : skr . Using Lemma 1.32 we have

vT D  j�1 k1 : : :  kr z�C
X

U2Std.�/
UCT

aUvU
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for some aU 2 F. So

 j�1vT D  
2
j�1 k1 : : :  kr z�C

X
U2Std.�/;
UCT

aU j�1vU: (�)

Using the KLR relations (and moving the appropriate idempotent e.i/ through), the

first term on the right-hand side becomes g k1 : : :  kr z�, where g is a polynomial in

y1; : : : ; yn. Now sk1 : : : skr is a reduced expression for the standard tableau S D sj�1T,

so by Lemma 1.32 we have

 k1 : : :  kr z� D vSC
X

V2Std.�/;
VCS

bVvV

for some bV 2 F. So (since S C T) the first term on the right-hand side of (�) is a linear

combination of terms of the form gvV for V 2 Std.�/ with V C T. By Lemma 1.34 this

reduces to a linear combination of basis elements vV for V C T.

Now consider each of the remaining terms  j�1vU in (�). If j � 1 wU j , then by

induction on the Bruhat order  j�1vU is a linear combination of basis elements vV for

V P U C T, so we can ignore any such U. If j � 1 !U j or j � 1 #U j , then we apply

Lemma 1.33 to get the same conclusion. If j � 1tU j , let R be the tableau obtained by

swapping j �1 and j in U; then a reduced expression forwR may be obtained by adding

sj�1 at the start of a reduced expression for wU, and we have R P T by Lemma 1.2. So

by Lemma 1.32 again,

 j�1vU D vRC
X
WCR

cWvW

for some cW 2 F, and we are done. �

Lemma 1.37. Suppose � 2 P l
n, and T 2 Std.�/. Suppose j1; : : : ; jr 2 f1; : : : ; n� 1g, and

that when  j1 : : :  jr z� is expressed as a linear combination of standard basis elements, vT

appears with non-zero coefficient. Then the expression sj1 : : : sjr has a reduced expression for

wT as a subexpression.
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Proof. We proceed by induction on r , with the case r D 0 trivial. Let j D j1. Then

by assumption vT appears with non-zero coefficient in  j vS, where S 2 Std.�/ and vS

appears with non-zero coefficient in j2 : : :  jr z�. By induction the expression sj2 : : : sjr

has a subexpression which is a reduced expression forwS, so ifwT 6 wS (i.e. if T P S) then

we are done. By Lemma 1.33 and Lemma 1.35, this happens if j !S j C 1, j #S j C 1

or j wS j C 1. So we can assume that j tS j C 1. But in this case wT D sjwS, with

l.wT/ D l.wS/C 1, so wT has a reduced expression obtained by adding sj at the start of

a reduced expression for wS. So again the result follows by induction. �

1.11 Specht modules for H �
n and homomorphisms

Throughout Chapter 2 we consider the Specht module S� as a module for the affine

algebra H˛ (where ˛ D cont.�/) and by extension for the algebra Hn. In fact, it is not

hard to show that S� is annihilated by the element y
.ƒ� j˛i1 /

1 e.i/ for every i , so that S� is

a module for the cyclotomic algebra H �
n introduced in Section 1.9; we show this with

the following lemmas and proposition.

Lemma 1.38. Suppose T is a �-tableau. Then vT is a linear combination of basis elements vU

labelled by tableaux U C T.

Proof. This proof proceeds almost identically to that of [37, Corollary 5.10], and we omit

it here. �

Lemma 1.39. Suppose T 2 Std.�/. Then y1vT is a linear combination of basis elements vU

labelled by tableaux U in which the number 1 lies strictly to the left of where it lies in T.

Proof. Suppose that wT.k/ D 1 – i.e. for somem the entry 1 appears in the node .1; 1;m/

of T, and k appears in the node .1; 1;m/ of T�. Then wT has a reduced expression

ws1s2 : : : sk�1, where w D si1 : : : sir for some i1; : : : ; ir > 1. By Lemma 1.32,

vT D  w 1 2 : : :  k�1z�C
X
SCT

aSvS for some aS 2 F.



1. Background 39

Note that the condition S C T is equivalent to wS � ws1s2 : : : sk�1. It follows that

y1vT D  i1 : : :  iry1 1 2 : : :  k�1z�C
X
SCT

aSy1vS

D

k�1X
iD0

bi i1 : : :  ir 1 2 : : :  i�1 iC1 : : :  k�1z�C
X

16i6k�1
wU�ws1:::si�1siC1:::sk�1

cU;ivU for some cU;i 2 F

for bi D 0 or 1. Now we note that for each i ,

wU � ws1 : : : si�1siC1 : : : sk�1 D wsiC1 : : : sk�1s1 : : : si�1

and thus

 i1 : : :  ir 1 2 : : :  i�1 iC1 : : :  k�1z� D vVC
X
WCV

dWvW for some dW 2 F

wherewV.i/ D 1, whenever i1 : : :  ir 1 2 : : :  i�1 iC1 : : :  k�1z� ¤ 0. For if V�1.i/ ¤

.1; c;m0/ for some c;m0, it follows from the presentation of S� that i�1z� D 0. Similarly,

if V�1.i/ D .1; c;m0/ for some c > 1 there is a Garnir relation  x xC1 : : :  i�1z� D 0 for

some x > 1. So certainly V is a tableau with V�1.i/ D .1; 1;m0/ for some m0 < m, since

i < k. If V is non-standard, then the most dominant term will in fact be indexed by an

even less dominant tableau, by Lemma 1.38. Since all other basis elements occurring

in y1vT are vS for S C V, we have that they must also satisfy the desired property, since

Shape.V#1/ Q Shape.S#1/. �

Proposition 1.40. y
.ƒ� j˛i1 /

1 e.i/ S� D 0 for all i .

Proof. We need to show that yx.i/1 e.i/ S� D 0 for any i , where x.i/ D .ƒj˛i1/ is the

number of times i1 appears in the e-multicharge � – note that this means there are at

most x.i/ different places where the number 1 can appear in a standard �-tableau with

residue sequence i .

So suppose for a contradiction that there is a standard tableau T such that

y
x.i/
1 e.i/vT ¤ 0. Applying Lemma 1.39 x.i/ times, we find a sequence of standard
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�-tableaux T; U1; U2; : : : ; Ux.i/, which all have residue sequence i and which have the

number 1 in successively more leftward positions. Hence there are at least x.i/C 1 dif-

ferent places where the number 1 can occur in a standard �-tableau of residue sequence

i – a contradiction! �

In Chapter 2 we shall almost entirely be studying the space of Hn-homomorphisms

between two Specht modules S� and S� defined for the same e-multicharge �, and

clearly in this situation Hn-homomorphisms between these two modules are the same

as H �
n -homomorphisms. In view of the Brundan–Kleshchev isomorphism theorem

Theorem 1.25, the results of this chapter can therefore be viewed as statements about

homomorphisms between Specht modules for (degenerate) Ariki–Koike algebras, and

so they generalise the results of Fayers and Lyle for homomorphisms between Specht

modules for the symmetric group [18, Theorem 2.1], and of Lyle and Mathas for Hecke

algebras of type A [30, Theorem 1.1].

In Chapter 3 we will be interested in the case l D 1; in fact we will be studying

decomposability of Specht modules for the Hecke algebra of type A. The following

basic results for Specht modules in this setting will be useful for our purposes.

Theorem 1.41. S� is decomposable if and only if S�0 is.

Proof. The result follows from [13, Theorem 3.5]. �

Definition 1.42. For each � ` n we define a module D� WD hd.S�/.

Theorem 1.43 [12, Theorem 7.6]. If e D 1, fS� j � ` ng is a complete set of pairwise

non-isomorphic simple modules for HF;q.Sn/. If e ¤ 1, fD� j � `e ng is a complete set of

pairwise non-isomorphic simple modules for HF;q.Sn/.

Remark. For the Ariki–Koike algebra (of level l > 1) the corresponding result is much

more complicated. Even in the e D 1 case, the Specht modules are not in general

simple.

Theorem 1.44. If e ¤ 2, or if � is 2-regular, then S� is indecomposable.
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Proof. The result follows from [14, Corollary 8.7] using a similar argument to that

used by James to prove the analogous result for the symmetric group in [24, Theorem

13.13]. �

In view of this last result, we would like to determine which Specht modules S� are

decomposable when � is 2-singular and e D 2. In Chapter 3 we will focus on (and fully

solve) the special case where � D .a; 1b/ for b > 2.

Note that throughout this thesis, GAP [20] has been used for calculations and

examples; in particular, we thank Matt Fayers for his GAP packages which have allowed

the computations of homomorphisms between Specht modules to take place – this has

been a great source for examples and conjectures!

1.12 Decomposition numbers when l D 1

In Chapter 4 we will be interested in the graded decomposition numbers for H D

HF;q.Sn/. Here we shall recall some basic definitions and results pertaining to decom-

position numbers. Note that this framework may be extended to higher levels – i.e. to

arbitrary KLR algebras. However, as we do not discuss decomposition numbers (or

even simple modules) when l > 1, we introduce them only in the simpler context of

cyclotomic KLR algebras for l D 1. We will let p D char.F/ throughout.

We begin by discussing the classical (ungraded) decomposition numbers.

Definition 1.45. Let � ` n and � `e n. The decomposition number d�� D ŒS� W D�� is

defined to be the multiplicity of the simple module D� as a composition factor of S�.

The decomposition matrix De;p D .d��/ has rows indexed by partitions and columns

indexed by e-regular partitions.

Theorem 1.46 [12, Theorem 7.6]. Let � ` n and � `e n. Then

� d�� D 1;

� d�� D 0 if � B �.
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Theorem 1.47 [33, Theorem 6.35]. There exists a square unitriangular matrix Ap D

.a��/�;�`en with entries a�� 2 Z, whose rows and columns are indexed by e-regular partitions,

such thatDe;p D De;0Ap. Furthermore, the entries a�� ofAp are in fact non-negative integers.

Ap is called the adjustment matrix.

Next, we shall look at these decomposition matrices with the extra structure afforded

by the grading on H.

A graded version of the famous Jordan–Hölder Theorem exists and may be proved

completely analogously to the classical version. This in turn means we have a well-

defined notion of graded composition factors. Furthermore, Theorem 1.20 tells us

exactly what these composition factors may be (i.e. ungraded simple modules with

their unique gradings, up to degree shifts). Note that when defined as the head of the

Specht module S�, the simple module D� has a canonical grading, not just up to shift.

In our graded setting, let ˛i be the number of times D�hii appears as a composition

factor of S�. Note that
P
i2Z ˛i D ŒS� W D��. This motivates the following definition:

Definition 1.48. We define the graded decomposition number

d��.v/ D ŒS� W D��v WD
X
i2Z

˛iv
i :

The graded decomposition matrixDe;p.v/ D .d��.v// has rows indexed by partitions and

columns indexed by e-regular partitions.

Remark. Setting v D 1 in the above definition recovers the decomposition number

ŒS� W D��.

Theorem 1.49 [9, Theorem 5.17]. There exists a square unitriangular matrix Ap.v/ D

.a��.v//�;�`en with entries a��.v/ 2 ZŒv; v�1� symmetric in v; v�1, whose rows and columns

are indexed by e-regular partitions, such that De;p.v/ D De;0.v/Ap.v/. Furthermore, the

entries a��.v/ of Ap.v/ in fact have non-negative coefficients. Ap.v/ is called the graded

adjustment matrix.



Chapter 2

Graded column removal

In this chapter we consider the space of homomorphisms between two given Specht

modules for the (affine) KLR algebra. However, our results concerning row and column

removal will only apply to homomorphisms of a certain kind, which we call dominated

homomorphisms. But as we shall see in Theorem 2.7, in many cases all homomorphisms

between Specht modules are dominated.

In spite of the comments in Section 1.11, we restrict attention entirely to the affine al-

gebra Hn in this chapter. This is because we occasionally (in particular, in Theorem 2.17)

need to compare Specht modules defined for different e-multicharges.

Recall the presentation given in Section 1.10 for Specht modules. For our purposes

in this chapter, it will suffice to give gA explicitly in a special case which we will use in

the proof of Proposition 2.11, and record some useful properties of gA which apply in

general.

For our special case, we suppose that A is a Garnir node of � of the form .1; c;m/.

If a is the entry in node A of T� and b is the entry in node .1; c C 1;m/, then gA D

 a aC1 : : :  b�1, regardless of the value of e.

Now suppose A D .r; c;m/ is an arbitrary Garnir node of �. Then in T� the nodes of

BA are occupied by the integers a; aC 1; : : : ; b for some a < b. We will only rely on the

following properties:

43
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� gA is a linear combination of products of the form i1 : : :  id where a 6 i1; : : : ; id <

b;

� gA depends only on e, r , a and the length of the column containing A.

Similarly, we make note of the following facts about row Garnir element gA:

� in T� the nodes of BA are occupied by the integers a; aC 1; : : : ; b for some a < b;

� gA is a linear combination of products of the form i1 : : :  id where a 6 i1; : : : ; id <

b;

� gA depends only on e, c, a and the length of the row containing A.

2.1 �-dominated tableaux

Suppose �;� 2 P l
n and T 2 Std.�/. Given 0 6 j 6 n, we say that T is �-column-

dominated on 1; : : : ; j if each i 2 f1; : : : ; j g appears at least as far to the left in T as it

does in T�. We say simply that T is �-column-dominated if it is �-column-dominated on

1; : : : ; n. We remind the reader of our unusual convention for drawing Young diagrams,

in which a node .r; c;m/ lies to the left of .r 0; c0; m0/ if either m > m0 or (m D m0 and

c 6 c0).

We write Std�.�/ for the set of �-column-dominated standard �-tableaux. It is easy

to see that Std�.�/ is non-empty if and only if � Q �, and that Std�.�/ D fT�g.

We say T is weakly �-column-dominated on 1; : : : ; j if each i 2 f1; : : : ; j g appears in

a component at least as far to the left in T as it does in T�. We say that T is weakly

�-column-dominated if it is weakly �-column-dominated on 1; : : : ; n.

We also introduce row-dominance. Say that T 2 Std.�/ is �-row-dominated if each

i 2 f1; : : : ; ng appears at least as high in T as it does in T�. We write Std�.�/ for the set

of �-row-dominated standard �-tableaux, which is non-empty if and only if � P �.
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Example. Let � D ..3; 2/; .2; 1//. Then T� D 4 6 8
5 7

1 3
2

. The tableau 4 5
7
8

1 3
2
6

is

�-column-dominated on 1; : : : ; 4 but not �-column-dominated, as the entry 5 appears

further to the right (second column of the first component) than it does in T� (where

it appears in the first column of the first component). Transposing the entries 5 and 6

yields a �-column-dominated tableau.

Now, T� D 1 2 3
4 5

6 7
8

and so the tableau 1 2 3 4
6

5 7 8

is �-row-dominated

on 1; : : : ; 4 but not �-row-dominated, as the entry 5 appears lower (in the first row of

the second component) than it does in T� (where it appears in the second row of the

first component). Transposing the entries 5 and 6 yields a �-row-dominated tableau.

Since we shall primarily be considering column Specht modules, we shall often

simply say ‘�-dominated’ meaning ‘�-column-dominated’.

We give a helpful alternative characterisation of the �-dominated and

�-row-dominated properties.

Lemma 2.1. Suppose �;� 2P l
n, and S 2 Std.�/.

1. S is �-column-dominated on 1; : : : ; j if and only if Shape..T�/#m/ Q Shape.S#m/ for

all m D 1; : : : ; j .

2. S is �-row-dominated on 1; : : : ; j if and only if Shape..T�/#m/ P Shape.S#m/ for all

m D 1; : : : ; j .

Proof. We prove only (2); the proof of (1) is analogous. Suppose first that S is not �-

row-dominated on 1; : : : ; j . Choose an entry m 6 j which appears strictly lower in S

than in T�, and let � D Shape..T�/#m/ and � D Shape.S#m/. Suppose that m appears

in position .r; c; k/ in T�. The construction of T� means that the entries 1; : : : ; m� 1 all
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appear at least as high as m in T�, and so

j� .1/jC � � �C j� .k�1/jC �
.k/
1 C � � �C �

.k/
r D m:

On the other hand, m appears below row r of component k in S, so

j� .1/jC � � �C j� .k�1/jC �
.k/
1 C � � �C �

.k/
r < m:

Hence � R � .

Conversely, suppose Shape.T�
#m
/ R Shape.S#m/ for some m 6 j ; choose such an m,

and let � D Shape.T�
#m
/ and � D Shape.S#m/. Since � R � , there are r; k such that

j� .1/jC � � �C j� .k�1/jC �
.k/
1 C � � �C �

.k/
r > j� .1/jC � � �C j� .k�1/jC �

.k/
1 C � � �C �

.k/
r :

If we let d D j� .1/jC � � �C j� .k�1/jC � .k/1 C� � �C �
.k/
r , then d 6 m and the integers 1; : : : ; d

all appear in row r of component k or higher in T�. Since j� .1/j C � � � C j� .k�1/j C

�
.k/
1 C � � � C �

.k/
r < d , at least one of the integers 1; : : : ; d appears in S below row r of

component k. So there is some i 6 j which appears lower in S than in T�, so S is not

�-row-dominated on 1; : : : ; j . �

Corollary 2.2. Suppose �;� 2P l
n, and S; T 2 Std.�/.

1. If S is �-dominated on 1; : : : ; j and S Q T, then T is �-dominated on 1; : : : ; j . In

particular, if S 2 Std�.�/ and S Q T, then T 2 Std�.�/.

2. If S is �-row-dominated on 1; : : : ; j and S P T, then T is �-row-dominated on 1; : : : ; j .

In particular, if S 2 Std�.�/ and S P T, then T 2 Std�.�/.

Lemma 2.3. Suppose �;� 2 P l
n, and T; U 2 Std.�/ with U P T. If T is weakly �-dominated

on 1; : : : ; j , then so is U.

Proof. The proof follows almost identically to that of Corollary 2.2(1), with the exception

of mi needing to denote the sum of sizes of components which are at least as far to the
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left as the component containing i in T�. �

2.2 Dominated homomorphisms

Given �;� 2 P l
n, we want to consider the space of Hn-homomorphisms ' W S� ! S�

with the property that '.z�/ lies in the F-span of fvS j S 2 Std�.�/g. But we need to

show that this notion is well-defined.

Proposition 2.4. Suppose �;� 2 P l
n. Then the subspace hvS j S 2 Std�.�/iF of S� is

independent of the choice of standard basis elements vS.

Proof. Let V denote the space hvS j S 2 Std�.�/iF, and take T 2 Std�.�/. Let sj1 : : : sjr

be a new reduced expression for wT, and let v0T D  j1 : : :  jr z� (where  1; : : : ;  n�1 are

taken to lie in Hcont.�/). Let V 0 be the space obtained from V by replacing vT with v0T in

the spanning set fvS j S 2 Std�.�/g; it suffices to show that V D V 0. By Lemma 1.32,

v0T D vTC
X
UCT

aUvU for some aU 2 F.

By Corollary 2.2(1), each vU with U P T lies in V , and so v0T 2 V . Hence V 0 � V ; but

since the elements vS are linearly independent, dimF V D dimF V
0 D j Std�.�/j. So

V 0 D V . �

In view of Proposition 2.4 and an analogue for row-dominated tableaux, the follow-

ing definition makes sense.

Definition 2.5. Suppose �;� 2 P l
n. If ' 2 HomHn

.S�; S�/, we say that ' is (column-)

dominated if '.z�/ 2 hvS j S 2 Std�.�/iF. We write DHomHn
.S�; S�/ for the space of

dominated homomorphisms from S� to S�.

Similarly, if � 2 HomHn
.S�; S�/, we say that � is row-dominated if �.z�/ 2 hvS j S 2

Std�.�/iF, and we write DHomHn
.S�; S�/ for the space of row-dominated homomor-

phisms from S� to S�.
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Proposition 2.6. DHomHn
.S�; S�/ and DHomHn

.S�; S�/ are graded subspaces of

HomHn
.S�; S�/ and HomHn

.S�; S�/ respectively. That is, DHomHn
.S�; S�/ and

DHomHn
.S�; S�/ are spanned by homogeneous homomorphisms.

Proof. The proof proceeds almost identically to the proof of the fact that HomHn
.S�; S�/

is graded; see Proposition 1.22. The important additional observation is that

hvS j S 2 Std�.�/iF is a graded subspace of S� by Proposition 2.4. �

The rest of this section is devoted to showing that in certain cases every Specht

homomorphism is dominated. Specifically, we shall prove the following.

Theorem 2.7. Suppose e ¤ 2 and that �1; : : : ; �l are distinct. Then HomHn
.S�; S�/ D

DHomHn
.S�; S�/.

Remark. The hypotheses that e ¤ 2 and that �1; : : : ; �l are distinct are equivalent to the

condition that H �
n has exactly 2l isomorphism classes of one-dimensional modules.

These hypotheses also appear in Rouquier’s work [40, Theorems 6.6, 6.8, 6.13] on 1-

faithful quasi-hereditary covers of cyclotomic Hecke algebras. The following small

examples show that these hypotheses are essential in Theorem 2.7; in fact, they show

that Specht modules labelled by different multipartitions can be isomorphic without

these assumptions.

1. Take e D 2, � D .0/, � D ..12// and � D ..2//. Then there is a non-zero

homomorphism S� ! S� defined by z� 7! z�, though the tableau T� D 1 2 is

not �-dominated. So HomHn
.S�; S�/ ¤ f0g D DHomHn

.S�; S�/.

2. For any e, take � D .0; 0/, � D .∅; .1// and � D ..1/;∅/. Then z� 7! z� again

defines a non-zero homomorphism S� ! S�, though T� is not �-dominated.

The proof of Theorem 2.7 requires several preliminary results. We fix �;� 2 P l
n

and an e-multicharge � of level l throughout. If cont.�/ ¤ cont.�/, then by Lemma 1.28

HomHn
.S�; S�/ D 0, so that Theorem 2.7 is trivially true. So we assume that cont.�/ D

cont.�/. In the results below,  1; : : : ;  n�1 are elements of Hcont.�/.
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Lemma 2.8. Suppose j 2 f2; : : : ; ng with j � 1 #T� j , and T 2 Std.�/ is �-dominated on

1; : : : ; j . Then  j�1vT is a linear combination of basis elements vU for standard tableaux U

which are �-dominated on 1; : : : ; j .

Proof. If j � 1 !T j or j � 1 #T j or j � 1 wT j , then the result follows from Corol-

lary 2.2(1) together with either Lemma 1.33 or Lemma 1.35. The remaining possibility is

that j � 1tT j . But now if we let S be the standard tableau sj�1T, then by Lemma 1.32

 j�1vT D vSC
P
UCS bUvU for some bU 2 F. Clearly, since T is �-dominated on 1; : : : ; j

and j � 1; j lie in the same column of T�, S is also �-dominated on 1; : : : ; j . Corol-

lary 2.2(1) completes the proof. �

Proposition 2.9. Suppose e ¤ 2, and that ' W S� ! S� is a homomorphism, and write

'.z�/ D
X

T2Std.�/

aTvT for some aT 2 F:

Suppose j 2 f2; : : : ; ng with j � 1 #T� j , and that each T for which aT ¤ 0 is �-dominated on

1; : : : ; j � 1. Then each T for which aT ¤ 0 is �-dominated on 1; : : : ; j .

Proof. The fact that j � 1 #T� j means that  j�1z� D 0, so we must haveP
T2Std.�/ aT j�1vT D 0. Assuming the proposition is false, there is at least one T

which is not �-dominated on 1; : : : ; j such that aT ¤ 0; choose such a T which is Q-

maximal. Since T is �-dominated on 1; : : : ; j � 1, the entry j lies in a column strictly

to the right of j � 1 in T. We claim that we cannot have j � 1 !T j . If this is the

case, then the residue sequence i.T/ satisfies i.T/j D i.T/j�1C 1. However, since f

is a homomorphism and vT appears with non-zero coefficient in '.z�/, we must have

i.T/ D i�, and the fact that j � 1 #T� j means that .i�/j D .i�/j�1� 1. Since e ¤ 2, this

is a contradiction.

Hence j � 1tT j , so the tableau S WD sj�1T is standard, and if we write  j�1vT as

a linear combination of standard basis elements, then vS occurs with coefficient 1. We

claim that vS does not occur in any other  j�1vT0 when aT0 ¤ 0: if T0 is not �-dominated

on 1; : : : ; j , then (defining S0 analogously to S) we have  j�1vT0 D vS0 C
P
UCS0 cUvU for
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some cU 2 F; but the fact that T R T0 (by our choice of T being Q-maximal) means that

S R S0, so vS cannot occur. On the other hand, if T0 is �-dominated on 1; : : : ; j , then the

result follows from Lemma 2.8, since S is not �-dominated on 1; : : : ; j .

So vS occurs with non-zero coefficient in
P
T2Std.�/ aT j�1vT, a contradiction. �

We now turn our attention to the case where j is in the top row of its component in

T�.

Lemma 2.10. Suppose 1 6 a 6 j 6 n, j � 1 %T� j and that the entries a and j ap-

pear in the same component of T�. If T 2 Std.�/ is weakly �-dominated on 1; : : : ; j then

 a aC1 : : :  j�1vT is a linear combination of basis elements vU for standard tableaux U which

are weakly �-dominated on 1; : : : ; j .

Proof. We argue by induction on l.sasaC1 : : : sj�1/ D j � a. If j � a D 0, the result is

trivial. So suppose a < j , and assume by induction that  aC1 : : :  j�1vT is a linear

combination of basis elements vU which are weakly �-dominated on 1; : : : ; j . We want

to show that for each vU,  avU is a linear combination of basis elements vU0 for standard

tableaux U0 which are weakly �-dominated on 1; : : : ; j .

If a !U aC 1 or a #U aC 1 or a wU aC 1, then the result follows from Lemma 2.3

together with either Lemma 1.33 or Lemma 1.35. The remaining possibility is that atU

aC 1. Let S be the standard tableau saU. Then by Lemma 1.32,  avU D vSC
P
U0CS aU0vU0

for some aU0 2 F.

Recalling that U is weakly �-dominated on 1; : : : ; j and that a; aC 1 are in the same

component of T�, S is weakly �-dominated on 1; : : : ; j and Lemma 2.3 completes the

proof. �

Proposition 2.11. Suppose ' W S� ! S� is a homomorphism with

'.z�/ D
X

T2Std.�/

aTvT for some aT 2 F:

Suppose j 2 f2; : : : ; ng with either j � 1 %T� j or j � 1 !T� j , and that each T for which
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aT ¤ 0 is �-dominated on 1; : : : ; j � 1. Then each T for which aT ¤ 0 is �-dominated on

1; : : : ; j .

Proof. The proof follows the same lines as Proposition 2.9. The condition that j �1%T�

j or j � 1 !T� j means that S� satisfies a Garnir relation  a aC1 : : :  j�1z� D 0,

where a is the entry immediately to the left of j in T�; since f is a homomorphism,

we therefore have
P
T2Std.�/ aT a : : :  j�1vT D 0. Assuming the result is false, there is

at least one T which is not �-dominated on 1; : : : ; j such that aT ¤ 0; choose such a T

which is Q-maximal. Since T is �-dominated on 1; : : : ; j � 1, but not 1; : : : ; j , we have

j �1tT j . In fact j �1 and j are in different components of T: if not, what is the entry

immediately to the left of j in T? It must be some k < j , since T is standard, but by

assumption k is strictly left of j in T� and hasn’t moved to the right in T.

Let S denote the standard tableau sasaC1 : : : sj�1T. Then l.wS/ D l.wT/C j � a,

so that when we write  a aC1 : : :  j�1vT as a linear combination of standard basis

elements, vS occurs with coefficient 1. We claim that vS does not occur with non-zero

coefficient in  a aC1 : : :  j�1vT0 for any other T0 with aT0 ¤ 0: if T0 is not �-dominated

on 1; : : : ; j , then (defining S0 analogously to S) we have  a aC1 : : :  j�1vT0 D vS0 CP
UCS0 bUvU for some bU 2 F; but the fact that T R T0 (by our choice of T) means that

S R S0, so vS cannot occur. On the other hand, if T0 is �-dominated on 1; : : : ; j , then the

result follows from Lemma 2.10, since S is not weakly �-dominated on 1; : : : ; j as j � 1

and j are in different components of T.

So vS occurs with non-zero coefficient in
P
T2Std.�/ aT a aC1 : : :  j�1vT, a contra-

diction. �

The last thing we need for the proof of Theorem 2.7 is the following.

Lemma 2.12. Suppose �1; : : : ; �l are distinct, and that T 2 Std.�/ satisfies i.T/ D i�. If T is

�-dominated on 1; : : : ; j � 1 and j appears in the .1; 1/-position of its component in T�, then

T is �-dominated on 1; : : : ; j .

Proof. Suppose not; then j appears in T strictly to the right of where it appears in T�. This

means that j must appear in the .1; 1/-node of some component of T, since otherwise
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there would be a smaller entry immediately above or to the left of j , contradicting the

assumption that T is �-dominated on 1; : : : ; j � 1.

So there are 1 6 r < s 6 l such that T�.1; 1; s/ D j D T.1; 1; r/. Hence �s D .i�/j D

i.T/j D �r , contrary to the assumption. �

Proof of Theorem 2.7. Suppose ' W S� ! S� is a homomorphism, and write

'.z�/ D
X

T2Std.�/

aTvT for some aT 2 F:

We must show that every T for which aT ¤ 0 is �-dominated. In fact, we show by

induction on j that every such T is �-dominated on 1; : : : ; j , with the case j D 0

being vacuous. So suppose j > 1, and assume by induction that T is �-dominated on

1; : : : ; j � 1. Note that since ' is a homomorphism, we have i.T/ D i�.

If j D 1 or j lies in an earlier component of T� than j �1, then j lies in the .1; 1/-node

of its component in T�. So by Lemma 2.12 T is �-dominated on 1; : : : ; j . The remaining

possibilities are that j > 1 and that one of

j � 1 #T� j; j � 1!T� j; j � 1%T� j

occurs; these cases are dealt with in Propositions 2.9 and 2.11. �

We immediately see the following interesting result.

Corollary 2.13. Suppose e ¤ 2 and that �1; : : : ; �l are distinct. If �;� 2 P l
n with

HomHn
.S�; S�/ ¤ f0g, then � Q �. Furthermore (since Std�.�/ D fT�g) HomHn

.S�; S�/ is

one-dimensional. In particular, S� is indecomposable.

Remark. Note that if e D 2 then S� may be decomposable. For example, when l D 1

and char.F/ ¤ 3, the Specht module S..5;12// is decomposable; this was shown in [24,

Example 23.10(iii)] in the case char.F/ D 2, and we show it in Theorem 3.37 in odd

characteristic.
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Similarly, when �i D �j for some i ¤ j , we can have decomposable Specht modules:

take � D .0; 0/, e D 3 and � D ..3/; .3//. Then fid; 'g form a basis for EndH6
.S�/, where

' is given by '.z�/ D  3 2 1 4 3 2 5 4 3z�. It can be checked that '2.z�/ D

�2'.z�/, and thus the endomorphisms idC1=2' and�1=2' are idempotents whenever

char.F/ ¤ 2.

In particular, S..3/;.3// is decomposable if and only if char.F/ ¤ 2.

In exactly the same way, we can prove the corresponding result for row Specht

modules.

Theorem 2.14. Suppose e ¤ 2 and that �1; : : : ; �l are distinct, and �;� 2 P l
n. Then

DHomHn
.S�; S�/ D HomHn

.S�; S�/. Hence HomHn
.S�; S�/ ¤ f0g only if � P �,

HomHn
.S�; S�/ is one-dimensional, and S� is indecomposable.

2.3 Duality for dominated homomorphisms

In this section we consider the relationship between row and column Specht modules,

as well as between Specht modules labelled by conjugate multipartitions. These rela-

tionships are encapsulated in [29, Theorems 7.25 and 8.5], from which it follows that a

(generalised) column-removal theorem for homomorphisms between Specht modules

is equivalent to the corresponding row-removal theorem. The main result of this sec-

tion, which requires considerable additional work, is that the same is true for dominated

homomorphisms.

Following [29, �3.2], let � W H˛ ! H˛ denote the anti-automorphism which fixes

all the generators e.i/; yr ;  s , and define � W Hn ! Hn by combining these maps for

all ˛. If M D
L
d2ZMd is a graded Hn-module, let M~ denote the graded module

withM~
d
D HomF.M�d ;F/ for each d , with Hn-action given by .hf /m D f .�.h/m/ for

m 2 M , f 2 M~ and h 2 Hn. Recall from Section 1.8 that for k 2 Z, M hki denotes

the same module with the grading shifted by k, i.e. M hkid D Md�k . Finally, recall the

defect def.�/ of a multipartition from Section 1.7.
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Theorem 2.15 [29, Theorem 7.25]. Suppose � 2P l
n. Then

S� Š .S�/~hdef.�/i and S� Š .S
�/~hdef.�/i:

Now suppose �;� 2P l
n. Applying Theorem 2.15 to both � and � gives an isomor-

phism of graded vector spaces

HomHn
.S�; S�/ Š HomHn

.S~�hdef.�/i; S~
�
hdef.�/i/I

since by Lemma 1.28 def.�/ D def.�/ for any � and � with HomHn
.S�; S�/ ¤ f0g, this

yields an isomorphism of graded vector spaces

HomHn
.S�; S�/ Š HomHn

.S~�; S
~
�
/:

The anti-automorphism � is homogeneous of degree zero, so HomHn
.S~�; S

~
�
/ is canon-

ically isomorphic as a graded vector space to HomHn
.S�; S�/, and hence we have an

isomorphism of graded vector spaces

‚ W HomHn
.S�; S�/

�
�! HomHn

.S�; S�/:

Our aim is to prove the following.

Proposition 2.16. Suppose �;� 2 P l
n, and let ‚ W HomHn

.S�; S�/ ! HomHn
.S�; S�/ be

the bijection above. Then ‚.DHomHn
.S�; S�// D DHomHn

.S�; S�/.

We shall prove Proposition 2.16 below. First we examine the consequences for

row and column removal. In order to be able to compare row and column removal,

we combine Proposition 2.16 with a result which relates to an analogue of the sign

representation of the symmetric group. Following [29, �3.3], let sgn WH˛ !H˛ denote

the automorphism which maps e.i/ 7! e.�i/, yr 7! �yr and s 7! � s for all i; r; s, and

define sgn WHn !Hn by combining these maps for all ˛. Given a graded Hn-module

M , letM sgn denote the same graded vector space with the action of Hn twisted by sgn.
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Recall that if � is a multipartition, then �0 denotes the conjugate multipartition to �,

and that if S 2 Std.�/, then S0 2 Std.�0/ denotes the conjugate tableau to S. Also define

the conjugate e-multicharge �0 WD .��l ; : : : ;��1/. Now the following is immediate from

the construction of row and column Specht modules.

Theorem 2.17 [29, Theorem 8.5]. Suppose� 2P l
n. Then there is an isomorphism .S�j�/sgn Š

S�0j�0 of Hn-modules, given by vS 7! vS0 .

Remark. Theorem 2.17 is one place where it is essential that we consider Specht modules

as modules for Hn, rather than its cyclotomic quotients, since the two modules involved

are defined relative to different e-multicharges.

Now suppose �;� 2 P l
n. Since sgn is a homogeneous automorphism of Hn, we

have an equality of graded vector spaces

HomHn
..S�j�/sgn; .S�j�/sgn/ D HomHn

.S�j� ; S�j�/; (�)

Combining this with Theorem 2.17, we have an isomorphism of graded vector spaces

HomHn
.S�0j�0 ; S�0j�0/ Š HomHn

.S�j� ; S�j�/: (�)

Applying Theorem 2.15 yields an isomorphism of graded vector spaces

HomHn
.S�0j�0 ; S�0j�0/ Š HomHn

.S�j� ; S�j�/: (�)

We want to show that the same holds for dominated homomorphisms; this is immediate

when e > 2 and �1; : : : ; �l are distinct, by Theorem 2.7. In general, we observe that (�)

remains true with Hom replaced by DHom, and the explicit form of the isomorphism

in Theorem 2.17 shows that (�) does too, since S 2 Std�0.�0/ if and only if S0 2 Std�.�/.

Finally, Proposition 2.16 shows that (�) remains true for DHom too. So we have the

following theorem.
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Theorem 2.18. Suppose �;� 2P l
n. Then there is an isomorphism of graded vector spaces

DHomHn
.S�j� ; S�j�/ Š DHomHn

.S�0j�0 ; S�0j�0/:

It remains to prove Proposition 2.16; for the remainder of this section, all Specht

modules are defined for the e-multicharge �.

We begin by recalling how the isomorphism S� Š S~
�
hdef.�/i in Theorem 2.15 is

constructed. Given the standard basis fvT j T 2 Std.�/g for S�, let ff T j T 2 Std.�/g

be the dual basis for S~
�

; although the elements f T in general depend on the choice of

the elements vT (i.e. on the choice of preferred reduced expressions), it is easy to see

that the element f T
�

does not: by Lemma 1.32 we know that if sj1 : : : sjr is a reduced

expression for wT then  j1 : : :  jr z� and vT only differ by a linear combination of vU for

U C T. Since T� is the P-maximal standard �-tableau, vT� will never appear as such an

error term when choosing different reduced expressions for the elements vT, and thus

f T
�

is independent of such a choice.

The isomorphism �� W S� ! S~
�
hdef.�/i in Theorem 2.15 is defined (see [29, Theorem

7.25]) by �.z�/ D f T
�

.

Lemma 2.19. Suppose � 2P l
n, and let �� W S� ! S~

�
hdef.�/i be the isomorphism constructed

above.

1. For any S 2 Std.�/ we have ��.vS/ 2 hf T j T 2 Std.�/; T Q SiF.

2. �� maps the space hvS j S 2 Std�.�/iF bijectively to the space hf S j S 2 Std�.�/iF.

Proof.

1. For each T 2 Std.�/, write �. S/vT D
P
U2Std.�/ aTUvU. Then one can check that the

definitions give ��.vS/ D
P
T2Std.�/ aTT�f

T. So it suffices to show that aTT� D 0

when T S S. Clearly, to prove this, it is sufficient to show this in the case where

F D C, and so (as in the proof of [29, Theorem 7.25]) we can invoke the proof of

[21, Proposition 6.19]; here �� is given in the form x 7! fx;�g, for a bilinear form
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f ; g W S� � S�hdef.�/i ! C satisfying fvS; vTg D 0 unless T Q S, which is exactly

what we want.

2. From (1) and Corollary 2.2(2) we have ��.vS/ 2 hf T j T 2 Std�.�/iF whenever S 2

Std�.�/, so ��
�
hvS j S 2 Std�.�/i

�
� hf S j S 2 Std�.�/i. But �� is an isomorphism

of vector spaces and

dimFhv
S
j S 2 Std�.�/iF D

ˇ̌
Std�.�/

ˇ̌
D dimFhf

S
j S 2 Std�.�/iF;

so in fact ��
�
hvS j S 2 Std�.�/iF

�
D hf S j S 2 Std�.�/iF. �

Lemma 2.20. Suppose �;� 2P l
n. Suppose S 2 Std.�/ and U is a �-tableau such thatwS < wU

and that for every 1 6 i 6 n the number i appears in U weakly to the right of where it appears

in T�. Then S 2 Std�.�/.

Proof. Using Lemma 2.1(2) we just need to show that Shape.S#m/ Q Shape.T�
#m
/ for

all m. Let Uc be the column-strict tableau which is column-equivalent to U. Then

by Proposition 1.1 wU < wUc . By Proposition 1.12, we have that Shape..Uc/#m/
0 Q

Shape.S#m/0 for all m. Furthermore, the condition that every entry in Uc lies weakly to

the right of where it lies in T� is equivalent to every entry in .Uc/
0 lying weakly below

where it lies in .T�/0, so we necessarily have that Shape..Uc/#m/
0 P Shape.T�

#m
/0 for all

m. Reapplying Proposition 1.12, we have wUc < wT� . �

Lemma 2.21. Suppose �;� 2P l
n, S 2 Std.�/ n Std�.�/ and T 2 Std�.�/. Then when  SvT

is expressed in terms of the standard basis fvU j U 2 Std.�/g, the coefficient of vT� is zero.

Proof. Suppose to the contrary that vT� does appear with non-zero coefficient in SvT D

 S Tz�. Let si1 : : : sia and sj1 : : : sjb be the preferred reduced expressions for wS and wT

respectively. Then by Lemma 1.37 there is a reduced expression for wT� occurring as

a subexpression of si1 : : : siasj1 : : : sjb . If we separate this reduced expression into two

parts, which occur as subexpressions of si1 : : : sia and sj1 : : : sjb respectively, and letw; x
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denote the corresponding elements of Sn, then we have

w 4 wS; x 4 wT; wx D wT� ; and l.w/C l.x/ D l.wT�/:

Putting V D xT�, we have V 2 Std.�/ by Lemma 1.10, and in fact V 2 Std�.�/ (using

Corollary 2.2(1), becausewV 4 wT and T 2 Std�.�/). If we let U D wT� then, as functions

Œ��! Œ��,

U�1T� D T�1� xT� D T
�1
� V:

The fact that V is �-dominated can be expressed as saying that the map T�1
�
V W Œ��! Œ��

maps any node of � to a node weakly to the right. So each entry of U appears weakly to

the right of where it appears in T�, i.e. U satisfies the hypotheses of Lemma 2.20. Hence

by Lemma 2.20 S 2 Std�.�/, contrary to the hypothesis. �

Proof of Proposition 2.16. We shall prove that ‚.DHomHn
.S�; S�// � DHomHn

.S�; S�/;

the same argument with � and � interchanged and with row and column Specht

modules interchanged proves the opposite containment.

Suppose ' 2 DHomHn
.S�; S�/, and write '.z�/ D

P
T2Std�.�/ aTvT for some aT 2 F.

Let '~ W S~� ! S~
�

denote the dual map. We want to show that the homomorphism‚.'/

which corresponds to '~ via Theorem 2.15 is row-dominated, i.e. ‚.'/.z�/ 2 hvS j S 2

Std�.�/iF. By the construction of the isomorphism S� ! S~� and by Lemma 2.19, this is

the same as saying that '~.f T
�

/ 2 hf S j S 2 Std�.�/iF; in other words, '~.f T
�

/.vS/ D 0

when S 2 Std.�/ n Std�.�/.

The dual map '~ is given by f 7! f ı '. In particular, '~.f T
�

/ D f T
�

ı ', which

maps vS to the coefficient of vT� in '.vS/ D
P
T2Std�.�/ aT SvT. By Lemma 2.21 this

coefficient is zero when S … Std�.�/, and the result follows. �
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2.4 Generalised column removal for multipartitions

Now we come to the main results of the chapter, which give row and column removal

theorems for dominated homomorphisms between Specht modules.

Definition 2.22. Suppose � D .�.1/; : : : ; �.l// 2 P l
n. For any 1 6 m 6 l and any c > 0,

define �.m/;cl to be the partition consisting of all nodes in the first c columns of �.m/,

and �.m/;cr the partition consisting of all nodes after the first c columns of �.m/. That is,

.�
.m/;c
l /i D min

n
�
.m/
i ; c

o
; .�.m/;cr /i D max

n
�
.m/
i � c; 0

o
for all i > 1.

Now define

�r D �r.c;m/ D .�
.1/; : : : ; �.m�1/; �.m/;cr /;

�l D �l.c;m/ D .�
.m/;c
l ; �.mC1/; : : : ; �.l//:

Here is an enlightening pictorial representation of this construction, with l D 3, m D 2

and c D 3.

�.1/

�.2/

�
.2/;3
l �

.2/;3
r

�.3/

third column of component 2

�l �r

Now we consider tableaux. Suppose �l; �r are as above, and let nl D j�lj and nr D j�rj.
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Given a �l-tableau Tl and a �r-tableau Tr, define Tl#Tr to be the �-tableau obtained

by filling in the entries 1; : : : ; nl as they appear in Tl, and then filling in the entries

nlC 1; : : : ; n as 1; : : : ; nr, respectively, appear in Tr. If Tl 2 Std.�l/ and Tr 2 Std.�r/

then Tl#Tr 2 Std.�/. Conversely, observe that if T 2 Std.�/ and the integers 1; : : : ; nl all

appear in T in column c of componentm or further to the left, then T has the form Tl#Tr

for some Tl 2 Std.�l/ and Tr 2 Std.�r/. We write Stdlr.�/ for the set of T 2 Std.�/ with

this property.

Example. Take l D 3 and � D
�
.3/; .22/; .2; 1/

�
. Taking m D 2 and c D 1, we get

�l D
�
.12/; .2; 1/

�
; �r D

�
.3/; .12/

�
:

If we choose

Tl D 1
3

2 4
5

; Tr D 2 3 5

1
4

;

then we obtain

Tl#Tr D 7 8 10

1 6
3 9

2 4
5

:

2.5 Simple row and column removal

Theorem 2.23 (Graded Column Removal). Suppose �;� 2 P l
n and 1 6 m 6 l . Suppose

that �.mC1/ D � � � D �.l/ D �.mC1/ D � � � D �.l/ D ∅, and k WD .�.m/
0

/1 D .�.m/
0

/1. Let

�r D �r.1;m/, �r D �r.1;m/ and �r D .�1; : : : ; �m�1; �mC 1/. Then

DHomHn
.S�j� ; S�j�/ Š DHomHn�k

.S�rj�r ; S�rj�r/

as graded vector spaces over F.
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Remarks.

1. Recalling Theorem 2.7, this result in fact implies that

HomHn
.S�j� ; S�j�/ Š HomHn�k

.S�rj�r ; S�rj�r/

when e ¤ 2 and �1; : : : ; �l are distinct.

2. In light of the first example after Theorem 2.7, the above result is clearly false

if we instead consider all homomorphisms, without any restrictions on e or �.

Indeed, building on this same example, we see that when e D 2 and � D .0/,

HomH4
.S..22//; S..3;1/// D f0g (whereas HomH2

.S..12//; S..2/// ¤ f0g). To see that

HomH4
.S..22//; S..3;1/// D f0g, note that the only .3; 1/-tableaux with residue se-

quence i..22// D .0; 1; 1; 0/ are T..3;1// and S D s2T..3;1//, which have degrees C1

and�1 respectively. The Garnir element 3 2 does not kill z..3;1// (as 3 2z..3;1//

is an element of the standard basis of S..3;1//), and y2 2z..3;1// D �z..3;1// ¤ 0.

Proof. We construct the isomorphism explicitly in the KLR setting. First note that

we may assume � Q �, since otherwise Std�r.�r/ D Std�.�/ D ; and the result is

immediate. We also observe that cont.�/ D cont.�/ if and only if cont.�r/ D cont.�r/; if

these conditions do not hold then the result is trivial since both homomorphism spaces

are zero, so we assume cont.�/ D cont.�/, and set ˛ WD cont.�/, ˇ WD cont.�r/.

For this proof we make an assumption about the choice of preferred reduced ex-

pressions defining the standard bases for S�rj�r and S�j� . Given T 2 Std�r.�r/, we define

TC WD T�l#T, where

�l D �l.1;m/ D
�
.1k/;∅; : : : ;∅

�
2P l�mC1

k
:

In other words, TC is obtained from T by increasing each entry by k, adding the column

1

k

at the left of component m, and then adding l �m empty components at the end.

Now recall the maps (both denoted shiftk) from Sn�k to Sn and from Hˇ to H˛.
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Observe that for T 2 Std�r.�r/ we have wTC D shiftk.wT/. By choosing compatible

reduced expressions for wTC and wT, we may assume that  TC D shiftk. T/ as well.

Now let c D .�
.m/
r /01. Then the entries 1; : : : ; c all appear in the first column of

component m in T�r , and hence if T 2 Std�r.�r/ these entries all appear in the first

column of component m of T. In particular, wT fixes 1; : : : ; c, so  T only involves terms

 j for j > c; hence  TC only involves terms  j for j > kC c.

Now suppose 'r 2 DHomHn�k
.S�rj�r ; S�rj�r/. Then

'r.z�r/ D
X

T2Std�r .�r/

aTvT for some aT 2 F.

We define ' W S�j� ! S�j� by

'.z�/ D
X

T2Std�r .�r/

aTvTC :

We must verify that this does indeed define a homomorphism, i.e. that h'.z�/ D 0

whenever h 2 Ann.z�/. (Here and henceforth we write Ann.z�/ for the annihilator of

z�.) Firstly, note that if T 2 Std�r.�r/ with aT ¤ 0, then T has residue sequence i�r ; this

implies that TC has residue sequence i�, so that e.i�/'.z�/ D '.z�/, as required. For the

other relations, observe from the defining relations for the column Specht module that

shiftk.Ann.z�r// � Ann.z�/ (and similarly for �r and �). Now for k < j 6 n we have

yj�k 2 Ann.z�r/, so (since 'r is a homomorphism) yj�k
P
T aT T 2 Ann.z�r/. Hence

Ann.z�/ 3 shiftk

 
yj�k

X
T

aT T

!
D yj

X
T

aT TC ;

so that yj'.z�/ D 0. A similar statement applies to  j whenever k < j < n with

j #T� j C 1, and to any Garnir element gA where A does not lie in the first column of

component m.

It remains to check the generators of Ann.z�/which do not lie in shiftk.Ann.z�r//, i.e.

the elements y1; : : : ; yk ,  1; : : : ;  k�1 and gA for A of the form .j; 1;m/ with 1 6 j 6 c.
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Let h denote any of these elements, and observe that since each  TC is a product of

terms  i with i > kC c, h commutes with  TC (note that if h D g.j;1;m/, then h only

involves terms  i for i < kC c). Hence

h'.z�/ D h
X
T

aT TCz� D
X
T

aT TChz� D 0;

since h 2 Ann.z�/.

So Ann.z�/'.z�/ D 0, and ' is a well-defined homomorphism. So we have a

map ˆ W DHomHn�k
.S�rj�r ; S�rj�r/ ! DHomHn

.S�j� ; S�j�/ given by 'r 7! ', and ˆ is

obviously linear. To show that ˆ is bijective, we construct its inverse. Any S 2 Std�.�/

must have entries 1; : : : ; k in order down the first column of itsmth component; that is,

S D TC for some T 2 Std�r.�r/. So given � 2 DHomHn
.S�j� ; S�j�/, we can write

�.z�/ D
X

T2Std�r .�r/

aTvTC for some aT 2 F.

Applying (a simpler version of) the above argument in reverse, we see that we have a

homomorphism �r W S�r ! S�r given by

�r.z�r/ D
X

T2Std�r .�r/

aTvT:

So we get a linear map DHomHn
.S�j� ; S�j�/ ! DHomHn�k

.S�rj�r ; S�rj�r/ which is a

two-sided inverse to ˆ, and hence ˆ is a bijection.

Finally, to show that we have an isomorphism of graded vector spaces, we show

that ˆ is homogeneous of degree 0. That is, if 0 ¤ 'r 2 DHomHn�k
.S�rj�r ; S�rj�r/ is

homogeneous, then ' is also homogeneous with deg.'/ D deg.'r/. To see this, we

write

'r.z�r/ D
X

T2Std�r .�r/

aTvT for some aT 2 F.
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Then

'.z�/ D
X

T2Std�r .�r/

aTvTC ;

and for each Twith aT ¤ 0 we have

codeg�.TC/� codeg�.T�/ D codeg�R.T/� codeg�R.T�r/ D deg.'r/:

Hence ' is homogeneous of degree deg.'r/. �

Now we make corresponding definitions for row removal.

Definition 2.24. Suppose � 2P l
n. For any 1 6 m 6 l and any r > 0, define

�
.m/;r
t D .�

.m/
1 ; : : : ; �.m/r ; 0; 0; : : : /; �

.m/;r
b D .�

.m/
rC1; �

.m/
rC2; : : : /:

Now let

�t D �t.r;m/ D .�
.1/; : : : ; �.m�1/; �

.m/;r
t /;

�b D �b.r;m/ D .�
.m/;r
b ; �.mC1/; : : : ; �.l//;

and set nt D j�tj and nb D j�bj.

Corollary 2.25 (Graded Row Removal). Suppose �;� 2 P l
n and 1 6 m 6 l . Suppose

that �.1/ D � � � D �.m�1/ D �.1/ D � � � D �.m�1/ D ∅, and k WD �
.m/
1 D �

.m/
1 . Let

�b D �b.1;m/, �b D �b.1;m/ and �b D .�m� 1; �mC1; : : : ; �l/. Then

DHomHn
.S�j� ; S�j�/ Š DHomHn�k

.S�bj�b ; S�bj�b/

as graded vector spaces over F.

Proof.

DHomHn
.S�j� ; S�j�/ Š DHomHn

.S�0j�0 ; S�0j�0/ by Theorem 2.18,
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Š DHomHn�k
.S.�b/0j.�b/0 ; S.�b/0j.�b/0/ by Theorem 2.23,

Š DHomHn�k
.S�bj�b ; S�bj�b/ by Theorem 2.18 again. �

Now we prove a ‘final column removal’ theorem, where we assume that the right-

most non-empty columns of � and � are in the same place and of the same length.

Theorem 2.26 (Final Column Removal). Suppose �;� 2 P l
n and 1 6 m 6 l . Suppose

�.1/ D � � � D �.m�1/ D �.1/ D � � � D �.m�1/ D ∅, d WD �
.m/
1 D �

.m/
1 and k WD .�.m//0

d
D

.�.m//0
d

. Let �l D �l.d � 1;m/, �l D �l.d � 1;m/ and �l D .�m; : : : ; �l/. Then

DHomHn
.S�j� ; S�j�/ Š DHomHn�k

.S�lj�l ; S�lj�l/

as graded vector spaces over F.

Proof. We first use Corollary 2.25 to remove the first k rows of length d from both �.m/

and �.m/. We obtain

DHomHn
.S�j� ; S�j�/ Š DHomHn�dk

.S�bj�b ; S�bj�b/

where �b D �b.k;m/, �b D �b.k;m/ and �b D .�m � k; �2; : : : ; �l/. We then use Corol-

lary 2.25 again to add k rows of length d � 1 to the top of both �
.m/
b and �

.m/
b . We

obtain

DHomHn�dk
.S�bj�b ; S�bj�b/ Š DHomHn�k

.S�lj�l ; S�lj�l/;

which gives the result. �

It will be helpful below to be able to give a direct construction for final column

removal, as done in the proof of Theorem 2.23 for first column removal. We assume

the hypotheses and notation of Theorem 2.26, and for ease of notation we assume that

S� and S� are defined using the e-multicharge �, while S�l and S�l are defined using �l.

We can also assume that cont.�/ D cont.�/ DW ˛, and hence cont.�l/ D cont.�l/ DW ˇ.
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We identify Sn�k with its image under the map shift0 W Sn�k ! Sn, and similarly

for Hˇ and H˛. As in the proof of Theorem 2.23 we make an assumption on preferred

reduced expressions: given a standard �l-tableau T, we define TC to be the standard

�-tableau obtained by adding a column with entries n� k C 1; : : : ; n at the right of

component m; then we have wTC D wT, and we assume that our preferred reduced

expressions have been chosen in such a way that  TC D  T.

Lemma 2.27. With the above notation, we have Ann.z�l/ D Ann.z�/\Hˇ .

Proof. It follows directly from the presentation for column Specht modules that

Ann.z�l/ � Ann.z�/\Hˇ , so we must show the opposite containment. Consider

the Hˇ -submodule Hˇz� of S� generated by z�. For any T 2 Std.�l/ we have

vTC D  TCz� D  Tz� 2 Hˇz�, and the vTC are linearly independent, so dimF Hˇz� >

j Std.�l/j D dimF S�l . So we have

dimF Hˇz� > dimF Hˇz�l ;

i.e.

dimF
Hˇ

Ann.z�/\Hˇ

> dimF
Hˇ

Ann.z�l/
;

and so Ann.z�l/ � Ann.z�/\Hˇ . �

Now we consider dominated homomorphisms. Observe that since � and � have

the same last column, Std�.�/ D
˚
TC

ˇ̌
T 2 Std�l.�l/

	
. So if ' 2 DHomHn

.S�; S�/, then

we can write

'.z�/ D
X

T2Std�l .�l/

aTvTC with aT 2 F:

Then we can define a homomorphism

'� W S�lj�l �! S�lj�l
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z�l 7�!

X
T2Std�l .�l/

aTvT:

To see that this definition yields a well-defined homomorphism, we must show that

h
P
T aTvT D 0 whenever h 2 Ann.z�l/. By Lemma 2.27 we have h 2 Ann.z�/, and

hence (since ' is a homomorphism) h
P
T aTvTC D 0; in other words, h

P
T aT T 2

Ann.z�/. We also have h
P
T aT T 2 Hˇ , so by Lemma 2.27 again (with � replaced by

�) h
P
T aT T 2 Ann.z�l/, as required.

So we have a map ' 7! '� W DHomHn
.S�j� ; S�j�/! DHomHn�k

.S�lj�l ; S�lj�l/. This

is obviously an injective map of degree 0, and hence (by Theorem 2.26) a graded

isomorphism.

2.6 Generalised column removal

Armed with first column removal and final column removal, we can now consider

generalised column removal. In what follows, we fix c > 0 and 1 6 m 6 l , and for any

� 2 P l
n we write �l D �l.c;m/ and �r D �r.c;m/. We suppose �;� 2 P l

n, and assume

that j�lj D j�lj DW nl, so that j�rj D j�rj D n�nl DW nr. We also assume that � Q �. This

assumption implies that �l Q �l and �r Q �r, which in particular gives

.�.m//0c > .�
.m//0c > .�

.m//0cC1

so that it is possible to define a multipartition �l#�r 2 P l
n with .�l#�r/l D �l and

.�l#�r/r D �r.

We write �l D .�m; : : : ; �l/, �r D .�1; : : : ; �mC c/, Hl DHnl and Hr DHnr . For ease

of notation, we will assume throughout the following that the Specht modules S�, S�

and S�l#�r are defined using the e-multicharge �, while S�l and S�l are defined using �l

and S�r and S�r are defined using �r.
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Suppose 'l 2 DHomHl.S�l ; S�l/ and 'r 2 DHomHr.S�r ; S�r/, and write

'l.z�l/ D
X

S2Std�l .�l/

aSvS; 'r.z�r/ D
X

T2Std�r .�r/

bTvT

with coefficients aS; bT 2 F. If there is a homomorphism ' W S� ! S� satisfying

'.z�/ D
X

S2Std�l .�l/

T2Std�r .�r/

aSbTvS#T;

then we write ' D 'l#'r, and say that ' is a product homomorphism.

Lemma 2.28. Every product homomorphism S� ! S� factors through S�l#�r .

Proof. Suppose that ' D 'l#'r is a product homomorphism, and as above write

'l.z�l/ D
X

S2Std�l .�l/

aSvS; 'r.z�r/ D
X

T2Std�r .�r/

bTvT:

Now define

'l# id W S�l#�r �! S�; id #'r W S� �! S�l#�r ;

z�l#�r 7�!

X
S2Std�l .�l/

aSvS#T�r
; z� 7�!

X
T2Std�r .�r/

bTvT�l #T:

Then 'l# id and id #'r are both Hn-homomorphisms; this follows from the direct con-

structions of column removal homomorphisms in the proof of Theorem 2.23 and fol-

lowing the proof of Theorem 2.26. Clearly .'l# id/ ı .id #'r/ D ', so ' factors through

S�l#�r . �

Proposition 2.29. Assume the hypotheses (on � and �) and notation above. Then every

' 2 DHomHn
.S�; S�/ is a sum of product homomorphisms.

Proof. We may assume that cont.�/ D cont.�/ (since otherwise there are no non-zero

homomorphisms S� ! S�). So for this proof we write ˛ WD cont.�/ and define shift0
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to be the map from Hl to H˛ obtained by combining the maps shift0 W Hˇ ! H˛ for

all ˇ 2 QC of height nl; similarly, shiftnl denotes the map from Hr to H˛ obtained by

combining the maps shiftnl WHˇ !H˛ for all ˇ 2 QC of height nr.

For this proof we make an assumption about the choice of preferred reduced ex-

pressions similar to that in the proof of Theorem 2.26. Specifically, we assume that these

expressions have been chosen in such a way that if S 2 Std�l.�l/ and T 2 Std�r.�r/, then

the preferred expression for wS#T is just the concatenation of the preferred expression

for wS with the expression obtained by applying shiftnl to every term in the preferred

expression for wT. Hence  S#T D  S shiftnl. T/.

Now we show that every dominated homomorphism S� ! S� is a sum of product

homomorphisms. To do this, we first discuss dominated tableaux. Note that the

conditions on � and � imply that Std�.�/ D
˚
Tl#Tr

ˇ̌
Tl 2 Std�l.�l/; Tr 2 Std�r.�r/

	
:

Choose a total order I on Std�.�/ with the property that if R; S 2 Std�l.�l/ and T; U 2

Std�r.�r/, then

R#T I R#U” S#T I S#U and R#T I S#T” R#U I S#U:

(For example, we could do this by choosing total orders Il;Ir on Std�l.�l/; Std�r.�r/

and setting V I W if and only if Vl Il Wl or (Vl D Wl and Vr Ir Wr).)

Now suppose ' W S� ! S� is a non-zero dominated homomorphism, and write

'.z�/ D
P
T2Std�.�/ aTvT with each aT 2 F. Let U be the largest tableau (with respect to

I) such that aU ¤ 0, and proceed by induction on U.

Claim. Let U denote the set of tableaux T 2 Std�.�/ such that Tr D Ur. Then there

is an Hl-homomorphism

'Ul W S�l �! S�l

z�l 7�!

X
T2U

aTvTl :

Proof. First we make an observation, which follows from the construction of
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Specht modules and our assumptions on preferred reduced expressions. If

W 2 Std�.�/ and h 2 Hl, and we write hvWl D
P
T2Std.�l/

bTvT, then shift0.h/vW DP
T2Std.�l/

bTvT#Wr . In particular, shift0.h/vW is a linear combination of basis ele-

ments vS for S 2 Stdlr.�/ with Sr D Wr.

Now take h 2 Ann.z�l/. Then shift0.h/ 2 Ann.z�/, so shift0.h/
P
T2Std�.�/ aTvT D

0 (because ' is a homomorphism). If we look just at shift0.h/
P
T2U aTvT, then by

the previous paragraph this lies in hvT j T 2 Stdlr.�/; Tr D UriF, while

shift0.h/
P
T…U aTvT lies in hvT j T 2 Stdlr.�/; Tr ¤ UriF. The vT are linearly in-

dependent, and hence

hvT j T 2 Stdlr.�/; Tr D UriF\ hvT j T 2 Stdlr.�/; Tr ¤ UriF D 0:

Hence shift0.h/
P
T2U aTvT D 0.

Define a linear map #Ur W S�l ! S� by vT 7! vT#Ur for T 2 Std.�l/. Then, from

above, we have

.hm/#Ur D h.m#Ur/

for any h 2 Hl and any m 2 S�l . So for each h 2 Ann.z�l/, we have

h
P
T2U aTvTl D 0.

We can do essentially the same thing left and right interchanged; that is, if we let

U 0 D fT 2 Std�.�/ j Tl D Ulg, then we have an Hr-homomorphism

'Ur W S�r �! S�r

z�r 7�!

X
T2U 0

aTvTr :

As in the proof of Lemma 2.28, we construct homomorphisms

'Ul # id W S�l#�r �! S� and id #'Ur W S� �! S�l#�r ;
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whose composition is the product homomorphism 'Ul #'Ur W S� ! S�. vU appears with

non-zero coefficient (namely a2U ) in 'Ul #'Ur , and U is maximal (with respect to the order

I) with this property. So if we consider the homomorphism � WD ' �
1

aU
'l#'r, then (if

� ¤ 0) the most dominant tableau occurring with non-zero coefficient in � is smaller

than U. By induction � is a sum of product homomorphisms, and hence so is '. �

Now we can prove our main result.

Theorem 2.30 (Generalised graded column removal). Suppose �;� 2 P l
n, c > 0 and

1 6 m 6 l and define �l; �r; �l; �r as in Section 2.4. Assume j�l.c;m/j D j�l.c;m/j DW nl and

j�r.c;m/j D j�r.c;m/j DW nr for some fixed c > 0 and 1 6 m 6 l and define Hl D Hnl and

Hr DHnr .

1. For any 'l 2 DHomHl.S�l ; S�l/ and 'r 2 DHomHr.S�r ; S�r/, there is a product homo-

morphism 'l#'r 2 DHomHn
.S�; S�/.

2. The map 'l˝'r 7! 'l#'r defines an isomorphism of graded F-vector spaces

DHomHl.S�l ; S�l/˝DHomHr.S�r ; S�r/ Š DHomHn
.S�; S�/:

Proof. First suppose � S �. Then Std�.�/ D ;, so DHomHn
.S�; S�/ D 0. Further-

more, we have either �l S �l or �r S �r, so that either DHomHl.S�l ; S�l/ D 0 or

DHomHr.S�r ; S�r/ D 0. So the result follows.

So we can assume that � Q �, which allows us to define the multipartition �l#�r as

above. Applying Theorem 2.23 repeatedly, we have

DHomHn
.S�; S�l#�r/ Š DHomHr.S�r ; S�r/:

Similarly, by Theorem 2.26 applied repeatedly we have

DHomHn
.S�l#�r ; S�/ Š DHomHl.S�l ; S�l/:



72 2.7. Generalised row removal

Combining these isomorphisms, and using the explicit constructions given above, we

have an isomorphism of graded vector spaces

DHomHl.S�l ; S�l/˝DHomHr.S�r ; S�r/
�
�! DHomHn

.S�l#�r ; S�/˝DHomHn
.S�; S�l#�r/

'l˝'r 7�! .'l# id/˝ .id #'r/:

Composition of homomorphisms yields a map

! W DHomHn
.S�l#�r ; S�/˝DHomHn

.S�; S�l#�r/ �! DHomHn
.S�; S�/

which is homogeneous of degree zero, and by Lemma 2.28 and Proposition 2.29 ! is

surjective. So we have a surjective map

DHomHl.S�l ; S�l/˝DHomHr.S�r ; S�r/ �! DHomHn
.S�; S�/

'l˝'r 7�! 'l#'r:

This map is easily seen to be injective, and the result follows. �

2.7 Generalised row removal

Now we consider generalised row removal for homomorphisms between column

Specht modules. Fix 1 6 m 6 l and r > 0, and for any � 2 P l
n write �t D �t.r;m/,

�b D �b.r;m/. Suppose �;� 2P l
n with j�tj D j�tj DW nt, so that j�bj D j�bj D n� nt DW

nb. Set �t D .�1; : : : ; �m/ and �b D .�m � r; �mC1; : : : ; �l/, and write Ht D Hnt and

Hb D Hnb . In what follows we shall take S� and S� to be defined with respect to the

e-multicharge �, S�t and S�t with respect to �t, and S�b and S�b with respect to �b.

With this notation in place, we can state a generalised row-removal theorem for

homomorphisms. This follows from Theorem 2.30 using Theorem 2.18 in the same way

that Corollary 2.25 is deduced from Theorem 2.23.

Theorem 2.31 (Generalised graded row removal). Suppose �;� 2P l
n, r > 0 and 1 6 m 6
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l and define �t; �b; �t; �b; nt; nb;Ht;Hb as above. Then there is an isomorphism of graded

F-vector spaces

DHomHt.S�t ; S�t/˝DHomHb.S�b ; S�b/ Š DHomHn
.S�; S�/:

Our proof of Theorem 2.30 gives a direct construction of the column-removal isomor-

phism, but a direct construction for row removal seems to be hard to obtain, especially

using the standard bases for column Specht modules. The difficulty seems to arise when

passing through the isomorphism �� from Theorem 2.15, which does not preserve the

standard bases.

Example. Take e D 2 and � D .0; 1; 0/. Let� D
�
.12/; .2; 13/; .1/

�
and� D

�
.1/; .3; 1/; .3/

�
,

and take .m; r/ D .2; 1/, so that �t D
�
.12/; .2/

�
, �b D

�
.13/; .1/

�
and�t D �b D

�
.1/; .3/

�
.

Set �t D .0; 1/ and �b D .0; 0/. Then (regardless of the field F) the graded dimensions

of DHomH4
.S�tj�t ; S�tj�t/ and DHomH4

.S�bj�b ; S�bj�b/ are v and 1 respectively. So by

Theorem 2.31 the graded dimension of DHomH8
.S�j� ; S�j�/ is v. The unique (up to

scaling) homomorphisms

S�t �! S�t ; S�b �! S�b ; S� �! S�

are given by

z�t 7�! vS; z�b 7�! vT; z� 7�! vUC 2vV;

where

S D 3

1 2 4

; T D 2

1 3 4

;

U D 7

2 6 8
3

1 4 5

; V D 7

4 6 8
5

1 2 3

:
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It seems hard to reconcile these homomorphisms when expressed in this form, except

perhaps in characteristic 2. (Note that the incompatibility of these expressions is not

an artefact of the choice of preferred reduced expressions – the standard basis elements

appearing in this example are independent of the choice of reduced expressions.)

In order to obtain an explicit row-removal construction, it seems to be necessary to

use a different basis for the Specht module. Suppose we have �b, �t, �b and�t as above,

with j�tj D nt D j�tj. Partition the set f1; : : : ; ng into two sets Sb and St, by defining Sb

to be the set of integers in the bottom part of T� and St the set of integers in the top part;

that is,

Sb D fT�.s; c; k/ j .s; c; k/ 2 Œ�� and either k > m or k D m and s > rg ;

St D fT�.s; c; k/ j .s; c; k/ 2 Œ�� and either k < m or k D m and s 6 rg :

Let labb W f1; : : : ; nbg ! Sb and labt W f1; : : : ; ntg ! St be the unique order-preserving

bijections.

Now given a �b-tableau T and a �t-tableau S, define a �-tableau T#RS by composing

labb with T and labt with S and ‘gluing’ in the natural way.

Lemma 2.32. Suppose � and � satisfy the conditions above. If T 2 Std�b.�b/ and S 2

Std�t.�t/, then T#RS 2 Std�.�/.

Proof. First we show that T#RS is standard. Suppose A and B are nodes in the same

component of Œ��, with B either immediately to the right of A or immediately below

A; then we require T#RS.B/ > T#RS.A/. This is clear from the fact that S and T are

standard and the functions labt and labb are order-preserving, except in the case where

A D .r; b;m/ and B D .r C 1; b;m/ for some 1 6 b 6 �.m/rC1. So assume we are in this

situation.

Let k D �
.m/
rC1. Then the first k columns of �.m/t all have length r . Since Std�t.�t/

is non-empty we have �t Q �t, and hence the first k columns of �.m/t all have length r

also. Hence (since S is �t-dominated) S agrees with T�t on these columns. So we have
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T#RS.A/ D labt.T�t.A// D T�.A/.

We also have �b Q �b since Std�b.�b/ ¤ ;, so that k > �.m/rC1 > b (and in particular

B 2 Œ��). Since T is �b-dominated, we have T.1; b; 1/ > T�b.1; b; 1/, so that

T#RS.B/ D labb.T.1; b; 1// > labb.T�b.1; b; 1// D T�.B/:

So T#RS.A/ D T�.A/ < T�.B/ 6 T#RS.B/, as required.

To see that T#RS is �-dominated, it suffices to note that since S 2 Std�t.�t/, every

element of St appears in labt.S/ at least as far to the left as it appears in T�, and likewise

for T 2 Std�b.�b/ and elements of Sb. �

Now we can give a conjectured explicit construction for the generalised row-removal

isomorphism for homomorphisms. Recall from Section 2.3 the basis ffT j T 2 Std.�/g

for .S�/~; using Theorem 2.15 and shifting the degree of each fT by def.�/, we can

regard ffT j T 2 Std.�/g as a basis for S�. Note that by the analogue of Lemma 2.19(2)

for column Specht modules, any ' 2 DHomHn
.S�; S�/ can be written as

'.z�/ D
X

T2Std�.�/

aTfT for some aT 2 F:

Conjecture 2.33. Suppose �;� 2P l
n, r > 0 and 1 6 m 6 n. Define �t; �b; �t; �b; nt; nb;Ht;

Hb as above, and assume j�tj D nt. Suppose 't 2 DHomHt.S�t ; S�t/ and

'b 2 DHomHb.S�b ; S�b/, and write

'b.z�b/ D
X

T2Std�b .�b/

aTfT; 't.z�t/ D
X

S2Std�t .�t/

bSfS

with aT; bS 2 F. Then there is an Hn-homomorphism 'b#R't W S� ! S� satisfying

'b#R't.z�/ D
X

T2Std�b .�b/

S2Std�t .�t/

aTbSfT#RS:



76 2.7. Generalised row removal

Example. Retaining the notation from the last example, we have

T� D 7
8

2 6
3
4
5

1

;

so that St D f2; 6; 7; 8g and Sb D f1; 3; 4; 5g. Taking S, T and U as in the last example, we

get T#RS D U. It is easy to check that

fS D vS; fT D vT; fU D vUC 2vV;

so the conjecture holds in this case.

Remark. If Conjecture 2.33 is true, then we have a map of graded F-vector spaces

DHomHb.S�b ; S�b/˝DHomHt.S�t ; S�t/ �! DHomHn
.S�; S�/

'b˝'t 7�! 'b#R't:

This map is obviously linear, and (since thefT are linearly independent) injective. Hence

by Theorem 2.31 it is a bijection. So we have an explicit construction for the generalised

row-removal isomorphism.



Chapter 3

Decomposable Specht modules

In this chapter, we will investigate Specht modules for the KLR algebra in level 1 with

e D 2; that is, the Iwahori–Hecke algebra in quantum characteristic 2.

Recall from Theorem 1.44 that if e ¤ 2, it is known that all Specht modules for the

Hecke algebra are indecomposable. When e D 2 this is not the case; determining which

Specht modules are decomposable is an open and very difficult problem, even for the

symmetric group (i.e. when char.F/ D 2). After Murphy’s result for hook partitions in

[36], no further progress was made until the paper of Dodge and Fayers [16], where

they were able to show that many Specht modules indexed by partitions of the form

.a; 3; 1b/ are decomposable, giving necessary and sufficient conditions for this.

Here we take a different approach. We would like to extend Murphy’s result for

the symmetric group to the Hecke algebra. We study Specht modules indexed by hook

partitions, for the Hecke algebra, and determine exactly when they are decomposable.

This is all studied using the KLR setting outlined in Chapter 1. For the reader’s ease,

we start by restricting the presentations of the (cyclotomic) KLR algebra and its Specht

modules to the relevant case.

77
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3.1 KLR algebras for l D 1, e D 2

When e D 2 (that is q D �1), the Hecke algebra H D Hn D HF;q.Sn/ is isomorphic to

the cyclotomic KLR algebra H .0/
n with the following presentation:

Generators fe.i/ j i 2 f0; 1gng[ fy1; : : : ; yng[ f 1; : : : ;  n�1g.

Relations

e.i/e.j / D ıi;j e.i/IX
i2f0;1gn

e.i/ D 1I

yre.i/ D e.i/yr I

 re.i/ D e.sr i/ r I

yrys D ysyr I

 rys D ys r if s ¤ r; r C 1I

 r s D  s r if jr � sj > 1I

yr re.i/ D . ryrC1� ıir ;irC1/e.i/I

yrC1 re.i/ D . ryr C ıir ;irC1/e.i/I

 2r e.i/ D

8̂̂<̂
:̂
0 if ir D irC1;

.yrC1�yr/.yr �yrC1/e.i/ if ir ¤ irC1I

 r rC1 re.i/ D

8̂̂<̂
:̂
. rC1 r rC1/e.i/ if ir D irC1 or irC1 D irC2,

. rC1 r rC1Cyr � 2yrC1CyrC2/e.i/ otherwise;

y1 D 0I

e.i/ D 0 if i1 D 1.

Note that we have taken the usual convention � D .0/ here, though in fact we

always have H .�1/
n ŠH .�2/

n for any �1; �2 2 I . To see this, note that if r is the rotation

of the quiver � which maps the vertex labelled by j to the vertex labelled by j C 1 for

each j 2 I , then there is an automorphism of Hn mapping e.i/ 7! e.r.i//, yk 7! yk ,
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 k 7!  k for all i 2 In and all admissible k. This automorphism maps the cyclotomic

ideal corresponding to an e-multicharge � to that corresponding to r.�/. In view of

Brundan and Kleshchev’s isomorphism theorem, we identify H .0/
n with H D Hn in

this chapter.

Remark. Recall the remarks after we first defined Hn in Section 1.9 – since e D 2, intro-

ducing the generators yr and  s here makes sense; they are the sums of corresponding

generators in the algebras H˛. In fact, we can also see the validity of the presentation

because of the fact that we are taking a cyclotomic quotient, as discussed at the end of

Section 1.9.

3.2 Specht modules for hook partitions

For the remainder of the chapter, we fix n D aC b and � D .a; 1b/. That is, � is a hook

partition of n. Specialising our homogeneous presentation from Section 1.10 to hook

partitions, we have

S� D hz� j e.i�/z� D z�; ykz� D 0 8k;  j z� D 0 8j ¤ bC 1;  1 2 : : :  bC1z� D 0i:

It’s useful to note that in the case of hook partitions, the standard basis fvT j T 2 Std.�/g

is independent of our choice of reduced expression for wT, since each wT is fully com-

mutative. We can, for example, appeal to Lemma 1.9 in order to see this.

Example. Let � D .3; 12/. It is easy to check that EndH.S�/ has a basis fid; 'g where '

is given by '.z�/ D  3 2 4 3z� D vT� . Moreover, '2.z�/ D �2'.z�/, so idC1=2' and

�1=2' are both idempotents so long as char.F/ ¤ 2. In particular, S� is decomposable

if and only if char.F/ ¤ 2.

Furthermore, since there are only two non-trivial idempotent endomorphisms

(along with the idempotents id and the zero map), we expect S� to decompose into

a direct sum of two indecomposable summands. If we look at the decomposition ma-

trix for H5 when e D 2; p ¤ 2 (see for instance, the appendix of [25]) then we see that
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S� has composition factors D.5/ and D.3;2/, each appearing once. Now, z� and '.z�/ are

both annihilated by y1; : : : ; y5;  1;  2;  4, and it is easy to check that 3'.z�/ D �2 3z�.

Thus we see that im.idC1=2'/ Š D.5/ and it follows that im.�1=2'/ Š D.3;2/. It is also

quite easy to see that im.�1=2'/ is spanned by fvT j T ¤ T�g.

A less direct approach to this example would be to consider the fact that, by [13,

Theorem 3.5], S.3;2/ is self-dual up to a twist by the sign representation. Since e D 2,

the sign representation is isomorphic to the trivial representation, so S� is in fact self-

dual. Now, since S� has exactly two composition factors, which are non-isomorphic, it

follows that it must be decomposable.

When char.F/ D 2, D.5/ appears as a composition factor of S� twice, which is why

this second argument no longer applies.

Decomposability of Specht modules for hook partitions was solved by Murphy in

the case of the symmetric group (i.e. when char.F/ D 2):

Theorem 3.1 [36, Theorem 4.5]. Suppose char.F/ D 2. Then S.a;1b/ is indecomposable if

and only if n is even or a� 1 � b .mod 2L/ where 2L�1 6 b < 2L.

Using this result, we will be able to assume char.F/ ¤ 2 where necessary. The

following result will also reduce our workload later on.

Theorem 3.2. Suppose a is odd and b is even. Then S.a;1b/ is decomposable if and only if

S.aC1;1bC1/ is.

Proof. For any r > 0 and any i , functors

e
.r/
i W HnCr -mod �! Hn-mod

f
.r/
i W Hn-mod �! HnCr -mod

are introduced in [7, Section 2.2]. These functors are exact, and have the following

property: if M is a non-zero module and we let "i .M/ WD maxfr j e.r/i M ¤ 0g, then:

[7, Lemma 2.12] If D is a simple module, then e."i .D//i D is simple.
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Since e.r/i is exact, we have "i .D/ 6 "i .M/ when D is a composition factor of M ,

and so by the above lemma we deduce that the composition length of e."i .M//
i M is at

most the composition length of M , with equality if and only if "i .D/ D "i .M/ for all

composition factors D of M .

A corresponding result holds with fi ; 'i in place of ei ; "i .

Now consider Specht modules. By [7, Lemma 2.4] and [7, Equations (7)&(8)], e.r/i

and f
.r/
i can be interpreted as restriction and induction, respectively, followed by

projection onto particular blocks. In view of the block classification for Hecke algebras

of type A [31, Theorem 2.11] and the branching rules for induction and restriction of

Specht modules ([12, Theorem 7.4] and [3, Proposition 1.9] respectively), we deduce that

"i .S�/ is the number of removable nodes of � of residue i , and e."i .S�//i S� is the Specht

module labelled by the partition obtained by removing these nodes. A corresponding

statement holds for fi and addable nodes.

In particular, when e D 2, a is odd and b is even, let� D .a; 1b/ and� D .aC1; 1bC1/.

Then "1.S�/ D '1.S�/ D 2, and e.2/1 S� D S�, f .2/1 S� D S�.

In view of the above results, this means that S� and S� have the same composition

length and that e.2/1 D ¤ 0 for every composition factor D of S�. Hence (again by

exactness) e.2/1 N ¤ 0 for every submodule N of S�. Hence if S� is decomposable, then

so is S�. The same argument the other way round shows that if S� is decomposable,

then so is S�. �

Example. We illustrate the idea behind this proof with � D .3; 12/ and � D .4; 13/.

"1.S�/ D '1.S�/ D 2, so e.2/1 S� Š S� and f .2/1 S� Š S� while e.3/1 S� D f
.3/
1 S� D 0.

As seen in the example preceding Theorem 3.1, S� has two composition factors when

char.F/ ¤ 2 and it follows that S� does too. It follows that f .2/1 D.5/ ¤ 0 ¤ f
.2/
1 D.3;2/

and so S� Š f
.2/
1 D.5/˚f

.2/
1 D.3;2/.

Conversely, if char.F/ D 2 we’ve seen that S� is indecomposable. If S� were

decomposable, then applying the functor e.2/1 to each direct summand would yield a

decomposition of S�, and thus a contradiction.
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Suppose f is an H-endomorphism of S�. We have z� D e.i�/z�, so we have

f .z�/ 2 e.i�/ S�. Now consider the standard basis fvT j T 2 Std.�/g. Lemma 1.31 tells us

that e.i/vT D ıi;iTvT for any T 2 Std.�/. Hence fvT j T 2 Std.�/g\ e.i/ S� D fvT j iT D ig.

In particular, f .z�/ is a linear combination of elements in

D WD fvT j T 2 Std.�/g\ e.i�/ S� D fvT j iT D i�g:

This is at the core of our approach to understanding EndH.S�/.

Definition 3.3. When � D .a; 1b/, we define the arm to be the set of nodes

f.1; 2/; .1; 3/; : : : ; .1; a/g of � and the leg to be the set of nodes f.2; 1/; .3; 1/; : : : ; .bC1; 1/g.

Now, we separate our problem into cases where a and b are odd or even. When b is

even, we have i� D 0101 : : : 01. If b is odd, however, we have i� D 0101 : : : 011010 : : : 10,

where we have a repetition in the positions bC 1 and bC 2.

Lemma 3.4. Suppose b is even and vT 2 D . Then for all 1 6 i 6 dn=2e � 1, 2i C 1 appears

directly after 2i in T. That is, if 2i is in the leg of T then 2i C 1 is directly below it, and if 2i is

in the arm of T then 2i C 1 is directly to the right of it.

Proof. In defining i�, we assign all nodes of Œ�� in which T� contains an even entry a 1

and all others a 0. First, we note that since b is even and vT 2 D , the final node in the

leg of � has residue 0. This ensures that if 2i is in the leg of T there must be some entry

immediately below it.

By induction on i > 1, assume that 2i C 1 appears directly after 2i in T, for all i < k.

Suppose our assertion is false for i D k. We assume without loss of generality that 2k

is in the leg of T and 2kC 1 is in the arm. Now by induction any even number, 2j < 2k,

is immediately followed by 2j C 1. This forces 2kC 1 to be adjacent to 2j C 1 for some

j < k, and vT … D . �

The fact that entries must stick together in these pairs motivates our next definition.
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Definition 3.5. We will call the pair of entries 2i; 2i C 1 for 1 6 i 6 dn=2e� 1 a domino.

We will denote the domino by Œ2i; 2i C 1� or Di . We define a domino tableau to be any

�-tableau T such that vT 2 D . We denote the set of domino tableaux by Dom.�/.

Remark. D D fvT j T 2 Dom.�/g is a basis of e.i�/ S�.

We will now begin by solving the simplest cases, where n is even.

3.3 Decomposability of S.a;1b/ when n is even

First, we will look at the case where a and b are both even.

Lemma 3.6. Suppose T 2 Std.�/ and 1 < i < n. If i; i C 1; : : : ; n all lie in the arm of T then

 ivT D 0. If i lies in the leg of T and i C 1 lies in the arm, then  ivT D vU, where U is obtained

from T by swapping i and i C 1.

Proof. First, suppose i; i C 1; : : : ; n all lie in the arm of T for some 1 < i < n. Then vT

cannot possibly involve  j for any j > i � 2. It follows that  i commutes with each

generator  j appearing in vT and the result follows from the Specht module relations.

To prove the second part of the lemma, we note that w�1T .i/ < w�1T .i C 1/. This is

easily seen sincew�1T .j / is the number that occupies the same node in T� that j occupies

in T. Hence if si1si2 : : : sir is a reduced expression for wT, then sisi1si2 : : : sir is a reduced

expression for siwT. So  ivT D vU. �

Theorem 3.7. If a and b are both even, then EndH.S�/ is one-dimensional. In particular, S�

is indecomposable.

Proof. Suppose f 2 EndH.S�/. Then by the above remark,

f .z�/ D
X

T2Dom.�/

˛TvT for some ˛T 2 F:

Then by Lemma 3.6, acting on the left by  n�1 annihilates all vT for tableaux T which

do not have Dn�2
2

in their leg. Now, for any T 2 Dom.�/ which does have Dn�2
2

in the
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leg, Lemma 3.6 gives us that  n�1vT D vsn�1T ¤ 0. Since  n�1f .z�/ D 0, we must have

˛T D 0 for all Twhich have Dn�2
2

in the leg.

In this way, we act on f .z�/ by  nC1�2i for i D 1; 2; : : : ; .a� 2/=2, to annihilate all

vT for tableaux Twhich do not haveDn�2i
2

in the leg. At each step, we apply Lemma 3.6

to deduce that ˛T D 0 if T has Dn�2i
2

in the leg.

Therefore f .z�/ D ˛z� for some ˛ 2 F and the result follows. �

Next, we look at the case where a and b are both odd.

Theorem 3.8. If a and b are both odd, then EndH.S�/ is one-dimensional. In particular, S� is

indecomposable.

Proof. The result follows from Theorem 3.7 by application of Theorem 1.41. �

3.4 KLR actions on D when n is odd

When n is odd, much more work must be done. By Theorem 1.41, we can assume

throughout this section that b < n=2.

Using Theorem 3.2, we can focus on the case where a is odd and b is even, as it is

slightly easier to work with. The case where a is even and b is odd will then follow.

Recall that D D fvT j T 2 Dom.�/g is a basis of e.i�/ S�. At this point we introduce

some new notation which is much needed to keep things tidy!

Definition 3.9. We define ‰j WD  j jC1 j�1 j . For 3 6 x 6 y 6 n� 2 two odd

integers, we then define:

‰
y

#
x

WD ‰y‰y�2 : : : ‰x and ‰
y

"
x

WD ‰x‰xC2 : : : ‰y :

If y < x we consider both of the above defined terms to be the identity element of our

field.

Remark. Given some T 2 Dom.�/, let 2d be the number of entries in the leg of T which

differ from the entries in the corresponding nodes of T�. Notice that these will consist

of the final d dominoes in the leg, since T 2 Std.�/.
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Let j 01; : : : ; j
0
d

be the odd numbers (in ascending order) in the d dominoes in the leg

of T which differ from the corresponding entries in T� and define ji WD j 0i � 2 for each

i . For example, if � D .7; 16/ then

T� D 1 8 9 10111213
2
3
4
5
6
7

: Let T D 1 4 5 6 7 1011
2
3
8
9
12
13

:

Then d D 2 and we see that j1 D 7 and j2 D 11.

Now, we can see that vT can be written as the reduced expression

‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

z�:

We will refer to this as the normal form for vT. Notice that jiC1 > ji for all i D 1; : : : ; d �1.

It will be useful to note that if vT 2 D is in our normal form, then any expression obtained

from it by deleting ‰ terms from the left is also an element in D .

Definition 3.10. Let T 2 Dom.�/. We define the length r.T/ of T to be the number of ‰

terms in the normal form of vT.

In the next three results, we examine the actions of the generators of H on the

elements of D .

Lemma 3.11.

e.i�/‰j D ‰j e.i�/ for all j ,

yk‰j D ‰jyk for all k > j C 3 and for all k 6 j � 2,

 k‰j D ‰j k for all k > j C 3 and for all k 6 j � 3.

Proof. Clear from the definition of ‰j and the defining relations. �
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Proposition 3.12. Suppose T 2 Dom.�/. Then

ykvT D 0 for all kI .A/

 kvT D 0 for all even kI .B/

 1vT D 0: .C /

Proof. Let .Ar/ denote the statement that .A/ holds for all T with r.T/ D r , and define

.Br/ similarly. We first prove .Ar/ and .Br/ simultaneously, by induction on r .

First we must show that .A0/ and .B0/ hold. In this case, vT D z� and the defining

relations give our result immediately.

Now, let vT D ‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

z� be in normal form for some d , and define

vT.2/ WD ‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

z�:

We will show that .Ar�1/&.Br�1/) .Ar/. We split our problem into 5 cases:

1. k D j1C 2,

2. k D j1C 1,

3. k D j1,

4. k D j1� 1,

5. All other k.

We can now solve each case quite simply!

1. yj1C2vT D  j1 j1�1.yj1C2 j1C1e.sj1 � i�// j1‰
j1�2

#
bC3�2d

vT.2/

D  j1 j1�1. j1C1yj1C1C 1/ j1‰
j1�2

#
bC3�2d

vT.2/

D ‰j1 yj1‰
j1�2

#
bC3�2d

vT.2/„              ƒ‚              …
D0 by .Ar�1/

C j1 j1�1 j1‰
j1�2

#
bC3�2d

vT.2/



3. Decomposable Specht modules 87

D . j1�1 j1 j1�1�yj1�1C 2yj1 �yj1C1/‰
j1�2

#
bC3�2d

vT.2/

D  j1�1 j1  j1�1‰
j1�2

#
bC3�2d

vT.2/„                  ƒ‚                  …
D0 by .Br�1/

�yj1�1‰
j1�2

#
bC3�2d

vT.2/„                  ƒ‚                  …
D0 by .Ar�1/

C 2 yj1‰
j1�2

#
bC3�2d

vT.2/„              ƒ‚              …
D0 by .Ar�1/

�yj1C1‰
j1�2

#
bC3�2d

vT.2/„                  ƒ‚                  …
D0 by .Ar�1/

D 0:

2. yj1C1vT D .yj1C1 j1e.sj1 � i�// j1C1 j1�1 j1‰
j1�2

#
bC3�2d

vT.2/

D  j1 j1C1.yj1 j1�1e.sj1 � i�// j1‰
j1�2

#
bC3�2d

vT.2/

D  j1 j1C1. j1�1yj1�1C 1/ j1‰
j1�2

#
bC3�2d

vT.2/

D ‰j1 yj1�1‰
j1�2

#
bC3�2d

vT.2/„                  ƒ‚                  …
D0 by .Ar�1/

C j1 j1C1 j1‰
j1�2

#
bC3�2d

vT.2/

D . j1C1 j1 j1C1Cyj1 � 2yj1C1Cyj1C2/‰
j1�2

#
bC3�2d

vT.2/

D 0 by .Ar�1/ and .Br�1/.

3. yj1vT D .yj1 j1e.sj1 � i�// j1C1 j1�1 j1‰
j1�2

#
bC3�2d

vT.2/

D  j1.yj1C1 j1C1e.sj1 � i�// j1�1 j1‰
j1�2

#
bC3�2d

vT.2/

D  j1. j1C1yj1C2� 1/ j1�1 j1‰
j1�2

#
bC3�2d

vT.2/

D ‰j1 yj1C2‰
j1�2

#
bC3�2d

vT.2/„                  ƒ‚                  …
D0 by .Ar�1/

� . j1�1 j1 j1�1�yj1�1C 2yj1 �yj1C1/‰
j1�2

#
bC3�2d

vT.2/

D 0 by .Ar�1/ and .Br�1/.
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4. yj1�1vT D  j1 j1C1.yj1�1 j1�1e.sj1 � i�// j1‰
j1�2

#
bC3�2d

vT.2/

D  j1 j1C1. j1�1yj1 � 1/ j1‰
j1�2

#
bC3�2d

vT.2/

D ‰j1 yj1C1‰
j1�2

#
bC3�2d

vT.2/„                  ƒ‚                  …
D0 by .Ar�1/

� . j1C1 j1 j1C1Cyj1 � 2yj1C1Cyj1C2/‰
j1�2

#
bC3�2d

vT.2/

D 0 by .Ar�1/ and .Br�1/.

5. Now suppose k ¤ j1C 2; j1C 1; j1 or j1� 1. Then

ykvT D ‰j1yk‰
j1�2

#
bC3�2d

vT.2/ by Lemma 3.11

D 0 by .Ar�1/.

Next, we show that .Ar�1/&.Br�1/ ) .Br/. Once again we split this into the

following cases:

1. k D j1C 1,

2. k D j1� 1,

3. All other k.

1.  j1C1vT D . j1C1 j1 j1C1e.sj1 � i�// j1�1 j1‰
j1�2

#
bC3�2d

vT.2/

D  j1 j1C1. j1 j1�1 j1e.i�//‰
j1�2

#
bC3�2d

vT.2/

D  j1 j1C1. j1�1 j1 j1�1�yj1�1C 2yj1 �yj1C1/‰
j1�2

#
bC3�2d

vT.2/

D 0 by .Ar�1/ and .Br�1/.

2.  j1�1vT D . j1�1 j1 j1�1e.sj1 � i�// j1C1 j1‰
j1�2

#
bC3�2d

vT.2/

D  j1 j1�1. j1 j1C1 j1e.i�//‰
j1�2

#
bC3�2d

vT.2/
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D  j1 j1�1. j1C1 j1 j1C1Cyj1 � 2yj1C1Cyj1C2/‰
j1�2

#
bC3�2d

vT.2/

D 0 by .Ar�1/ and .Br�1/.

3. Now suppose k is even but k ¤ j1C 1 or j1� 1. Then

 kvT D ‰j1 k‰
j1�2

#
bC3�2d

vT.2/ by Lemma 3.11

D 0 by .Br�1/.

And so, our results follow.

Now, we prove .C /. If d < b=2, then ‰3 does not occur in vT, and so  1 commutes

with all ‰ terms in vT and the result is clear. So suppose d D b=2. Then vT D ‰
j1

#
3

‰
j2

#
5

: : : ‰
jd

#
bC1

z�. It’s easy to see that

 1 2 : : :  i‰
j.iC2d�bC1/=2

#
iC2

D ‰
j.iC2d�bC1/=2

#
iC4

 iC2 iC3. 1 2 : : :  iC2/:

Applying this for i D 1; 3; : : : ; b� 1 in turn, we obtain

 1vT D ‰
j1

#
5

‰
j2

#
7

: : : ‰
jd

#
bC3

 3 4 : : :  bC2 1 2 : : :  bC1z�;

which is zero in view of the Garnir relation  1 2 : : :  bC1z� D 0. �

Alternative proof. A shorter but less direct proof of .A/ and .B/ can be given using the

grading on H and S�, closely mimicking the proof of [29, Lemma 4.4]. We notice

that every domino tableau has codegree b=2, since each domino in the leg contributes

precisely C1 to the codegree. So e.i�/ S� is homogeneous of degree b=2. Now, ykvT 2

e.i�/ S�, but deg.ykvT/ D deg.yk/Cdeg.vT/ D 2C b=2. Hence ykvT D 0.

Similarly, if k is even,  kvT 2 e.ski�/ S� D 0, since no standard tableau has residue

sequence ski�. To see this, we may build up any standard �-tableau and note that once

we have placed 1; 2; : : : ; k � 1 of residues 0; 1; : : : ; 0 respectively, the next entry must
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have residue 1. �

Lemma 3.13. Suppose j is odd and T 2 Dom.�/. Then

1.  j‰j vT D �2 j vT,

2.  j‰jC2‰j vT D  j vT,

3. ‰j jC2vT D 0,

4.  j‰j�2‰j vT D  j vT,

5. ‰j j�2vT D 0.

Proof.

1.  j‰j e.i�/vT D . 
2
j e.sj � i�// jC1 j�1 j vT

D .�y2j �y
2
jC1C 2yjyjC1/ jC1 j�1 j vT

D � jC1yj .yj j�1e.sj � i�// j vT

�yjC1.yjC1 jC1e.sj � i�// j�1 j vT

C 2yj .yjC1 jC1e.sj � i�// j�1 j vT

D � jC1yj . j�1yj�1C 1/ j vT

�yjC1. jC1yjC2� 1/ j�1 j vT

C 2yj . jC1yjC2� 1/ j�1 j vT

D � jC1yj j vTC j�1yjC1 j vT� 2.yj j�1e.sj � i�// j vT

D � jC1 jyjC1vTC j�1 jyj vT� 2. j�1yj�1C 1/ j vT

D �2 j vT:

2–5. We have

 j‰jC2‰j e.i�/vT D  jC2 jC3. j jC1 j e.sjC2 � sj � i�// jC2 jC1 j�1 j

D  jC2 jC3. jC1 j jC1Cyj � 2yjC1CyjC2/�

 jC2 jC1 j�1 j vT
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D  jC2 jC3 jC1 j . jC1 jC2 jC1e.sj � i�// j�1 j vT

C jC2 jC3 jC2 jC1.yj j�1e.sj � i�// j vT

� 2 jC2 jC3 jC2.yjC1 jC1e.sj � i�// j�1 j vT

C jC2 jC3.yjC2 jC2e.sj � i�// jC1 j�1 j vT

D  jC2 jC3 jC1 j jC2 jC1 jC2 j�1 j vT

C jC2 jC3 jC2 jC1. j�1yj�1C 1/ j vT

� 2 jC2 jC3 jC2. jC1yjC2� 1/ j�1 j vT

C jC2 jC3 jC2yjC3 jC1 j�1 j vT

D ‰jC2‰j jC2vTC jC2 jC3 jC2 jC1 j�1 j yj�1vT„  ƒ‚  …
D0

C . jC2 jC3 jC2e.sj � i�// jC1 j vT

� 2 jC2 jC3 jC2 jC1 j�1 j yjC2vT„  ƒ‚  …
D0

C 2. jC2 jC3 jC2e.sj � i�// j�1 j vT

C jC2 jC3 jC2 jC1 j�1 j yjC3vT„  ƒ‚  …
D0

D ‰jC2‰j jC2vTC . jC3 jC2 jC3CyjC2�2yjC3CyjC4/�

 jC1 j vT

C 2. jC3 jC2 jC3CyjC2� 2yjC3CyjC4/ j�1 j vT

D ‰jC2‰j jC2vTC jC3 jC2 jC1 j  jC3vT„   ƒ‚   …
D0

C .yjC2 jC1e.sj � i�// j vTC 2 jC3 jC2 j�1 j  jC3vT„   ƒ‚   …
D0

D ‰jC2‰j jC2vTC . jC1yjC1C 1/ j vT

D ‰jC2‰j jC2vTC j vTC jC1yjC1 j vT

D ‰jC2‰j jC2vTC j vTC jC1 j yj vT„ƒ‚…
D0

:
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We also have

 j‰j�2‰j e.i�/vT D  j�2 j�3. j j�1 j e.sj�2 � sj � i�// j�2 jC1 j�1 j vT

D  j�2 j�3. j�1 j j�1�yj�1C 2yj �yjC1/�

 j�2 jC1 j�1 j vT

D  j�2 j�3 j�1 j . j�1 j�2 j�1e.sj � i�// jC1 j vT

� j�2 j�3.yj�1 j�2e.sj � i�// jC1 j�1 j vT

C 2 j�2 j�3 j�2 jC1.yj j�1e.sj � i�// j vT

� j�2 j�3 j�2.yjC1 jC1e.sj � i�// j�1 j vT

D  j�2 j�3 j�1 j j�2 j�1 j�2 jC1 j vT

� j�2 j�3 j�2yj�2 jC1 j�1 j vT

C 2 j�2 j�3 j�2 jC1. j�1yj�1C 1/ j vT

� j�2 j�3 j�2. jC1yjC2� 1/ j�1 j vT

D ‰j�2‰j j�2vT� j�2 j�3 j�2 jC1 j�1 j yj�2vT„  ƒ‚  …
D0

C 2. j�2 j�3 j�2e.sj � i�// jC1 j vT

C . j�2 j�3 j�2e.sj � i�// j�1 j vT

D ‰j�2‰j j�2vT

C 2. j�3 j�2 j�3�yj�3C 2yj�2�yj�1/ jC1 j vT

C . j�3 j�2 j�3�yj�3C 2yj�2�yj�1/ j�1 j vT

D ‰j�2‰j j�2vTC 2.0/� .yj�1 j�1e.sj � i�// j vT

D ‰j�2‰j j�2vT� . j�1yj � 1/ j vT

D ‰j�2‰j j�2vT� 0C j vT:

So we have

 j‰jC2‰j vT D  j vTC‰jC2‰j jC2vT .�/

 j‰j�2‰j vT D  j vTC‰j�2‰j j�2vT: .��/
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Now all four statements will follow if we can show that 3 and 5 hold. We will

proceed by proving both simultaneously by induction on r.T/. That is, we will

prove that

‰j jC2vT D 0 for any odd j and r.T/ D r; .Ar/

‰j j�2vT D 0 for any odd j and r.T/ D r; .Br/

by simultaneous induction on r .

First, we prove that .Ar/ follows if .As/ and .Bs/ hold for all s < r .

.A0/ is clearly true. We have ‰j jC2z� D  j jC1 j�1 jC2 j z� D 0 since at

least one of  j ,  jC2 must annihilate z�.

Now let r > 0. Suppose vT D ‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

z� is in normal form and

define vT0 WD ‰
j1�2

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

z�.

If j1 > j C 6 or j1 6 j � 4, then we clearly have ‰j jC2vT D ‰j1‰j jC2vT0 and

our result follows by .Ar�1/. So we break our proof up for the remaining four

possibilities.

(a) Suppose j1 D j C 4. We will write vT.2/ WD ‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

z�. If bC 3�

2d D j C 4 also, we have

‰j jC2vT D ‰j jC2‰jC4vT.2/

D 0;

as we have a  j which commutes with everything to its right, given that the

lowest indexed ‰-term in vT.2/ is ‰jC6.

If bC 3� 2d < j C 4, by .�/ we have

‰j . jC2‰jC4‰jC2/‰
j

#
bC3�2d

vT.2/ D ‰j . jC2C‰jC4‰jC2 jC4/‰
j

#
bC3�2d

vT.2/

D 0 by .As/ for some s < r ,

as ‰
j

#
bC3�2d

vT.2/ 2 D :
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(b) Suppose j1 D j C 2. Then we have

‰j jC2‰jC2vT0 D �2‰j jC2vT0 by part 1,

D 0 by .Ar�1/, as r.T0/ D r � 1.

(c) Suppose j1 D j . Then we have

‰j jC2‰j vT0 D �2‰j jC2vT0 by part 1,

D 0 by .Ar�1/.

(d) Suppose j1 D j � 2. We will write vT.3/ WD ‰
j3

#
bC7�2d

: : : ‰
jd

#
bC1

z�. Here, we must

divide into further subcases.

i. Suppose j2 > j C 4. Then we have

‰j jC2vT D ‰j jC2‰
j�2

#
bC3�2d

‰
j2

#
jC6

‰jC4‰jC2‰
j

#
bC5�2d

vT.3/

D ‰
j2

#
jC6

‰j‰
j�2

#
bC3�2d

. jC2‰jC4‰jC2/‰
j

#
bC5�2d

vT.3/

D ‰
j2

#
jC6

‰j‰
j�2

#
bC3�2d

. jC2C‰jC4‰jC2 jC4/‰
j

#
bC5�2d

vT.3/ by .�/

D ‰
j2

#
jC6

‰j jC2‰
j�2

#
bC3�2d

‰
j

#
bC5�2d

vT.3/ C 0

by .As/ for some s < r , as ‰
j

#
bC5�2d

vT.3/ 2 D ,

D 0 by .As0/ for some s0 < r , as ‰
j�2

#
bC3�2d

‰
j

#
bC5�2d

vT.3/ 2 D .

ii. Suppose j2 D j C 2. Then we have

‰j jC2vT D ‰j jC2‰
j�2

#
bC3�2d

‰jC2‰
j

#
bC5�2d

vT.3/

D ‰j‰
j�2

#
bC3�2d

 jC2‰jC2‰
j

#
bC5�2d

vT.3/

D �2‰j‰
j�2

#
bC3�2d

 jC2‰
j

#
bC5�2d

vT.3/ by part 1,

D �2‰j jC2‰
j�2

#
bC3�2d

‰
j

#
bC5�2d

vT.3/

D 0 by .As/ for some s < r , as ‰
j�2

#
bC3�2d

‰
j

#
bC5�2d

vT.3/ 2 D .
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iii. Suppose j2 D j . Then we have

‰j jC2vT D ‰j jC2‰
j�2

#
bC3�2d

‰j‰
j�2

#
bC5�2d

vT.3/

D  j jC1 j�1 jC2 j�2„                         ƒ‚                         …
DW �

. j j�1 j e.sj�2 � sj � i�//�

 j�3 j�2 jC1 j�1 j ‰
j�4

#
bC3�2d

‰
j�2

#
bC5�2d

vT.3/„                      ƒ‚                      …
DWvT002D

D  �. j�1 j j�1�yj�1C 2yj �yjC1/�

 j�3 j�2 jC1 j�1 j vT00

D  � j�1 j j�3. j�1 j�2 j�1e.sj � i�// jC1 j vT00

� � j�3.yj�1 j�2e.sj � i�// jC1 j�1 j vT00

C 2 � j�3 j�2 jC1.yj j�1e.sj � i�// j vT00

� � j�3 j�2.yjC1 jC1e.sj � i�// j�1 j vT00

D  � j�1 j j�3 j�2 j�1 j�2 jC1 j vT00

� � j�3 j�2yj�2 jC1 j�1 j vT00

C 2 � j�3 j�2 jC1. j�1yj�1C 1/ j vT00

� � j�3 j�2. jC1yjC2� 1/ j�1 j vT00

D  � j�1 j�3 j�2‰j j�2vT00„        ƒ‚        …
D0 by .Br�2/

�0C 0

C 2 j jC1 j�1 jC2„                  ƒ‚                  …
DW �

 j�2 j�3 j�2 jC1 j vT00

� 0C � j�2 j�3 j�2 j�1 j vT00

D 2 �. j�2 j�3 j�2e.sj � i�// jC1 j vT00

C �. j�2 j�3 j�2e.sj � i�// j�1 j vT00

D 2 �. j�3 j�2 j�3�yj�3C 2yj�2�yj�1/ jC1 j vT00

C �. j�3 j�2 j�3�yj�3C 2yj�2�yj�1/ j�1 j vT00

D 2 � j�3 j�2 jC1 j  j�3vT00„    ƒ‚    …
D0 as j�3 is even

�0C 0� 0
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C � j�3 j�2 j�1 j  j�3vT00„    ƒ‚    …
D0

�0C 0

� �.yj�1 j�1e.sj � i�// j vT00

D � �. j�1yj � 1/ j vT00

D � � j�1 jyjC1vT00 C 
� j vT00

D �0C‰j jC2vT00 :„         ƒ‚         …
D0 by .Ar�2/

Next, we show that .Br/ follows if .As/ and .Bs/ hold for all s < r .

For .B0/, we have ‰j j�2z� D  j jC1 j�1 j�2 j z� D 0 as at least one of  j ,

 j�2 must annihilate z�.

Now suppose r > 0.

If j1 > j C 4 or j1 6 j � 6, then we clearly have ‰j j�2vT D ‰j1‰j j�2vT0

and our result follows from .Br�1/. Once again, we break the proof up for the

remaining four possible values of j1.

(a) Suppose j1 D j C 2. If bC 3� 2d D j C 2 then we have

‰j j�2vT D ‰j j�2‰jC2vT.2/

D 0

as j�2 commutes with everything to its right, since the lowest indexed term

in vT.2/ is ‰jC4.

If bC 3� 2d 6 j , we have

‰j j�2vT D ‰j j�2‰jC2‰j‰
j�2

#
bC3�2d

vT.2/

D  j jC1 j�1 j�2 jC2 jC3„                                 ƒ‚                                 …
DW �

. j jC1 j e.sjC2 � sj � i�//�

 jC2 jC1 j�1 j‰
j�2

#
bC3�2d

vT.2/
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D  �. jC1 j jC1Cyj � 2yjC1CyjC2/�

 jC2 jC1 j�1 j‰
j�2

#
bC3�2d

vT.2/

D  � jC1 j . jC1 jC2 jC1e.sj � i�// j�1 j‰
j�2

#
bC3�2d

vT.2/

C � jC2 jC1.yj j�1e.sj � i�// j‰
j�2

#
bC3�2d

vT.2/

� 2 � jC2.yjC1 jC1e.sj � i�// j�1 j‰
j�2

#
bC3�2d

vT.2/

C �.yjC2 jC2e.sj � i�// jC1 j�1 j‰
j�2

#
bC3�2d

vT.2/

D  � jC1 j jC2 jC1 jC2 j�1 j‰
j�2

#
bC3�2d

vT.2/

C � jC2 jC1. j�1yj�1C 1/ j‰
j�2

#
bC3�2d

vT.2/

� 2 � jC2. jC1yjC2� 1/ j�1 j‰
j�2

#
bC3�2d

vT.2/

C � jC2yjC3 jC1 j�1 j‰
j�2

#
bC3�2d

vT.2/

D  � jC1 jC2‰j jC2‰
j�2

#
bC3�2d

vT.2/„                      ƒ‚                      …
D0 by .Ar�2/

C 0C j jC1 j�1 j�2. jC2 jC3 jC2e.sj � i�//�

 jC1 j‰
j�2

#
bC3�2d

vT.2/

� 0C 2 j jC1 j�1 j�2. jC2 jC3 jC2e.sj � i�//�

 j�1 j‰
j�2

#
bC3�2d

vT.2/ C 0

D . j jC1 j�1 j�2. jC3 jC2 jC3CyjC2�2yjC3CyjC4/ jC1

C 2 j jC1 j�1 j�2. jC3 jC2 jC3CyjC2� 2yjC3CyjC4/�

 j�1 j‰
j�2

#
bC3�2d

vT.2/

D 0C j jC1 j�1 j�2.yjC2 jC1e.sj � i�// j‰
j�2

#
bC3�2d

vT.2/

� 0C 0C 0C 0� 0C 0
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D  j jC1 j�1 j�2. jC1yjC1C 1/ j‰
j�2

#
bC3�2d

vT.2/

D 0C‰j j�2‰
j�2

#
bC3�2d

vT.2/

D 0 by .Br�2/.

(b) Suppose j1 D j . Then we have

‰j j�2vT D �2‰j j�2vT0 by part 1,

D 0 by .Bs�1/:

(c) Suppose j1 D j � 2. Then we have

‰j j�2vT D �2‰j j�2vT0 by part 1,

D 0 by .Br�1/:

(d) Suppose j1 D j � 4. We divide into subcases.

i. Suppose j2 > j C 2. Then we have

‰j j�2vT D ‰j j�2‰j�4‰
j�6

#
bC3�2d

‰
j2

#
jC4

‰jC2‰j‰
j�2

#
bC5�2d

vT.3/

D  j jC1 j�1 j�2‰j�4‰
j�6

#
bC3�2d

‰
j2

#
jC4

. j‰jC2‰j /‰
j�2

#
bC5�2d

vT.3/

D  j jC1 j�1 j�2‰j�4‰
j�6

#
bC3�2d

‰
j2

#
jC4

. j C‰jC2‰j jC2/�

‰
j�2

#
bC5�2d

vT.3/ by .�/,

D ‰j j�2‰
j�4

#
bC3�2d

‰
j2

#
jC4

‰
j�2

#
bC5�2d

vT.3/

C 0 by .As/ for some s < r , as ‰
j�2

#
bC5�2d

vT.3/ 2 D ,

D 0 by .Bs0/ for some s0 < r , as ‰
j�4

#
bC3�2d

‰
j2

#
jC4

‰
j�2

#
bC5�2d

vT.3/ 2 D .

ii. Suppose j2 D j . Then we have

‰j j�2vT D ‰j j�2‰
j�4

#
bC3�2d

‰j‰
j�2

#
bC5�2d

vT.3/

D �2‰j j�2‰
j�4

#
bC3�2d

‰
j�2

#
bC5�2d

vT.3/ by part 1,
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D 0 by .Br�1/, as ‰
j�4

#
bC3�2d

‰
j�2

#
bC5�2d

vT.3/ 2 D .

iii. Suppose j2 D j � 2. Then we have

‰j j�2vT D ‰j j�2‰j�4‰j�2‰
j�6

#
bC3�2d

‰
j�4

#
bC5�2d

vT.3/„                      ƒ‚                      …
DWvT00

D ‰j j�4 j�5. j�2 j�3 j�2e.sj�4 � sj�2 � i�//�

 j�4 j�1 j�3 j�2vT00

D ‰j j�4 j�5. j�3 j�2 j�3�yj�3C 2yj�2�yj�1/�

 j�4 j�1 j�3 j�2vT00

D ‰j j�4 j�5 j�3 j�2. j�3 j�4 j�3e.sj�2 � i�//�

 j�1 j�2vT00

�‰j j�4 j�5.yj�3 j�4e.sj�2 � i�// j�1 j�3 j�2vT00

C 2‰j j�4 j�5 j�4 j�1.yj�2 j�3e.sj�2 � i�// j�2vT00

�‰j j�4 j�5 j�4.yj�1 j�1e.sj�2 � i�// j�3 j�2vT00

D ‰j j�4 j�5 j�3 j�2 j�4 j�3 j�4 j�1 j�2vT00

�‰j j�4 j�5 j�4yj�4 j�1 j�3 j�2vT00

C 2‰j j�4 j�5 j�4 j�1. j�3yj�3C 1/ j�2vT00

�‰j j�4 j�5 j�4. j�1yj � 1/ j�3 j�2vT00

D ‰j j�4 j�5 j�3 j�4‰j�2 j�4vT00„           ƒ‚           …
D0 by .Br�2/

�0

C 0C 2‰j . j�4 j�5 j�4e.sj�2 � i�// j�1 j�2vT00

� 0C‰j . j�4 j�5 j�4e.sj�2 � i�// j�3 j�2vT00

D 2‰j . j�5 j�4 j�5�yj�5C 2yj�4�yj�3/ j�1 j�2vT00

C‰j . j�5 j�4 j�5�yj�5C 2yj�4�yj�3/ j�3 j�2vT00

D 0� 0C 0� 0C 0� 0C 0�‰j .yj�3 j�3e.sj�2 � i�// j�2vT00

D �‰j . j�3yj�2� 1/ j�2vT00
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D 0C‰j j�2vT00

D 0 by .Br�2/:

Note that both inductive steps are possible because vT00 2 D .

This completes our proof of statements 2–5. �

In the next two results, we are concerned with how the Garnir element 1 2 : : :  bC1

acts on elements of D .

Lemma 3.14. Suppose j is odd with 3 6 j 6 n� 2, and T 2 Dom.�/. Then

1. For all odd n� 2 > i > j C 4,  1 2 : : :  j‰ivT D ‰i 1 2 : : :  j vT.

2.  1 2 : : :  j‰jC2vT D  jC2 jC3 1 2 : : :  jC2vT.

3.  1 2 : : :  j‰j vT D �2 1 2 : : :  j vT.

4.  1 2 : : :  j‰j�2vT D ‰j�1 1 2 : : :  j vTC j j�1 1 2 : : :  j�2vT.

5. For all odd 3 6 i 6 j � 4,

 1 2 : : :  j‰ivT D ‰iC1 1 2 : : :  j vTC iC2 iC1 iC3 iC4 : : :  j 1 2 : : :  ivT:

Proof. 1 and 2 follow immediately from definitions and the commuting relations be-

tween  generators. 3 follows immediately from Lemma 3.13. So only statements 4

and 5 require any real work!

4.  1 2 : : :  j‰j�2vT D  1 2 : : :  j�4„            ƒ‚            …
DW �

 j�3. j�2 j�1 j�2e.sj � sj�2 � i�//�

 j j�1 j�3 j�2vT

D  � j�3. j�1 j�2 j�1Cyj�2� 2yj�1Cyj /�

 j j�1 j�3 j�2vT

D  j�1 
� j�3 j�2. j�1 j j�1e.sj�2 � i�// j�3 j�2vT
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C j j�1 
� j�3.yj�2 j�3e.sj�2 � i�// j�2vT

� 2 j 
� j�3.yj�1 j�1e.sj�2 � i�// j�3 j�2vT

C � j�3.yj j e.sj�2 � i�// j�1 j�3 j�2vT

D  j�1 
� j�3 j�2. j j�1 j / j�3 j�2vT

C j j�1 
� j�3. j�3yj�3C 1/ j�2vT

� 2 j 
� j�3. j�1yj � 1/ j�3 j�2vT

C � j�3. jyjC1/ j�1 j�3 j�2vT

D  j�1 j 
�. j�3 j�2 j�3e.sj�1 � sj � sj�2 � i�//�

 j�1 j j�2vT

C 0C j j�1 
� j�3 j�2vT

� 0C 2 j 
�. 2j�3e.sj�2 � i�// j�2vTC 0

D  j�1 j 
�. j�2 j�3 j�2/ j�1 j j�2vT

C j j�1 
� j�3 j�2vTC 0

D  j�1 j j�2 
� j�3. j�2 j�1 j�2e.sj � i�// j vT

C j j�1 
� j�3 j�2vT

D  j�1 j j�2 
� j�3. j�1 j�2 j�1/ j vT

C j j�1 
� j�3 j�2vT

D ‰j�1 
� j�3 j�2 j�1 j vTC j j�1 

� j�3 j�2vT:

5. Let i be odd and 4 6 i 6 j � 4. Then

 1 2 : : :  j‰ivT D  1 2 : : :  i�2„           ƒ‚           …
 �

 i�1 i iC1 iC2‰i iC3  iC4 : : :  j„        ƒ‚        …
 �

vT

D  � i�1. i iC1 ie.siC2 � si � siC4 � siC6 � � � sj � i�//�

 iC2 iC1 i�1 i iC3 
�vT

D  � i�1. iC1 i iC1Cyi � 2yiC1CyiC2/�
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 iC2 iC1 i�1 i iC3 
�vT

D  iC1 � i�1 i . iC1 iC2 iC1e.si � siC4 � siC6 � � � sj � i�//�

 i�1 i iC3 
�vT

C iC2 iC1 � i�1.yi i�1e.si � siC4 � siC6 � � � sj � i�//�

 i iC3 
�vT

� 2 iC2 � i�1.yiC1 iC1e.si � siC4 � siC6 � � � sj � i�//�

 i�1 i iC3 
�vT

C � i�1.yiC2 iC2e.si � siC4 � siC6 � � � sj � i�//�

 iC1 i�1 i iC3 
�vT

D  iC1 � i�1 i . iC2 iC1 iC2/ i�1 i iC3 
�vT

C iC2 iC1 � i�1. i�1yi�1C 1/ i iC3 
�vT

� 2 iC2 � i�1. iC1yiC2� 1/ i�1 i iC3 
�vT

C � i�1. iC2yiC3/ iC1 i�1 i iC3 
�vT

D  iC1 iC2 �. i�1 i i�1e.siC1 � siC2 � si � siC4 � � � sj � i�//�

 iC1 iC2 i iC3 
�vTC 0C iC2 iC1 � i�1 i iC3 

�vT

� 0C 2 iC2 �. 
2
i�1e.si � siC4 � siC6 � � � sj � i�// i iC3 

�vT

C iC2 iC1 �. 
2
i�1e.si � siC4 � siC6 � � � sj � i�// iyiC3 iC3 

�vT

D  iC1 iC2 �. i i�1 i / iC1 iC2 i iC3 
�vT

C iC2 iC1 iC3 
� � i�1 ivTC 0C 0

D  iC1 iC2 i � i�1. i iC1 ie.siC2 � siC4 � � � sj � i�//�

 iC2 iC3 
�vTC iC2 iC1 iC3 

� � i�1 ivT

D  iC1 iC2 i � i�1. iC1 i iC1/ iC2 iC3 
�vT

C iC2 iC1 iC3 
� � i�1 ivT

D ‰iC1 � i�1 i iC1 iC2 iC3 
�vT

C iC2 iC1 iC3 
� � i�1 ivT: �
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Proposition 3.15. Let T 2 Dom.�/. Then  1 2 : : :  bC1vT D 0.

Proof. Repeated application of the above lemma yields  1 2 : : :  bC1vT as a sum of

expressions ending in  1 2 : : :  j z� for various odd values of j > 3. In all cases the

relations of the Specht module give us our result. �

Having determined the actions of most relators in the presentation of S� on each

element of D , it remains to calculate the actions of the generators j when 3 6 j 6 n�2

and j is odd. The rest of this section is devoted to this endeavour. Note that in order

to prove the main result of the chapter, the contents of the rest of this section are not

necessary, and were thus omitted from [43]. However, to calculate endomorphisms for

S� (and in particular, to find the endomorphism given in Proposition 3.30) we originally

computed the remaining actions, which is why we include them in this thesis.

We begin by looking at when basis vectors vT 2 D have reduced expressions in

which certain terms ‰j appear on the left.

Lemma 3.16. Let T 2 Dom.�/. Then

1. vT has a reduced expression with ‰j on the left (cf. Lemma 3.13 (1)) if and only if T has

Œj � 1; j � in the arm and Œj C 1; j C 2� in the leg.

2. vT has a reduced expression with ‰jC2‰j on the left (cf. Lemma 3.13 (2)) if and only if

T has Œj � 1; j � and Œj C 1; j C 2� in the arm and Œj C 3; j C 4� in the leg.

3. vT has a reduced expression with ‰j�2‰j on the left (cf. Lemma 3.13 (4)) if and only if

T has Œj � 3; j � 2� in the arm and Œj � 1; j � and Œj C 1; j C 2� in the leg.

Proof. 1. First, suppose that‰j can be moved to the left of some reduced expression

for vT using the commuting braid relations only. Then in the normal form for vT

we must have only terms ‰k with k 6 j � 4 or k > j C 4 appearing further left

than ‰j in the expression. ‰j corresponds to putting the domino Œj C 1; j C 2� in

the leg of T by transposing it with Œj � 1; j �, which moves to the arm. Since, by

our hypothesis, ‰jC2 cannot appear to the left of ‰j , Œj C 1; j C 2� must remain



104 3.4. KLR actions on D when n is odd

in the leg and any ‰k terms to the left of ‰j correspond to placing the dominoes

higher up the leg. Therefore we have k 6 j �2. But since we can’t have k D j �2,

again by our hypothesis, we must have k 6 j � 4. And so, Œj � 1; j � stays in the

arm of T.

Conversely, suppose we have Œj �1; j � in the arm of T and Œj C1; j C2� in the leg.

Then the normal form for vT has a ‰j which places the domino Œj C 1; j C 2� in

the leg, and all ‰k terms to the left of this place the dominoes higher in the leg.

Since Œj � 1; j � does not appear in the leg of T, and since T must be standard, we

know that these terms all have k 6 j � 4. Our result follows immediately.

2.& 3. These both follow by applying part 1 twice. �

Corollary 3.17. Let j be odd and suppose that T 2 Dom.�/ with corresponding vT 2 D . Then

1. Suppose T has the dominoes Œj � 1; j � and Œj C 1; j C 2� in the arm and Œj C 3; j C 4�

in the leg, and let S be the standard �-tableau which agrees with T outside of these three

dominoes, but has them permuted so that the domino Œj � 1; j � lies in the leg (note that

S P T). Then  j vT D  j vS.

2. Suppose T has the domino Œj � 3; j � 2� in the arm and the dominoes Œj � 1; j � and

Œj C 1; j C 2� in the leg, and let S be the standard �-tableau which agrees with T outside

of these three dominoes, but has them permuted so that the domino Œj C 1; j C 2� lies in

the arm (note that S P T). Then  j vT D  j vS.

Proof. The result follows immediately from Lemmas 3.13 and 3.16. �

We now have some concrete actions of the j on our elements of D . However, these

actions do not necessarily give us a reduced form for  j vT. In fact, it isn’t even clear

when these may be zero! These are the problems we seek to tackle next.

Lemma 3.18. Let T 2 Dom.�/with corresponding vT 2 D and let 3 6 j 6 n�2 be odd. Then

T satisfies precisely one of the following four conditions with respect to j :

1. The domino Œj � 1; j � is in the arm of T but Œj C 1; j C 2� is in the leg.
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2. The dominoes Œj � 1; j � and Œj C 1; j C 2� are in the arm of T.

3. The domino Œj � 1; j � is in the leg of T but Œj C 1; j C 2� is in the arm.

4. The dominoes Œj � 1; j � and Œj C 1; j C 2� are in the leg of T.

Proof. Clear. �

We must now work towards computing the  j actions on tableaux vT 2 D in each

case of the above proposition. First we will look at case 2. That is, we want a reduced

expression for  j vT when the dominoes Œj � 1; j �, Œj C 1; j C 2� and Œj C 3; j C 4� all

appear in the arm of T (otherwise we appeal to Corollary 3.17 (1)). We begin by

dismissing the “degenerate” situation – if vT only involves terms ‰k for k 6 j � 4 (a

trivial example being when T D T�) then clearly  j vT D 0. Likewise we may assume

j ¤ n� 2, as it does not make sense to talk about the domino Œj C 3; j C 4� here; the

case j D n� 2 is easily dealt with in Proposition 3.27 (2).

Suppose we have‰j appearing in the sequence‰
j`

#
k`

for some ` but not any sequences

further left in the normal form of vT. Note that when ` D 1, we have the sequence of

dominoes Œ2; 3�; Œ4; 5�; : : : ; Œj C r �1; j C r� in the arm of T for r > 4 if k1 D 3. Otherwise,

the domino Œk1� 3; k1� 2� is in the leg.

Furthermore, in the sequence ‰
j1

#
k1

: : : ‰
j`�1

#
k`�1

all ‰ terms have subscript at most j � 4,

as Œj � 1; j � is in the arm. This tells us that  j commutes with all of these terms, so we

will introduce the notation‰� WD ‰
j1

#
k1

: : : ‰
j`�1

#
k`�1

for the duration of solving of our case 2.

Lemma 3.19. Let vT 2 D have normal form vT D ‰
j1

#
k1

: : : ‰
jd

#
kd

z�, for d > 1. Suppose

j 2 f3; : : : ; n�2g is odd and suppose ` is minimal such thatk` 6 j 6 j`. Then j`Ci�1 > 4iCj

for all i D 1; 2; : : : ; d � `C 1 if and only if we have  j vT D 0.

Proof. We shall first prove the only if part of the lemma. First note immediately that

our condition implies r > 4, so this part of the lemma always applies to tableaux of the

form we are interested in. We will prove it by induction on d � `C 1. If d � `C 1 D 1
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(that is, d D `), we have only the condition r > 4, so

 j vT D  j‰
�‰

j`

#
jC6

‰jC4‰jC2‰j‰
j�2

#
k`

z�

D  j‰
�‰

j`

#
jC6

‰jC4‰
j�2

#
k`

z� by Lemma 3.13 (2)

D  j‰
�‰

j`

#
jC6

‰
j�2

#
k`

‰jC4z�

D 0:

Note‰
j`

#
jC6

and‰
j�2

#
k`

may be empty, but our condition guarantees that we have‰jC4

there to give our zero.

Now suppose we have vT D ‰
j1

#
k1

: : : ‰
jd

#
kd

z� for some d > `, with the hypothesised

conditions on vT. Then from our base case we have

 j vT D  j‰
�‰

j`

#
jC6

‰
j�2

#
k`

‰jC4‰
j`C1

#
k`C1

: : : ‰
jd

#
kd

z�:

Now k` 6 j 6 j` implies that k`C1 6 j C 4 6 j`C1, so in order to complete our

induction we need to show that j`Ci > 4i C .j C 4/ for i D 1; 2; : : : ; d � `. But this

follows immediately from our conditions on vT.

Conversely, let t be minimal such that j`Ct�1 < 4t C j . If t D 1 we have r 6 2, so

only have the cases r D 0 and r D 2 to consider. But these are both dealt with using

Lemma 3.16 and Corollary 3.17; we see in both cases that  j vT ¤ 0, and we are done.

Now suppose t > 1. By minimality of t we have j`Ct�2 > 4t � 4C j and so

j`Ct�1 > j`Ct�2C 2 > 4t � 2C j . So we in fact have j`Ct�1 D 4t � 2C j .

Claim. For each 1 6 i 6 t � 1,

 j vT D  j‰
�

 
‰
j�2

#
k`

‰
j`

#
k`C1

‰
j`C1

#
k`C2

: : : ‰
j`Ci�2

#
k`Ci�1

!
‰
j`Ci�1

#
4iCj

‰
j`Ci

#
k`Ci

: : : ‰
jd

#
kd

z�:

Proof. We prove the claim by induction on i . When i D 1 we have already seen

that  j vT D  j‰�‰
j�2

#
k`

‰
j`

#
jC4

‰
j`C1

#
k`C1

: : : ‰
jd

#
kd

z�, as claimed.
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Now suppose, by induction, that we have

 j vT D  j‰
�

 
‰
j�2

#
k`

‰
j`

#
k`C1

‰
j`C1

#
k`C2

: : : ‰
j`Ci�3

#
k`Ci�2

!
‰
j`Ci�2

#
4iCj�4

‰
j`Ci�1

#
k`Ci�1

: : : ‰
jd

#
kd

z�:

As i 6 t � 1 we have j`Ci�1 > 4i C j and so

‰
j`Ci�2

#
4iCj�4

‰
j`Ci�1

#
k`Ci�1

: : : ‰
jd

#
kd

z� D ‰
j`Ci�1

#
4iCj

‰
j`Ci�2

#
4iCj�4

‰4iCj�2‰4iCj�4‰
4iCj�6

#
k`Ci�1

�‰
j`Ci

#
k`Ci

: : : ‰
jd

#
kd

z�

D ‰
j`Ci�1

#
4iCj

‰
j`Ci�2

#
4iCj�4

‰
4iCj�6

#
k`Ci�1

‰
j`Ci

#
k`Ci

: : : ‰
jd

#
kd

z�

D ‰
j`Ci�2

#
k`Ci�1

‰
j`Ci�1

#
4iCj

‰
j`Ci

#
k`Ci

: : : ‰
jd

#
kd

z�:

Now, using the above claim,

 j vT D  j‰
�

 
‰
j�2

#
k`

‰
j`

#
k`C1

‰
j`C1

#
k`C2

: : : ‰
j`Ct�3

#
k`t�2

!
‰
j`Ct�2

#
4tCj�4

�‰
j`Ct�1

#
k`Ct�1

: : : ‰
jd

#
kd

z� by our claim

D  j‰
�‰

j�2

#
k`

‰
j`

#
k`C1

‰
j`C1

#
k`C2

: : : ‰
j`Ct�3

#
k`Ct�2

‰
j`Ct�2

#
k`Ct�1

‰
j`Ct

#
k`Ct

: : : ‰
jd

#
kd

z�

as j`Ct�1 D 4t � 2C j .

We can easily see that this final term is in our normal form, and is therefore a reduced

expression (and, in particular, non-zero). �
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Definition 3.20. Suppose

T D 1 � � � j�1 j x1 y1 � � � xt yt � � �

:
:
:

j`C1

j`C2
:
:
:

jsC1

jsC2

js0C1

js0C2
:
:
:

jdC1

jdC2

where the section of the arm Œj � 1; j �; Œx1; y1�; : : : ; Œxt ; yt � contains t C 1 dominoes and

the section of the leg Œj`C 1; j`C 2�; : : : ; Œjs0 C 1; js0 C 2� contains t dominoes. Here we

have s D `C t � 2 and s0 D sC 1 for neatness. Then we define .T/t;j to be the standard

�-tableau obtained from T by moving the domino Œjs0 C 1; js0 C 2� to the arm and the

domino Œj � 1; j � to the leg; this can be seen as cyclically permuting the above 2t C 1

dominoes “anticlockwise” by one space but keeping all other entries the same as T.

That is,

.T/t;j D 1 � � � x1 y1 � � � xt yt js0C1 js0C2 � � �

:
:
:

j�1

j

j`C1

j`C2
:
:
:

jsC1

jsC2
:
:
:

jdC1

jdC2

with all omitted entries as in T.
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Example. Let � D .7; 18/ and j D 5. If

T D

1 4 5 6 7 8 9
2
3
10
11
12
13
14
15

and t D 2 then .T/2;5 D

1 6 7 8 9 1213
2
3
4
5
10
11
14
15

:

Note that in this example vT D ‰
9

#
5

‰
11

#
7

‰
13

#
9

z� and v.T/2;5 D ‰
9

#
7

‰
13

#
9

z�.

Corollary 3.21. Suppose T 2 Dom.�/ and the dominoes Œj � 1; j �; Œj C 1; j C 2� and Œj C

3; j C 4� are all in the arm of T. Let vT D ‰
j1

#
k1

: : : ‰
jd

#
kd

z�. That is, for some ` the arm of T

has dominoes Œk`�1; k`�; Œk`C1; k`C2�; : : : ; Œj �1; j �; Œj C1; j C2�; : : : ; Œj C r �1; j C r�,

where r > 4 and if k` ¤ 3 the domino Œk`� 3; k`� 2� is in the leg of T. Suppose  j vT ¤ 0 and

let t be minimal such that j`Ct�1 < 4t C j . Then  j vT D  j v.T/t;j , which is in reduced form.

Remark. Note that, as we saw in the proof of Lemma 3.19, our minimality condition on

t ensures .js0 D/j`Ct�1 D 4t � 2C j .

Also, since the corollary is telling us that  j v.T/t;j is in reduced form, we know that

y2 > j C r . If not, the rotation action would be moving the domino Œjs0 C 1; js0 C 2�

somewhere into the middle of the sequence Œj � 1; j �; : : : ; Œj C r � 1; j C r�. But j C r D

j` 6 js0 < js0 C 2, so .T/t;j would not be standard, and therefore our corresponding

.vT/
t would not be in reduced form.

Finally, note that for tableaux of the case 2 form but with Œj C 3; j C 4� is in the leg,

our result agrees with this lemma, with t D 1.

Proof. From the proof of Lemma 3.19 we have

 j .vT/ D  j‰
�‰

j�2

#
k`

‰
j`

#
k`C1

‰
j`C1

#
k`C2

: : : ‰
j`Ct�3

#
k`Ct�2

‰
j`Ct�2

#
k`Ct�1

‰
j`Ct

#
k`Ct

: : : ‰
jd

#
kd

z�

which is in reduced form. But this is precisely the result we need. To see why t C 1

of the dominoes in the arm are changed, we notice that the dominoes moved are all



110 3.4. KLR actions on D when n is odd

dominoes from Œj � 1; j � to Œj`Ct�1C 1; j`Ct�1C 2� D Œj C 4t � 1; j C 4t�. There are in

total 2t C 1 of these dominoes, and t of them are in the leg. �

Next, we look at the final remaining unsolved case, case 4 from Lemma 3.18. This

time we are interested in finding a reduced expression for  j vT, when the dominoes

Œj � 3; j � 2�; Œj � 1; j � and Œj C 1; j C 2� all appear in the leg of T, else we may appeal

to Corollary 3.17 (2). Again, we begin by dismissing the “degenerate” case – if vT only

involves terms ‰k for k > j C 4 (once again, T D T� is a trivial example of this) then

clearly  j vT D 0. We may assume j ¤ 3, where it does not make sense to consider the

domino Œj � 3; j � 2�; the case j D 3 is easily dealt with in Proposition 3.27 (4).

Definition 3.22. Let T 2 Dom.�/. Then vT can be written in the following form, which

we will call reverse normal form, or RNF:

vT D ‰
k1

"
j1

‰
k2

"
j2

: : : ‰
kd

"
jd

z�

with jiC1 < ji and kiC1 D ki � 2 for all i D 1; 2; : : : ; d . Once again, kd D bC 1.

Remark. The existence of the RNF of vT can be realised as placing dominoes in the arm

of T, as opposed to our normal form which acted to place the dominoes in the leg.

Explicitly, the RNF is placing the dominoes Œjd � 1; jd �; Œjd�1 � 1; jd�1�; : : : ; Œj1 � 1; j1�

at the start of the arm, while any further dominoes the same as in T� obviously do not

have any impact on the expression.

Suppose ` is minimal such that ‰j appears in the sequence ‰
k`

"
j`

in the RNF of vT.

Having the dominoes Œj � 3; j � 2�; Œj � 1; j � and Œj C 1; j C 2� in the leg of T is then

equivalent to the conditions j` 6 j � 4 and k` > j . Then we have

Lemma 3.23. Let vT 2 D have RNF vT D ‰
k1

"
j1

‰
k2

"
j2

: : : ‰
kd

"
jd

z�, for d > 1, with j` 6 j � 4 and

k` > j . Then j`Ci�1 6 j � 4i for all i D 1; 2; : : : ; d � `C 1 if and only if  j vT D 0.

Proof. With some minor tweaking of notation and indices, the proof follows the proof

of Lemma 3.19 almost identically. �
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Definition 3.24. Suppose

T D 1 jd�1 jd � � � xt yt js0�1 js0 js�1 js � � � j`�1 j` � � �

:
:
:

x1

y1
:
:
:

j�1

j

jC1

jC2
:
:
:

where the section of the leg Œx1; y1�; : : : ; Œj � 1; j �; Œj C 1; j C 2� contains t C 1 dominoes

and the section of the arm Œjs0 � 1; js0 �; Œjs � 1; js�; : : : ; Œj` � 1; j`� contains t dominoes.

Here, as in Definition 3.20 we have s D `C t � 2 and s0 D sC 1 for neatness. Then

we define .T/t;j
�

to be the standard �-tableau obtained from T by moving the domino

Œj C 1; j C 2� to the arm and the domino Œjs0 � 1; js0 � to the leg; this can be seen as

cyclically permuting these 2t C 1 dominoes “anticlockwise” by one space but keeping

all other entries the same as they are in T. That is,

.T/t;j
�

D 1 jd�1 jd � � � xt yt js�1 js � � � j`�1 j` jC1 jC2 � � �

:
:
:

js0�1

js0

x1

y1
:
:
:

j�1

j
:
:
:

with all omitted entries as in T.
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Example. Let � D .7; 18/ and j D 13. If

T D

1 4 5 6 7 8 9
2
3
10
11
12
13
14
15

and t D 2 then .T/2;13
�

D

1 4 5 8 9 1415
2
3
6
7
10
11
12
13

:

Note that in this example vT D ‰
9

#
5

‰
11

#
7

‰
13

#
9

z� D ‰
13

"
9

‰
11

"
7

‰
9

"
5

z� and v.T/2;13� D ‰
11

"
9

‰
9

"
5

z�.

Corollary 3.25. Suppose T 2 Dom.�/ and the dominoes Œj � 3; j � 2�; Œj � 1; j � and Œj C

1; j C 2� are all in the leg of T. Let vT D ‰
k1

"
j1

: : : ‰
kd

"
jd

z�. That is, for some x the leg of T

has consecutive dominoes Œx; xC 1�; ŒxC 2; xC 3�; : : : ; Œj � 3; j � 2�; Œj � 1; j �; : : : ; Œj C r �

1; j C r�, where r > 2. Suppose  j vT ¤ 0 and let t be minimal such that j`Ct�1 > j � 4t .

Then  j vT D  j v.T/t;j� , which is in reduced form.

Proof. Analogously to Corollary 3.21, this follows immediately from Lemma 3.23. �

Remark. For a given tableau T in the form of Lemma 3.18 (2) or Lemma 3.18 (4), we

have an equivalent way of calculating directly from T exactly when a certain  j acts

on vT to give zero or a “rotation” as in Definition 3.20 or Definition 3.24, and what

t should be for the latter. Suppose T has the dominoes Œj � 1; j �; Œj C 1; j C 2� and

Œj C 3; j C 4� in the arm, and we wish to act on vT by  j . Examine, the dominoes

containing j; j C 2; j C 4; : : : in the natural order. Count how many are in the arm and

how many are in the leg as we go along. If at any stage we have counted tC1 dominoes

in the arm and t in the leg, for some t , we stop. We have found the t in Corollary 3.21

and we can perform the corresponding rotation. If we reach the final domino (that is,

the domino Œn� 1; n�) without ever satisfying this condition,  j vT D 0.

In the case of Lemma 3.18 (4), we have an analogous algorithm. Suppose we have

a tableau T with the dominoes Œj � 3; j � 2�; Œj � 1; j � and Œj C 1; j C 2� in the leg. This

time, we count the dominoes containing j C 2; j; j � 2; : : : and stop if at some stage we
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have counted t C 1 dominoes in the leg and t dominoes in the arm. This gives us the t

seen in Corollary 3.25 and we can find the necessary tableau. If we reach the domino

Œ2; 3� and our condition has not been satisfied at any point, we once again have 0.

Proposition 3.26. The algorithms in the previous remarks yield the correct reduced form for

 j vT.

Proof. We prove this for the first algorithm; the second may be proved analogously.

Our proof is mainly just a translation between the language of the algorithm and the

language of Corollary 3.21. Let ` be minimal such that k` 6 j 6 j`; equivalently, the

first domino in the leg our algorithm counts is Œj`C 1; j`C 2�. Note that for each i , we

have that Œj`Ci�1C 1; j`Ci�1C 2� is the i th domino we count in the leg. When counting

the i th leg domino during the running of our algorithm, we must have counted at least

i C 2 arm dominoes, else the algorithm would terminate. Therefore we have, in total,

counted at least 2iC2 dominoes, starting with Œj �1; j � and thus j`Ci�1 > j C4i . If our

algorithm gets to the final domino without ever satisfying the condition that we have

counted one more domino in the arm than in the leg, it is clear that this inequality holds

for all i and Lemma 3.19 tells us that  j vT D 0. Otherwise, counting the t th domino in

the leg, where t satisfies the desired property, we have counted exactly 2tC1 dominoes,

and therefore j`Ct�1 D j C 4t � 2. Appealing to Corollary 3.21 completes the proof.

Note that when t D 1, this agrees with Corollary 3.17. �

In particular the following proposition gives actions of  j on vT in each case of

Lemma 3.18.

Proposition 3.27.

1. Suppose the domino Œj � 1; j � is in the arm of T but Œj C 1; j C 2� is in the leg. Then

vT D ‰j vS, where vS is the tableau obtained from T by transposing the dominoes Œj �1; j �

and Œj C 1; j C 2�, and  j vT D �2 j vS, which is in reduced form.

2. Suppose the dominoes Œj � 1; j � and Œj C 1; j C 2� are in the arm of T.

If j D n� 2, then  n�2vT D 0.
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If for every k 2 fj C 2; j C 4; : : : ; ng, more of the dominoes Œj C 1; j C 2�; : : : ; Œk� 1; k�

lie in the arm of T than in the leg, then  j vT D 0. Otherwise,  j vT D  j vU, where U is

given in Proposition 3.26 and  j vU is in reduced form.

3. Suppose the domino Œj � 1; j � is in the leg of T but Œj C 1; j C 2� is in the arm. Then

 j vT is already in reduced form.

4. Suppose the dominoes Œj � 1; j � and Œj C 1; j C 2� are in the leg of T.

If j D 3 then  3vT D 0.

If for every k 2 fj; j � 2; : : : ; 3g, more of the dominoes Œj � 1; j �; : : : ; Œk� 1; k� lie in the

leg of T than in the arm, then  j vT D 0. Otherwise,  j vT D  j vU, where U is given in

Proposition 3.26 and  j vU is in reduced form.

Proof. Case 3 falls out naturally as j is in the leg and j C 1 is in the arm. Cases 1, 2

(if Œj C 3; j C 4� is in the leg of T) and 4 (if Œj � 3; j � 2� is in the arm of T) follow from

Lemma 3.16 and Corollary 3.17. The remaining parts of cases 2 and 4 are handled by

Proposition 3.26. �

We have now given all actions of the KLR generators on elements of D . This infor-

mation was crucial in our discovery of the endomorphism f given in Proposition 3.30.

Lemma 3.28. dim.EndH.S�// 6 1C b=2.

Proof. DefineM to be a matrix whose columns are indexed by T 2 Dom.�/ (in increasing

order with respect to Q), and whose rows are indexed by pairs .j; T/ for 3 6 j 6 n� 2

odd, j ¤ bC 1 and T 2 Dom.�/. The entry of M in position ..j; T/; S/ is the coefficient

of vsj T when  j vS is written as a linear combination of elements of D . Thus we may

consider EndH.S�/ as the nullspace ofM , and we have only definedM up to reordering

of rows.

First we note that every action of  j on vT 2 D yields a linear combination of

basis vectors indexed by tableaux which are dominated by sjT, unless  j vT is already

a reduced  -expression (equivalently, T has the domino Œj � 1; j � in the leg and the
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domino Œj C1; j C2� in the arm). So, for j ¤ bC1,  j gives rise to a family of relations

whose Q-maximal term is some tableau with the domino Œj � 1; j � in the leg and the

domino Œj C 1; j C 2� in the arm. In particular, if we take a submatrix Mj of M by

only choosing rows with first index j , we have an upper triangular square matrix; Mj

has a 1 on the diagonal whenever the entry corresponds to a tableau with the domino

Œj � 1; j � in the leg and the domino Œj C 1; j C 2� in the arm.

But every tableau in Dom.�/ is of the above form for some odd j ¤ bC 1, except

some of those with Œb; bC 1� in the leg and ŒbC 2; bC 3� in the arm, and also the tableau

T�. In the former case, the tableau can still be viewed as being in the above form for

some j ¤ bC 1 unless the leg dominoes come in two consecutive strings, the first

ending in Œb; bC 1� and the second ending in Œn� 1; n�. So in fact, we only have b=2

choices for the position of Œb; bC 1� in the leg and the rest of the tableau is completely

determined by this choice, if we would like the tableau not to correspond to a 1 on

the diagonal of some submatrix Mj . So we have that the row rank of A is at least

jDom.�/j � b=2� 1, and thus the nullity of M is at most b=2C 1. �

Example. Let � D .5; 14/. We have the following tableaux in Dom.�/:

T� D 1 6 7 8 9
2
3
4
5

; S D 1 4 5 8 9
2
3
6
7

; T D 1 4 5 6 7
2
3
8
9

;

U D 1 2 3 8 9
4
5
6
7

; V D 1 2 3 6 7
4
5
8
9

; T� D 1 2 3 4 5
6
7
8
9

:

We want to consider the actions of  3 and  7 on these six tableaux. The actions,

easily deduced from Lemma 3.13, are as follows:

 3vT� D 0;  7vT� D 0;

 3vS D vs3S;  7vS D vs7S;
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 3vT D vs3T;  7vT D �2vs7S;

 3vU D �2vs3S;  7vU D vs7U;

 3vV D �2vs3T;  7vV D �2vs7U;

 3vT� D vs3T;  7vT� D vs7U:

So the matrix A in the above proof is as follows.

T� S T U V T�

T� � � � � � �

S � 1 � �2 � �

T � � 1 � �2 1

U � � � � � �

V � � � � � �

T� � � � � � �

T� � � � � � �

S � 1 �2 � � �

T � � � � � �

U � � � 1 �2 1

V � � � � � �

T� � � � � � �

Note that the top half of the matrix corresponds to  3 (or j D 3 if we are indexing

the rows as in the proof) and the bottom half to  7. It is clear that, as in the proof, the

matrix has row rank at least 3, as we having leading terms “on the diagonal” in columns

corresponding to S, T and U.

3.5 Decomposability of S.a;1b/ when n is odd

We can now begin calculating H-endomorphisms of S�. We now know that

f 2 EndH.S�/ if and only if

f .z�/ D
X

T2Dom.�/

˛TvT for some ˛T 2 F
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with  jf .z�/ D 0 for all odd j ¤ bC 1 with 3 6 j 6 n� 2.

Definition 3.29. Let i; j be odd integers with 3 6 i 6 bC 1 < j 6 n. We will denote

by Ti;j the tableau with dominoes fŒ2; 3�; Œ4; 5�; : : : ; Œb; bC1�; Œj �1; j �g n fŒi �1; i �g in the

leg.

Example. If � D .5; 14/ then T5;9 D 1 4 5 6 7
2
3
8
9

and T3;7 D 1 2 3 8 9
4
5
6
7

.

Remark. We observe that the normal form for vTi;j is ‰
b�1

"
i

‰
j�2

#
bC1

z�.

Proposition 3.30. Suppose a is odd and b is even. Then there exists an H-endomorphism f of

S� given by

f .z�/ D
X

36i6bC1
bC36j6n
i;j odd

i � 1

2
�
nC 2� j

2
vTi;j :

Proof. All we need to show is that  kf .z�/ D 0 for all odd k ¤ bC 1with 3 6 k 6 n� 2.

We will rely extensively on our previous results regarding the actions of  generators

on tableaux.

First, notice that  3vTi;j D 0 for all i > 7. So

 3f .z�/ D  3

0@X
j

2 �
nC 2� j

2
vT5;j C

nC 2� j

2
vT3;j

1A
D

X
j

nC 2� j

2
.2 3 � vT5;j � 2 3 � vT5;j /

D 0:

Next, suppose 5 6 k 6 b� 1. We notice that  kvTi;j D 0 for all i 6 k � 4 and for all

i > kC 4. So

 kf .z�/ D  k

0@X
j

kC 1

2
�
nC 2� j

2
vTkC2;j C

k� 1

2
�
nC 2� j

2
vTk;j

C
k� 3

2
�
nC 2� j

2
vTk�2;j

�
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D

X
j

nC 2� j

2

�
kC 1

2
� 2 �

k� 1

2
C
k� 3

2

�
 kvTkC2;j

D 0:

Now, for bC 3 6 k 6 n� 4, we notice that  kvTi;j D 0 for all j 6 k � 2 and for all

j > kC 6. So

 kf .z�/ D  k

 X
i

i � 1

2
�
nC 2� k

2
vTi;k C

i � 1

2
�
n� k

2
vTi;kC2

C
i � 1

2
�
n� k� 2

2
vTi;kC4

�
D

X
i

i � 1

2

�
nC 2� k

2
� 2 �

n� k

2
C
n� k� 2

2

�
 kvTi;k

D 0:

Finally, we notice that  n�2vTi;j D 0 unless j D n� 2 or n. So

 n�2f .z�/ D  n�2

 X
i

i � 1

2
� 2 � vTi;n�2 C

i � 1

2
vTi;n

!
D

X
i

.i � 1/ n�2vTi;n�2 � 2 �
i � 1

2
 n�2vTi;n�2

D 0: �

Example. If � D .5; 14/, then our endomorphism is given by

f .z�/ D 2vT3;7 C 4vT5;7 C vT3;9 C 2vT5;9 D 2‰3‰5z�C 4‰5z�C‰3‰7‰5z�C 2‰7‰5z�:

Remark. This endomorphism allows us to tackle our decomposability question. In

particular, S� can be decomposed into a direct sum of the generalised eigenspaces of f .

That is Ex D fv 2 S� j .f �xI /nv D 0 for some n 2Ng for each eigenvalue x of f , and

S� D
M

x an eigenvalue of f

Ex :

From the definition of Ex it is clear that it is a non-zero H-module whenever x is an
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eigenvalue of f . The existence of two distinct eigenvalues of f would ensure that we

have at least two non-trivial summands in the decomposition above, and we would be

done.

The following lemma will be used repeatedly in further proofs.

Lemma 3.31. Suppose x1 > y1 > 3 and x2 > y2 > 3 are all odd numbers. Suppose also that

X 2 e.i�/ S�. Then we have the following cancellation relations:

1. If x1 > x2 > y1 we have

‰
x1

#
y1

‰
x2

#
y2

X D ‰
x2�4

#
y1

‰
x1

#
y2

X:

2. If x2 > y1 > y2 we have

‰
x1

#
y1

‰
x2

#
y2

X D ‰
x1

#
y2

‰
x2

#
y1C4

X:

Proof. 1. ‰
x1

#
y1

‰
x2

#
y2

X D ‰
x1

#
x2C2

‰x2‰x2�2‰
x2�4

#
y1

‰
x2

#
y2

X

D ‰
x1

#
x2C2

‰x2‰x2�2‰x2‰
x2�4

#
y1

‰
x2�2

#
y2

X

D ‰
x1

#
x2C2

‰x2‰
x2�4

#
y1

‰
x2�2

#
y2

X

D ‰
x2�4

#
y1

‰
x1

#
y2

X:

2. The proof proceeds similarly to the previous case. �

Now, we work towards computing the eigenvalues of f . It is clear that f acts

on e.i�/ S�; f .vT/ 2 e.i�/ S� whenever T 2 Dom.�/ by the nature of our actions of  

generators on elements of D . We will show that the action of f on e.i�/ S� is triangular.

Take T 2 Dom.�/, and write vT in normal form:

vT D ‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

z�:
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Then we want to look at

f .vT/ D ‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

�f .z�/

D

X
36i6bC1
bC36j6n
i;j odd

i � 1

2
�
nC 2� j

2
‰

j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

�‰
b�1

"
i

‰
j�2

#
bC1

z�:

We begin by looking at the simplified case where d D 1.

Lemma 3.32. Let 3 6 i 6 bC 1 < j 6 n and jd > bC 1. Then

‰
jd

#
bC1

�‰
b�1

"
i

‰
j�2

#
bC1

z� D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

�2‰
jd

#
bC1

z� if i D bC 1 and j D bC 3,

‰
jd

#
bC1

z� if i D bC 1 and j D bC 5,

0 if i D bC 1 and j > bC 7,

‰
jd

#
bC1

z� if i D b� 1 and j D bC 3,

‰
b�3

"
i

‰
jd

#
b�1

‰
j�2

#
bC1

z� if i 6 b� 1 and jd 6 j � 4,

0 if i < b� 1 and jd > j � 2 and j D bC 3,

‰
b�3

"
i

‰
j�6

#
b�1

‰
jd

#
bC1

z� if i 6 b� 1 and jd > j � 2 and j > bC 5.

Proof. First suppose i D bC 1. If j D bC 3 we have

‰
jd

#
bC1

�‰bC1z� D �2‰
jd

#
bC1

z�:

If j D bC 5 we have

‰
jd

#
bC1

�‰bC3‰bC1z� D ‰
jd

#
bC1

z�:

If j > bC 7 we have

‰
jd

#
bC1

�‰
j�2

#
bC1

z� D ‰
jd

#
bC1

�‰
j�2

#
bC5

z� D 0:
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If i D b� 1 and j D bC 3 we have

‰
jd

#
bC1

�‰b�1‰bC1z� D ‰
jd

#
bC1

z�:

Next, suppose i 6 b � 1. If jd 6 j � 4 we already have an expression in reduced

form and the commuting relations alone put it into our normal form to give the stated

result.

So let jd > j � 2. Suppose i < b� 1 and j D bC 3. Then we have

‰
jd

#
bC1

�‰
b�1

"
i

‰bC1z� D ‰
jd

#
bC3

�‰
b�3

"
i

‰bC1‰b�1‰bC1z�

D ‰
jd

#
bC1

�‰
b�3

"
i

z�

D 0:

Finally, let j > bC 5. Then we have

‰
jd

#
bC1

�‰
b�1

"
i

‰
j�2

#
bC1

z� D ‰
b�3

"
i

‰
jd

#
b�1

‰
j�2

#
bC1

z�

D ‰
b�3

"
i

‰
j�6

#
b�1

‰
jd

#
bC1

z�

which is reduced and in our normal form. �

Proposition 3.33. Suppose vT D ‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

z� 2 D is in reduced normal

form, i and j are odd with 3 6 i 6 bC 1 < j 6 n and let

.�/ D ‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

�‰
b�1

"
i

‰
j�2

#
bC1

z�:

Then .�/ is a scalar multiple of either vT or some longer ‰-expression. In particular, .�/ is

a scalar multiple of vT in precisely the following cases:

.�/ D vT if
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� i C j D 2bC 6, i > bC 3� 2d , jv > j � 4� 4.d � v/ for all v;

� i C j D 2bC 2, i > bC 1� 2d and jv > j � 2� 4.d � v/ for all v.

.�/ D �2vT if

� i C j D 2bC 4, i > bC 3� 2d and jv > j � 2� 4.d � v/ for all v.

Proof. We will use the previous lemma and work down the cases in the order they

appear above. We will always look to put expressions into reduced normal form.

1. Let d > 0. When i D b C 1, we can clearly see that we get .�/ D �2vT when

j D bC 3, .�/ D vT when j D bC 5 and .�/ D 0 otherwise. It is also clear that when

i D b� 1 and j D bC 3 we have .�/ D vT, so in all further cases we will ignore this

combination.

2. If i 6 b� 1 and jd 6 j � 4, we must split into two subcases.

(a) First suppose i 6 bC 1� 2d . Then we have

‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd

#
bC1

�‰
b�1

"
i

‰
j�2

#
bC1

z�

D ‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd�1

#
b�1

�‰
b�3

"
i

‰
jd

#
b�1

‰
j�2

#
bC1

z�

D ‰
b�1�2d

"
i

‰
j1

#
bC1�2d

‰
j2

#
bC3�2d

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�:

The above expression is reduced and longer than vT.

(b) If i > bC 3� 2d , say i D ks � 2 D b� 1� 2d C 2s for some s > 2, we have

.�/ D ‰
j1

#
bC3�2d

: : : ‰
js�1

#
b�1�2.d�s/„                       ƒ‚                       …

DW‰�

�‰
js

#
b�1�2.d�s/

‰
jsC1

#
bC1�2.d�s/

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�:
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Claim. Suppose for some s� 1 6 u 6 d � 1 we have jv > bC 3� 2.d C s�

2v/ for all s� 1 6 v 6 u. Then the above expression is equal to

‰� ‰
js

#
bC1�2.d�s/

: : : ‰
ju

#
bC1C2.d�u/

‰
juC1

#
bC7�2.dCs�2u/

‰
juC2

#
bC3�2.d�u/

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�:

If for the maximal suchuwe haveu 6 d �2, the expression above is reduced

and longer than vT.

Assuming the claim to be true, we need to look at what happens if the condition

in the claim holds for u D d � 1. In this instance, by the claim we have

.�/ D ‰� ‰
js

#
bC1�2.d�s/

: : : ‰
jd�1

#
b�1

‰
jd

#
bC3C2.d�s/

‰
j�2

#
bC1

z�

D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�2vT if j D bC 5C 2.d � s/ and jd > bC 3C 2.d � s/;

vT if j D bC 7C 2.d � s/ and jd > bC 3C 2.d � s/;

0 if j > bC 9C 2.d � s/ and jd > bC 3C 2.d � s/;

vS otherwise, where vS is some expression longer than vT.

Note that the first case above never actually occurs here, by the condition

that jd 6 j � 4. We can see that we get .�/ D vT precisely when jv >

bC 3� 2.d C s� 2v/ for all s� 1 6 v 6 d � 1 and jd D bC 3C 2.d � s/ D j � 4.

Proof of claim. We prove the claim by induction on u. When u D s � 1, we

have that js�1 > b � 1� 2.d � s/ (which we already knew a priori) and

js D bC 1� 2.d � s/. Then

‰� �‰
bC1�2.d�s/

#
b�1�2.d�s/

‰
jsC1

#
bC1�2.d�s/

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z� D ‰
�
�‰

jsC1

#
bC1�2.d�s/

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�

and the claim holds.

Suppose the claim is true for some s�1 6 u 6 d �2, and that jv > bC3�2.d C
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s� 2v/ for all s� 1 6 v 6 uC 1. Then by induction, we have

‰� �‰
bC1�2.d�s/

#
b�1�2.d�s/

‰
jsC1

#
bC1�2.d�s/

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�

D ‰� ‰
js

#
bC1�2.d�s/

: : : ‰
ju

#
bC1C2.d�u/„                            ƒ‚                            …

DW‰�

‰
juC1

#
bC7�2.dCs�2u/

‰
juC2

#
bC3�2.d�u/

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�

D ‰�‰� ‰
juC1

#
bC7�2.dCs�2u/

‰
juC2

#
bC11�2.dCs�2u/

‰
bC5�2.dCs�2u/

#
bC3�2.d�u/

‰
juC3

#
bC5�2.d�u/

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�

since juC1 > bC 7� 2.d C s� 2u/ by hypothesis

D ‰�‰� ‰
juC1

#
bC3�2.d�u/

‰
juC2

#
bC11�2.dCs�2u/

‰
juC3

#
bC5�2.d�u/

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�

and the claim is proved.

3. Next, we look at the final case, i 6 b� 1, jd > j � 2 and j > bC 5. We have that

.�/ D ‰
j1

#
bC3�2d

‰
j2

#
bC5�2d

: : : ‰
jd�1

#
b�1

�‰
b�3

"
i

‰
j�6

#
b�1

‰
jd

#
bC1

z�

Once again, we split into subcases.

(a) First suppose i 6 bC 1� 2d . Then

.�/ D ‰
b�1�2d

"
i

‰
j1

#
bC1�2d

‰
j2

#
bC3�2d

: : : ‰
jd�1

#
b�3

‰
j�6

#
b�1

‰
jd

#
bC1

z�:

Claim. Suppose for some 0 6 u 6 d � 1 we have j < jd�v C 4.vC 1/ for

all 0 6 v 6 u and j > bC 3C 2v for all 0 6 v 6 u. Then

.�/ D ‰
b�1�2d

"
i

‰
j1

#
bC1�2d

‰
j2

#
bC3�2d

: : : ‰
jd�u�1

#
b�3�2u

‰
j�6�4u

#
b�1�2u

‰
jd�u

#
bC1�2u

: : : ‰
jd

#
bC1

z�

and this expression is of length 2.uC1/ less than the length of .�/. Further-
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more, if we take the maximal such u and have u 6 d �2 and j > bC5C2u,

it is reduced. If j D bC 3C 2u, the expression is equal to 0.

Proof. We prove the claim by induction on u. If u D 0, the result follows

immediately from Lemma 3.32. Now suppose the claim holds for some

0 6 u 6 d � 2, and that j < jd�v C 4.vC 1/ for all 0 6 v 6 uC 1, but

j > jd�u�2C 4.uC 3/ (if u 6 d � 3). Then by induction, we have

.�/ D ‰
b�1�2d

"
i

‰
j1

#
bC1�2d

‰
j2

#
bC3�2d

: : : ‰
jd�u�2

#
b�5�2u„                                   ƒ‚                                   …

DW‰�

‰
jd�u�1

#
b�3�2u

‰
j�6�4u

#
b�1�2u

‰
jd�u

#
bC1�2u

: : : ‰
jd

#
bC1

z�

D ‰�‰
jd�u�1

#
j�4�4u

‰j�6�4u‰j�8�4u‰j�6�4u‰
j�10�4u

#
b�3�2u

‰
j�8�4u

#
b�1�2u

‰
jd�u

#
bC1�2u

: : : ‰
jd

#
bC1

z�

D ‰�‰
j�10�4u

#
b�3�2u

‰
jd�u�1

#
b�1�2u

‰
jd�u

#
bC1�2u

: : : ‰
jd

#
bC1

z�;

which is the claimed expression. In the induction step, 2 ‰ terms have

been deleted, which proves the length part of the claim. It is clear that if

j < bC 5C 2u then the expression in the claim is 0 and likewise that when

u 6 d � 2 (and j > bC 5C 2u), we have a reduced expression.

Now, let u be maximal under the conditions in the claim. First, suppose that

u 6 d � 2. By the claim, we can assume that j > bC 5C 2u. This implies that

‰
j�2

#
bC1

has length at least uC 2. Similarly, i 6 bC 1� 2d and u 6 d � 2 imply

‰
b�1

"
i

also has length at least uC 2. So by the claim, once .�/ has been written in

a reduced form, it has length at least 2 more than vT.

But what if u D d � 1? The above claim tells us that

.�/ D ‰
b�1�2d

"
i

‰
j�2�4d

#
bC1�2d

vT:

This is zero unless j > bC 3C 2d , in which case we have a (reduced) longer

expression than vT, or i > bC 1� 2d . Note that in the latter case, we in fact

have i D bC 1� 2d because of the conditions on the subcase we are looking at.

Looking at this case, we assume j < bC 3C 2d , since j > bC 3C 2d yields an
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expression longer than vT. Under these conditions, we have .�/ D vT.

(b) Finally, suppose that i > bC 3� 2d . Say i D ks � 2 D b� 1� 2.d � s/ for some

s > 2. Then

.�/ D ‰
j1

#
bC3�2d

: : : ‰
js�1

#
b�1�2.d�s/

�‰
js

#
b�1�2.d�s/

‰
jsC1

#
bC1�2.d�s/

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�:

Claim 1. Suppose we have �1 6 u 6 d � s � 1 with jsCv > bC 3� 2.d �

s/C 4v for all �1 6 v 6 u. Let

‰� WD ‰
j1

#
bC3�2d

: : : ‰
jsCu

#
bC1�2.d�.sCu//

:

Then

.�/ D ‰�‰
jsCuC1

#
bC7�2.d�s�2u/

�‰
jsCuC2

#
bC3�2.d�.sCu//

‰
jsCuC3

#
bC5�2.d�.sCu//

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�:

The above claim is proved by a simple but tedious induction, in the spirit

of previous claims in this proof. Now first suppose we have u D d � s � 1

satisfying the conditions in the claim, but also jd > bC 3C 2.d � s/. Then

.�/ D ‰
j1

#
bC3�2d

: : : ‰
jd�1

#
b�1

‰
jd

#
bC3C2.d�s/

‰
j�2

#
bC1

z�

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
�2T0 if j D bC 5C 2.d � s/,

T0 if j D bC 3C 2.d � s/ or j D bC 7C 2.d � s/,

0 otherwise.

Otherwise, take u maximal, satisfying the conditions of Claim 1. We have

.�/ D ‰� �‰
jsCuC2

#
bC3�2.d�.sCu//

‰
jsCuC3

#
bC5�2.d�.sCu//

: : : ‰
jd

#
b�1

‰
j�2

#
bC1

z�;

by the claim. Note that for these conditions on u to hold, we have jsCu D

bC 3� 2.d � s/C 4u and jsCuC1 D bC 5� 2.d � s/C 4u.
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Claim 2. Let 0 6 r 6 d � s � u� 2 be such that jd�v > j � 2� 4v for all

0 6 v 6 r . Then

.�/ D ‰�‰
jsCuC2

#
bC3�2.d�.sCu//

: : : ‰
jd�r�1

#
b�3�2r

‰
j�6�4r

#
b�1�2r

‰
jd�r

#
bC1�2r

‰
jd�rC1

#
bC3�2r

: : : ‰
jd

#
bC1

z�:

If r is maximal such that jd�v > j � 2� 4v for all 0 6 v 6 r and r 6

d � s�u� 3, then this expression is reduced.

Again, this claim can be proved by induction as with the previous claims. Note

that the above term is zero unless j > bC 5C 2r .

Whenever r 6 d � s�u� 3, the reduced expression above is longer than vT. To

see why, note that we have the condition jsCuC1 D bC 5� 2.d � s � 2u/ from

Claim 1. Since jiC1 > ji C 2, this yields jd�r�1 > bC 1C 2.u� r/. Now, we

have assumed that jd�r�1 < j � 6� 4r , so we can combine these inequalities

to yield j > bC 9C 2.uC r/.

We now have enough information to compare lengths. To leave this reduced

form, we first deleted 2uC 4 ‰ terms from .�/ to arrive at the result from Claim

1. Next, we deleted 2r C 2 ‰ terms to arrive at the result of Claim 2. So in

total, we have deleted 2.r C uC 3/ DW ı ‰ terms from .�/ to leave a reduced

expression.

Now, how many ‰ terms did we append to vT in the definition of .�/? Call the

number of terms appended ˛. Since i D b � 1� 2.d � s/, ‰
b�1

"
i

is a product of

d � sC 1 ‰ terms. Since j > bC 9C 2.uC r/, ‰
j�2

#
bC1

has length at least 4CuC r .

So, ˛ > d CuC r � sC 5. By the definition of r , we have that d � s > r CuC 2,

so ˛ > 2.uC r C 3/C 1 > ı, and we are done.

Now suppose r D d � s � u� 2 satisfies the conditions of Claim 2, and we are
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left with a reduced expression. The claim tells us that the reduced expression is

.�/ D ‰�‰
jC2�4.d�.sCu//

#
bC3�2.d�.sCu//

‰
jsCuC2

#
bC5�2.d�.sCu//

: : : ‰
jd

#
bC1

z�:

Now, using the fact that jsCu D b C 3� 2.d � s/C 4u, we see that for this

expression to be reduced we have j > bC 3C 2.d � s/. Now, arguing as above,

we have ı D 2.rCuC3/ D 2.d � sC1/, the length of‰
b�1

"
i

is once again d � sC1

and the length of ‰
j�2

#
bC1

is at least d � sC 1. Hence ˛ > ı, with equality precisely

when j D bC 3C 2.d � s/, in which case we have .�/ D vT.

Now suppose r D d � s � u� 2 satisfies the conditions of Claim 2, but we are

not left with a reduced expression. Then

.�/ D ‰�‰
jC2�4.d�.sCu//

#
bC3�2.d�.sCu//

‰
jsCuC2

#
bC5�2.d�.sCu//

: : : ‰
jd

#
bC1„                        ƒ‚                        …

DW‰��

z�

which is zero unless j > bC 1C 2.d � .sCu//, and we have the following:

Claim 3. Let �1 6 x 6 sC u� 1 be such that jsCu�v > j C 2� 4.d C v �

.sCu// for all �1 6 v 6 x. Then

.�/ D‰
j1

#
bC3�2d

: : : ‰
jsCu�x�1

#
b�1�2.dCx�.sCu//

‰
j�2�4.dCx�.sCu//

#
bC1�2.dCx�.sCu//

‰
jsCu�x

#
bC3�2.dCx�.sCu//

: : :

‰
jsCu

#
bC3�2.d�.sCu//

‰��z�:

Note that if x 6 sCu� 2, this term is zero unless j > bC 3C 2.d Cx� .sC

u//.

Take x to be the maximal such that the conditions in Claim 3 are met. First,

suppose x 6 sCu�2. Then jsCu�x > j C2�4.d Cx� .sCu// and jsCu�x�1 <

j � 2� 4.d C x � .sC u//. When x 6 u� 1, we have our assumption in using

Claim 1 that jsCu�x�1 > b� 1� 2.d � s/C 4.u� x/. Comparing these inequali-

ties yields j > bC 3C 2.d � s/.
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Similarly if x > u, jsCu�x�1 > b � 1� 2.d C x � .sC u// can be read off from

the expression in Claim 3. But this yields j > bC 3C 2..d � s/C .x � u// >

bC 3C 2.d � s/. Now in either case,

bC 3� 2.d � s/C 4u D jsCu by the comment after Claim 1,

> j C 2� 4.d � .sCu// by the conditions in Claim 3,

> bC 5� 2.d � s/C 4u:

We have a contradiction, and so if jsCu > j C 2 � 4.d � .s C u// but j1 <

j C 6� 4d , we must have .�/ D 0.

Now suppose x D sCu� 1. Then we have j > b� 1C 2d , or else .�/ D 0 and

we’re done. So

bC 3� 2d C 2sC 4u D jsCu by the comment after Claim 1,

> j C 2� 4.d � .sCu// by the conditions in Claim 3,

> bC 1� 2d C 4.sCu/:

This implies s D 1, and so i D bC 1� 2d . But this breaks the initial conditions

of the subcase we are in, so we again have a contradiction. So in fact we never

get terms that look like the expression in Claim 3; ‰� remains intact in the final

reduced expression for .�/, if it is non-zero.

If we collect the cases where .�/ is equal to a scalar multiple of vT, we get the

following list:

.�/ D vT if

� i D bC 1, j D bC 5, d > 0 – from case 1;

� bC 3� 2d 6 i 6 b � 1, j D 2bC 6� i , jd D 2bC 2� i , and jv > j � 4� 4.d � v/

for all v – from case 2(b);



130 3.5. Decomposability of S.a;1b/ when n is odd

� bC 3� 2d 6 i 6 b � 1, j D 2bC 6� i and jv > j � 4� 4.d � v/ for all v – from

case 3(b);

� i D b� 1, j D bC 3, d > 0 – from case 1;

� i D bC 1� 2d , j D bC 1C 2d > bC 5 and jv > j � 2� 4.d � v/ for all v – from

case 3(a);

� bC 3� 2d 6 i , j D 2bC 2� i > bC 5, jd > j � 2 and jv > j � 2� 4.d � v/ for all

v – from case 3(b);

� bC 3� 2d 6 i , j D 2bC 2� i > bC 5, jd > j � 2 and jv > j � 4.d � v/ for all v –

from case 3(b).

These conditions can be written compactly as the first and second conditions in the

statement of the proposition.

.�/ D �2vT if

� i D bC 1, j D bC 3, d > 0 – from case 1;

� bC 3� 2d 6 i 6 b� 1, j D 2bC 4� i > bC 5, and jv > j � 2� 4.d � v/ for all v –

from case 3(b).

These two conditions can be written compactly as the final condition in the statement

of the proposition. �

The above result immediately leads to the following crucial fact.

Corollary 3.34. Order D so that vU comes after vT whenever r.U/ > r.T/. With respect to this

ordering, the action of f on e.i�/ S� is lower triangular. In particular, for each T 2 Dom.�/,

the coefficient of vT in f .vT/ is an eigenvalue of f .

Proposition 3.35. f has the eigenvalues

�
d

2
.n� 2d C 1/ for d D 0; 1; : : : ; b=2:
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Proof. Fix some d 2 f0; 1; : : : ; b=2g. Let

vT D ‰
n�2d

#
bC3�2d

: : : ‰
n�4

#
b�1

‰
n�2

#
bC1

z�:

Using the three bullet points in Proposition 3.33, we will compute the eigenvalue

�
d

2
.n� 2d C 1/ as the coefficient of vT in f .vT/. First, note that by choice of T the

inequality on jd for each bullet point is the strongest. So to check when the family of

inequalities at the end of each bullet point holds, it suffices to only verify the inequality

on jd .

If i C j D 2bC 6 and i > bC 3� 2d , then we claim that the inequalities in the first

bullet point are always satisfied by vT. For this, we need jd > 2bC 2� i . Using that

d 6 b=2 and n > 2b we also get that 2bC 2� i 6 b � 1C 2d 6 2b � 1 6 n� 2. So the

inequalities always hold in the case of the first bullet point.

Now, if iCj D 2bC2 and i > bC1�2d , we claim that the inequalities in the second

bullet point are always satisfied by vT. To see this, we must show that jd > 2b� i . We

have 2b� i 6 b� 1C 2d 6 2b� 1 6 n� 2 and so the inequalities always hold in the case

of the second bullet point.

Finally, i C j D 2bC 4 and i > bC 3� 2d , then we claim that the inequalities in

the third bullet point are always satisfied by vT. We need jd > 2bC 2� i but have

2bC 2� i 6 b� 1C 2d 6 2b� 1 6 n� 2 and we are done.

So now we only need to verify which pairs .i; j / satisfy the first two conditions

in each bullet point. For the first bullet point, we have the pairs .b C 3 � 2d; b C

3C 2d/; .bC 5� 2d; bC 1C 2d/; : : : ; .bC 1; bC 5/. For the second, we have the pairs

.bC1�2d; bC1C2d/; .bC3�2d; b�1�2d/; : : : ; .b�1; bC3/. For the third, we have

the pairs .bC 3� 2d; bC 1C 2d/; .bC 5� 2d; b� 1C 2d/; : : : ; .bC 1; bC 3/.

Recall that the coefficient of‰
b�1

"
i

‰
j�2

#
bC1

in f .z�/ is
i � 1

2
�
nC 2� j

2
. Hence the coefficient

of vT in f .vT/ is

1

4

d�1X
rD0

.b� 2r/.a� 3� 2r/C .b� 2� 2r/.a� 1� 2r/� 2.b� 2r/.a� 1� 2r/
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D
1

4

d�1X
rD0

8r � 2.n� 1/

D �
1

2
d.n� 1/C 2

d�1X
rD0

r

D �
d

2
.n� 2d C 1/: �

Remark. The sequence of eigenvalues given above is

0;�
.n� 1/

2
;�.n� 3/;�

3

2
.n� 5/; : : : ;�

b

4
.aC 1/:

If we write a D 2r C 1 and b D 2s then this sequence can be rewritten as

0;�.r C s/;�2.r C s� 1/;�3.r C s� 2/; : : : ;�s.r C 1/:

Lemma 3.36. If p > n, then f1; f; f 2; : : : ; f b=2g is a basis of EndH.S�/.

Proof. Since p > n, all b=2C 1 eigenvalues of f are distinct. Thus, we know that the

minimal polynomial of f has b=2C 1 distinct linear factors, so f1; f; f 2; : : : ; f b=2g are

linearly independent. �

Remark. Note also that our proof shows that we have an exhaustive list of eigenvalues

of f , since we would otherwise have more that b=2C 1 linearly independent maps

in EndH.S�/, contradicting Lemma 3.28. We also see that the upper bound on the

dimension of EndH.S�/ given in Lemma 3.28 is obtained when p > n.

Theorem 3.37. Suppose char.F/ ¤ 2. Then S.a;1b/ is decomposable if either b > 4 or b D 2

with char.F/ -
n� 1

2
.

Proof. By the remark after Proposition 3.30, it suffices to show that f has at least two

distinct eigenvalues. When s > 2, 0, �
.n� 1/

2
and �.n� 3/ are three eigenvalues of f ;

if S.a;1b/ were indecomposable, these would be equal. Since p ¤ 2, this is impossible,

and we have the desired result.
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When b D 2 and char.F/ -
n� 1

2
, we have the distinct eigenvalues 0 and �

.n� 1/

2
and

we are done. �

It remains to resolve the case a D 2r C 1, b D 2 when char.F/ j
n� 1

2
. We have

f .z�/ D r � vT3;bC3 C .r � 1/ � vT3;bC5 C � � �C vT3;n D

rX
cD1

c �‰
3C2.r�c/

#
3

z�:

When b D 2 and char.F/ j
n� 1

2
, we will prove that S� is indecomposable by showing

that EndH.S�/ has no non-trivial idempotents.

Lemma 3.38. Suppose a is odd. Then fI; f g is a basis of EndH.S.a;12//, where I is the identity

map on S.a;12/.

Proof. Suppose we have g 2 S.a;12/ nhI; f iF. Since the coefficient of vT3;n in f is 1, we

can add multiples of I and f to assume without loss of generality that

g.z�/ D

.n�3/=2X
jD2

˛j vT3;2jC1 D

.n�3/=2X
jD2

˛j‰
2j�1

#
3

z�:

We will show that applying the relations  n�2kg.z�/ D 0 for k D 1; 2; : : : ; .n� 5/=2

yields ˛.n�2k�1/=2 D 0. It then follows that g is the zero map, a contradiction.

Suppose, by induction on k, we have

g.z�/ D

.n�2k�1/=2X
jD2

˛j‰
2j�1

#
3

z�:

Then, acting on g.z�/ by  n�2k yields ˛.n�2k�1/=2 n�2k‰
n�2k�2

#
3

z� D 0 and we are

done. �

In order to find idempotents, we would like to know how to compose elements of

our basis. This amounts to the following lemma.

Lemma 3.39. Let a D 2r C 1 and b D 2. Then f 2.z�/ D �.r C 1/f .z�/.
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Proof. Notice that ‰3 �‰
3C2.r�c/

#
3

z� D 0 for all c 6 r � 2. So

f 2.z�/ D

rX
cD1

c �‰
3C2.r�c/

#
3

f .z�/

D

rX
cD1

c �‰
3C2.r�c/

#
3

.r � 1‰5‰3z�C r‰3z�/

D

rX
cD1

c �‰
3C2.r�c/

#
3

.�.r C 1/z�/

D �.r C 1/f .z�/: �

Lemma 3.40. Suppose a D 2r C 1 and char.F/ j
n� 1

2
. Then the only idempotents in

EndH.S.a;12// are 0 and I , and hence S.a;12/ is indecomposable.

Proof. Let ˛; ˇ 2 F. Using Lemma 3.39, we have f 2.z�/ D 0 and therefore

.˛I C f̌ /2 D ˛2I C 2˛ f̌:

So ˛I C f̌ is an idempotent if and only ˛2 D ˛ and 2˛ˇ D ˇ.

Whether ˛ D 0 or ˛ D 1, we must have ˇ D 0. The result follows. �

With the aid of Murphy’s result (Theorem 3.1), we have now completely deter-

mined decomposability of the Specht modules S.a;1b/. We summarise our result in the

following theorem.

Theorem 3.41. Suppose char.F/ ¤ 2. Then S.a;1b/ is indecomposable if and only if n is even,

or b D 2 or 3 and char.F/ j da
2
e.



Chapter 4

Graded decomposition numbers for

two-part partitions

In this chapter, we will study the graded decomposition numbers for H D HF;q.Sn/.

This problem is extremely difficult in full generality, and we here restrict our attention to

the case of two-part partitions. We make use of homogeneous homomorphisms between

Specht modules to calculate these decomposition numbers. In the final section, we also

investigate some exact sequences of these homomorphisms.

Recall from Section 1.12 that the ungraded (classical) decomposition number ŒS� W

D�� is defined to be the number of times D� appears as a composition factor of S�, while

the graded decomposition number ŒS� W D��v also records the graded shift of each copy

of D� in S�.

We will now seek to determine all graded decomposition numbers ŒS� W D��v, where

� and � are both two-part partitions.

Remark. The ungraded decomposition numbers here are known, with a relatively sim-

ple formula proved by Gordon James. Let p D char.F/ and let e be the quantum

135
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characteristic of H. The function fe;p WN�N! f0; 1g is defined as

fe;p.x; y/ D

8̂̂<̂
:̂
1 if by

e
c �p b

xC1
e
c and e j y or e j x�yC 1,

0 otherwise,

where we say a �p b if the p-adic expansions of a and b are

a D a0C a1pC a2p
2
C � � �C arp

r and b D b0C b1pC b2p
2
C � � �C btp

t

respectively, with ai D 0 or ai D bi for all i . Then if � D .n�m;m/ and � D .n� r; r/,

ŒS� W D�� D fe;p.n� 2r;m� r/:

Example. Let e D p D 2 and n D 6. We will use James’s result to calculate the decom-

position numbers for all two-part partitions of 6. First, since .6/, .5; 1/ and .4; 2/ are

all 2-regular, we know that the three corresponding Specht modules have simple heads

D.6/, D.5;1/ and D.4;2/ respectively, giving 1s down the leading diagonal of the two-part

component of the decomposition matrix. Next, we see that d.5;1/.6/ D f2;2.6; 1/ D 1

since the condition 0 �2 3 holds trivially and the condition “e j x�yC1” is “2 j 6”. Sim-

ilarly, d.4;2/.5;1/ D d.3;3/.4;2/ D 1 as each involves evaluating f2;2.x; 1/ for some even x;

the condition 0 �2 bxC1e c is always satisfied trivially. Next d.4;2/.6/ D f2;2.6; 2/ D 1 as

1 ™2 3 and “e j y” becomes “2 j 2”. d.3;3/.6/ D f2;2.6; 3/ D 1 as 1 �2 3 and “e j x�yC1”

becomes “2 j 4”. Finally, d.3;3/.5;1/ D f2;2.4; 2/ D 0 as 1 ™2 2. This yields the following

submatrix of the decomposition matrix of H when e D p D 2 (which is just FS6).

.6/ .5; 1/ .4; 2/

.6/ 1 � �

.5; 1/ 1 1 �

.4; 2/ 1 1 1

.3; 3/ 1 � 1

Definition 4.1. We define De;p2 .v/ to be the submatrix of the graded decomposition
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matrix for H which corresponds to two-part partitions.

Theorem 4.2. Each column of De;p2 .v/ for p > 0 is a sum of columns of De;02 .

Proof. Since we know for any p that every entry of De;p2 .v/jvD1 is 0 or 1, the ungraded

adjustment matrix (for any p) must also have entries 0 or 1. By Theorem 1.49, entries

of the graded adjustment matrix have non-negative coefficients and are symmetric in

v; v�1. So the graded adjustment matrix also consists of just 0s and 1s. �

Remark. Using this theorem, it is sufficient to calculate graded decomposition numbers

for p D 0. To calculate those for p > 0, there is a unique choice of entries obeying the

above result. The author is extremely grateful to Sinéad Lyle, to whom this result must

be attributed, for pointing it out.

We now give a presentation for the Specht modules (in the KLR setting) for two-part

partitions, which we will use extensively.

Definition 4.3. For � D .n�m;m/, Section 1.10 gives us the presentation

S� D

$

z�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

 j z� D 0 8j D 1; 3; : : : ; 2m�1 or j D 2mC1; 2mC2; : : : ; n�1;

 j jC1z� D 0 8j D 1; 3; : : : ; 2m�1;  j j�1z� D 0 8j D 3; 5; : : : ; 2m�1;

ykz� D 0 8k; e.i�/z� D z�

%

:

Remark. For any two-part partition, �, we have unique reduced expressions for standard

�-tableaux, up to applying the commuting relations on the  generators. So we get

a well-defined basis fvT j T 2 Std.�/g of S� without having to worry about fixing any

reduced expressions for elements of Sn.

4.1 Decomposition Numbers when e D 2

We here look at the case e D 2. In some ways, we expect this to be the hardest case to

work with, partly because of the more involved relations on the generators  i . We will

split this into the two subcases where n is either even or odd. The parity here makes a
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difference to the block structure of H; when n is even all Specht modules (for two-part

partitions) lie in the same block, but when n is odd they are split between two different

blocks, determined by the parity of m. However, we see that when n is odd the result

is extremely simple.

Theorem 4.4. If n is odd, then ŒS� W D��v D ŒS� W D�� for any two-part partitions � and � of

n.

Proof. James’s result tells us that when p D 0, ŒS� W D�� D ı�;�. Application of

Theorem 4.2 completes the proof. �

For the remainder of this section, we let n be even. All Specht modules lie in

the same block so we would like to consider them simultaneously. We will start by

calculating ŒS� W D.n/�v for all two part partitions � D .n�m;m/. We obviously have

ŒS.n/ W D.n/�v D 1.

As in our work with hook partitions, we can see the following result.

Lemma 4.5. Let � D .n�m;m/. Then e.i.n// S� has a homogeneous basis indexed by standard

“domino tableaux”. That is, a basis D D fvT j T 2 Dom.�/g indexed by the set Dom.�/ of

standard tableaux where the entries i and i C 1 appear consecutively in the same row, for all

even 2 6 i 6 n� 2.

Remark. If m is odd, then every element of D is homogeneous of degree 1, as the entry

n must be placed at the end of the second row. If m is even, every element of D is

homogeneous of degree 0.

Lemma 4.6. Let T be a standard .n�m;m/-tableau with residue sequence i.n/. Then ykvT D 0

for any k.

Proof. The proof is morally the same as that of [29, Lemma 4.4], and thus Proposi-

tion 3.12. We note that

ykvT D yke.i.n//vT D e.i.n//ykvT 2 e.i.n// S.n�m;m/
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and so ykvT is a linear combination of elements in D . These are all homogeneous of

degree 1 or 0, depending on whether m is odd or even, respectively. But then vT also

has this same homogeneous degree, and so ykvT must have degree 3 or 2, respectively.

So in fact we must have ykvT D 0. �

Lemma 4.7.

yj � j�1 j�2 : : :  2mz.n�m;m/ D

8̂̂<̂
:̂
0 for all even j > 2m,

 j�2 j�3 : : :  2mz.n�m;m/ for all odd j > 2m.

Proof. We will prove this by induction on j . When j D 2m the result follows trivially

from the relations in the Specht module (y2m annihilates the generator z.n�m;m/). Now

let j > 2m be even. Then

yj � j�1 j�2 : : :  2mz.n�m;m/

D .yj j�1e.sj�2 : : : s2m � i.n�m;m/// j�2 : : :  2mz.n�m;m/

D  j�1yj�1 j�2 j�3 : : :  2mz.n�m;m/

D 0 by induction.

Finally, let j > 2m be odd. Then

yj � j�1 j�2 : : :  2mz.n�m;m/

D . j�1yj�1C 1/ j�2 j�3 : : :  2mz.n�m;m/

D  j�2 j�3 : : :  2mz.n�m;m/ by induction. �

Lemma 4.8. The map f0 W S.n/ ! S.n�1;1/ defined by f0.z.n// D  n�1 n�2 : : :  2z.n�1;1/

defines a degree 1H-homomorphism.

Proof. First, note that f0.z.n// D vT.n�1;1/ . T
.n�1;1/ has residue sequence i.n/ because n is

even. Likewise, the previous lemma gives us ykf0.z.n// D 0 for all k. All that remains

is to check that  j vT.n�1;1/ D 0 for all j .
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Firstly,  1 � n�1 : : :  2z.n�1;1/ D  n�1 : : :  3. 1 2z.n�1;1// D 0.

Next, if 2 6 j 6 n� 2 is even, we have

 j � n�1 : : :  2z.n�1;1/ D  n�1 : : :  jC2. j jC1 j e.sj�1 : : : s2 � i.n�1;1///�

 j�1 j�2 : : :  2z.n�1;1/

D  n�1 : : :  jC2. jC1 j jC1/ j�1 j�2 : : :  2z.n�1;1/

D 0:

Next, if 2 6 j 6 n� 2 is odd, we have

 j � n�1 : : :  2z.n�1;1/ D  n�1 : : :  jC2. j jC1 j e.sj�1 : : : s2 � i.n�1;1//�

 j�1 j�2 : : :  2z.n�1;1/

D  n�1 : : :  jC2. jC1 j jC1Cyj � 2yjC1CyjC2/�

 j�1 : : :  2z.n�1;1/

D 0;

as  jC1,  jC2, yjC1 and yjC2 commute through to the right hand side in the four

summands, respectively.

Finally,

 n�1 � n�1 : : :  2z.n�1;1/ D . 
2
n�1e.sn�2 : : : s2 � i.n�1;1/// n�2 : : :  2z.n�1;1/

D .�y2n�1�y
2
nC 2yn�1yn/ n�2 : : :  2z.n�1;1/

D �yn�1.yn�1 n�2e.sn�3 : : : s2 � i.n�1;1/// n�3 : : :  2z.n�1;1/

D �yn�1 n�3 : : :  2z.n�1;1/ by Lemma 4.7,

D 0: �

We immediately have the following result.
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Corollary 4.9. ŒS.n�1;1/ W D.n/�v D v, regardless of the characteristic of F.

Remark. If p D 0, we have filled in the only two non-zero entries of the first column of

the decomposition matrix (that is, the column corresponding to ŒS� W D.n/�v).

Lemma 4.8 and Theorem 2.23 immediately imply the following:

Corollary 4.10. fm W S.n�m;m/ ! S.n�m�1;mC1/ with

fm.z.n�m;m// D  n�1 n�2 : : :  2mC2z.n�m�1;mC1/ defines a degree 1 H-homomorphism

for all m 6 n=2� 1.

Proof. This can be seen easily by looking at the tableau given by

sn�1 : : : s2mC2T.n�m�1;mC1/, which is

1 3 � � � 2m� 1 2mC 1 2mC 2 � � � n�1

2 4 � � � 2m n

and considering the homomorphism column removal in Theorem 2.23. �

Remark. fn=2�1 is surjective, as our construction clearly gives this homomorphism

as mapping generator to generator. Note also that the homomorphisms fi for i D

0; 1; : : : ; n=2� 1 explicitly give the one-node Carter–Payne homomorphisms found in

[32].

The following is a simple lemma in a general (ungraded) setting which will be useful

to us.

Lemma 4.11. Let M and N be (left) R-modules for some ring R, and suppose f WM ! N is

a non-zero homomorphism, and that hd.M/ is simple. Then hd.im.f // Š hd.M/.

Proof. Let I D im.f / and K D ker.f /. Then

hd.I / Š hd.M=K/ by the first isomorphism theorem,

Š .M=K/= rad.M=K/ by definition,

Š .M=K/=..rad.M/CK/=K/
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ŠM=.rad.M/CK/ by the third isomorphism theorem,

Š .M= rad.M//=..rad.M/CK/= rad.M// by the third isomorphism theorem,

Š hd.M/=..rad.M/CK/= rad.M//:

But I ¤ 0, so hd.I / ¤ 0, and since hd.M/ is simple its only non-zero quotient is itself,

so ..rad.M/CK/= rad.M// D 0 and hd.I / Š hd.M/. �

Corollary 4.12. ŒS.n�m�1;mC1/ W D.n�m;m/� D v for all 0 6 m 6 n=2� 1.

Proof. We have a non-zero degree 1 homomorphism fm W S.n�m;m/ ! S.n�m�1;mC1/ and

we know that D.n�m;m/ D hd.S.n�m;m//. Therefore

D.n�m;m/h1i Š hd.im.fm//

and the result follows. �

Remark. If p D 0, we have filled in all decomposition numbers (for two-part partitions).

Thus, by Theorem 4.2 we can calculate the graded decomposition numbers for two-part

partitions for any p. Explicitly, we can replace the function fe;p in James’s formula with

a graded version f ve;p WN�N! f0; 1; vg given by

f ve;p.x; y/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
1 if by

e
c �p b

xC1
e
c and e j y,

v if by
e
c �p b

xC1
e
c and e j x�yC 1,

0 otherwise.

Example. It is easy to verify that D2;22 is the following.

.6/ .5; 1/ .4; 2/

.6/ 1 � �

.5; 1/ v 1 �

.4; 2/ 1 v 1

.3; 3/ v � v
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4.2 Exact sequences of homomorphisms between Specht mod-

ules

Next, we build on the work of the previous section and investigate the homomorphisms

we have found when e D 2. In particular, our main result will be the construction of

an exact sequence of homomorphisms between Specht modules when e D 2 and n is

even, for any p.

Lemma 4.13. Let j > 2mC 4. Then

 j � jC1 j : : :  2mC4z.n�m�2;mC2/ D

8̂̂<̂
:̂
0 if j is even,

 j�2 j�3 : : :  2mC4z.n�m�2;mC2/ if j is odd.

Proof. First, suppose j is even. Then

 j � jC1 j : : :  2mC4z.n�m�2;mC2/

D . j jC1 j e.sj�1 � sj�2 � � � s2mC4 � i.n�m�2;mC2/// j�1 : : :  2mC4z.n�m�2;mC2/

D  jC1 j jC1 j�1 : : :  2mC4z.n�m�2;mC2/

D 0:

Now suppose j is odd. Then

 j � jC1 j : : :  2mC4z.n�m�2;mC2/

D . j jC1 j e.sj�1 � sj�2 � � � s2mC4 � i.n�m�2;mC2/// j�1 : : :  2mC4z.n�m�2;mC2/

D . jC1 j jC1Cyj � 2yjC1CyjC2/ j�1 : : :  2mC4z.n�m�2;mC2/

D 0Cyj j�1 j�2 : : :  2mC4z.n�m�2;mC2/� 0C 0

D  j�2 j�3 : : :  2mC4z.n�m�2;mC2/ by Lemma 4.7. �

Lemma 4.14. .Aj / yj � j�1 j�2 : : :  2mC2 j j�1 : : :  2mC4z.n�m�2;mC2/ D 0 for all

even j > 2mC 2.
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.Bj /  j � j�1 j�2 : : :  2mC2 j j�1 : : :  2mC4z.n�m�2;mC2/ D 0 for all j > 2mC 3.

Proof. We will prove these by simultaneous induction. First, we prove .A2mC2/ and

.B2mC3/. .A2mC2/ holds trivially, as  2mC3 2mC2z.n�m�2;mC2/ D 0 is a relation in

S.n�m�2;mC2/. .B2mC3/ also holds trivially, as the statement becomes

y2mC2z.n�m�2;mC2/ D 0, which is a relation in S.n�m�2;mC2/.

Next, we will show that if j > 2mC 2 is even, .Aj�2/&.Bj�3/) .Aj /.

yj � j�1 j�2 : : :  2mC2 j j�1 : : :  2mC4z.n�m�2;mC2/

D .yj j�1/ j�2 : : :  2mC2 j j�1 : : :  2mC4z.n�m�2;mC2/

D . j�1yj�1/ j�2 : : :  2mC2 j j�1 : : :  2mC4z.n�m�2;mC2/

D  j�1.yj�1 j�2/ j�3 : : :  2mC2 j j�1 : : :  2mC4z.n�m�2;mC2/

D  j�1. j�2yj�2C 1/ j�3 : : :  2mC2 j j�1 : : :  2mC4z.n�m�2;mC2/

D  j�1 j�2 j j�1.yj�2 j�3 : : :  2mC2 j�2 : : :  2mC4z.n�m�2;mC2//

C j�3 : : :  2mC2. j�1 j j�1 j�2 : : :  2mC4z.n�m�2;mC2//

D 0C j�3 : : :  2mC2 j�3 j�4 : : :  2mC4z.n�m�2;mC2/

by .Aj�2/ and Lemma 4.13, respectively

D 0 by .Bj�3/.

Next we will show that if j > 2mC 3 is even, .Bj�1/) .Bj /. In this case, we have

 j � j�1 j�2 : : :  2mC2 j j�1 : : :  2mC4z.n�m�2;mC2/

D . j j�1 j / j�2 : : :  2mC2 j�1 : : :  2mC4z.n�m�2;mC2/

D . j�1 j j�1/ j�2 : : :  2mC2 j�1 : : :  2mC4z.n�m�2;mC2/

D 0 by .Bj�1/.
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Finally, we show that if j > 2mC 3 is odd, .Aj�1/; .Bj�1/&.Bj�2/) .Bj /. Then

 j � j�1 j�2 : : :  2mC2 j j�1 : : :  2mC4z.n�m�2;mC2/

D . j j�1 j / j�2 : : :  2mC2 j�1 : : :  2mC4z.n�m�2;mC2/

D . j�1 j j�1�yj�1C 2yj �yjC1/ j�2 : : :  2mC2 j�1 : : :  2mC4z.n�m�2;mC2/

D 2 j�2 : : :  2mC2.yj j�1/ j�2 : : :  2mC4z.n�m�2;mC2/ where the first summand is

0 by .Bj�1/, the second by .Aj�1/, and the fourth as yjC1 commutes through all  s,

D 2 j�2 : : :  2mC2. j�1yj�1C 1/ j�2 : : :  2mC4z.n�m�2;mC2/

D 0 by Lemma 4.7 and .Bj�2/. �

Theorem 4.15. The sequence

0
f�1
�! S.n/

f0
�! S.n�1;1/

f1
�! � � �

fn=2�2
�! S.n=2C1;n=2�1/

fn=2�1
�! S.n=2;n=2/

fn=2
�! 0

is an exact sequence.

Proof. We begin by showing that fmC1 ı fm D 0 for any m > �1. Exactness at the end

of the sequence follows by surjectivity of fn=2�1, so we can assume that m 6 n=2� 2.

It suffices to show that fmC1.fm.z.n�m;m/// D 0. We will show this by induction on m.

When m D �1, the result is obvious. So assume 0 6 m 6 n=2� 2.

fmC1.fm.z.n�m;m/// D fmC1. n�1 n�2 : : :  2mC2z.n�m�1;mC1//

D  n�1 n�2 : : :  2mC2.fmC1.z.n�m�1;mC1///

D  n�1 n�2 : : :  2mC2 � n�1 n�2 : : :  2mC4z.n�m�2;mC2/

D 0 by Lemma 4.14.

Hence we know that im.fm/ � ker.fmC1/ for all m > 0. We will use a dimension

counting argument to complete the proof. First recall that the hook length formula (see
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[24], for example) yields

dim.S.n�m;m// D

 
n

m

!
n� 2mC 1

n�mC 1
:

Now, looking at

fm.z.n�m;m// D 1 3 � � � 2m� 1 2mC 1 2mC 2 � � � n�1

2 4 � � � 2m n

it is clear that

dim.im.fm// > dim.S.n�m�1;m// D

 
n� 1

m

!
n� 2m

n�m
:

Similarly,

dim.S.n�m�1;mC1// D

 
n

mC 1

!
n� 2m� 1

n�m

and

dim.im.fmC1// > dim.S.n�m�2;mC1// D

 
n� 1

mC 1

!
n� 2m� 2

n�m� 1
:

So we have

dim.ker.fmC1// 6

 
n

mC 1

!
n� 2m� 1

n�m
�

 
n� 1

mC 1

!
n� 2m� 2

n�m� 1

D

 
n� 1

mC 1

!�
n.n� 2m� 1/

.n�m� 1/.n�m/
�
.n� 2m� 2/

.n�m� 1/

�
D

 
n� 1

mC 1

!
n.n� 2m� 1/� .n� 2m� 2/.n�m/

.n�m� 1/.n�m/

D

 
n� 1

mC 1

!
.n� 2m/.mC 1/

.n�m� 1/.n�m/

D

 
n� 1

m

!
n� 2m

n�m

6 dim.im.fm//;
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which completes the proof. �

Corollary 4.16. If m is even and S.n�m;m/ and S.n�m�1;mC1/ both have S.n/ (where the

underlining represents forgetting all information of the grading, as in [29]) as a composition

factor, then

S.n/ � im.fm/:

Proof. We will argue by induction on m. Firstly, note that from the James formula we

know that S.n/ is a composition factor of S.n�m;m/ if and only if it is a composition factor

of S.n�m�1;mC1/, when m is even. Now, when m D 0, the result is clear. So suppose

m ¤ 0. If S.n�mC2;m�2/ and S.n�mC1;m�1/ both have S.n/ as a composition factor, then the

induction hypothesis, along with exactness, yields our result. If neither S.n�mC2;m�2/

nor S.n�mC1;m�1/ have S.n/ as a composition factor, we know that im.fm�1/ cannot

contain S.n/, so ker.fm/ can’t. The result follows. �





Chapter 5

The branching rule and dominated

homomorphisms for e D 2

In this chapter, we wish to prove an analogue of Theorem 2.7 when e D 2, which

in turn would yield a column removal result as in Theorem 2.30 for the whole of

HomHn
.S�; S�/, not just DHomHn

.S�; S�/. Unfortunately we were unsuccessful in this

venture, but made some progress towards it, and include our ideas in this final chapter.

We end the chapter with Conjecture 5.15, where we boldly hypothesise that in the

most general scenario, with �;� 2 P l
n, HomHn

.S�; S�/ D DHomHn
.S�; S�/ when � is

regular. In practice, however, we attempt to prove a level 1 version of this in Section 5.2.

Remark. In light of the example after Theorem 2.23, we clearly need some extra con-

ditions for any analogous result, even in level 1. Indeed, the example showed that

we cannot even expect a single column removal result to hold without some extra

conditions.

5.1 The branching rule

Our approach to proving that all homomorphisms are dominated (under certain combi-

natorial conditions) will make great use of (a generalisation of) the branching rule given

in [10, Theorem 4.11]. However, there are some problems with the proof presented by

149
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the authors – in particular, the main obstacle is a reliance on the proof of the analogous

ungraded result in [3, Proposition 1.9]. The author thanks Professor Andrew Mathas

profusely for communicating a problem with the original proof of [3, Proposition 1.9],

the details of a fix in this classical case (which may be found in his “errata” for [33,

Proposition 6.1]), and an explanation of how to put this proof into the graded context

using results from [22]. Mathas’s proof (for restriction to Hn�1) is due to appear in a

short note of his.

In [22], the authors are, in part, concerned with the following disparity: the Ariki–

Koike algebra, as defined in Definition 1.6, the KLR algebra, and its cyclotomic quotient

may all be defined as algebras over an integral domain O, rather than a field. However,

Brundan and Kleshchev’s isomorphism theorem Theorem 1.25 only holds over a field.

In [22], the authors construct deformations of H �
n (viewed as an O-algebra, where

O must be what they call an idempotent subring of some field K ), which we denote by

Hn.O/. They show ([22, Theorem A]) that Hn.O/ Š HO;q;Q.Z=lZ oSn/, and that over

a field F D O=m for some maximal ideal m, the presentation of Hn.O/ coincides with

that of H �
n . Crucially, for K D Frac.O/, HK ;q;Q.Z=lZ oSn/ is semisimple, and hence

so is Hn.K / ŠHn.O/˝O K . Note that Hn.O/ is not in general a graded algebra!

Importantly for us, we see in [22, Example 4.2b)] that given a field F, the ring

O D FŒx�.x/ satisfies the desired properties, where m is the ideal generated by the

indeterminate x and K D Frac.O/.

The authors define Specht modules S�.O/ over Hn.O/ and show that S�.F/ Š

S�.O/˝O F and likewise S�.K / Š S�.O/˝O K . The Specht module S�.O/ has a basis

f O
T j T 2 Std.�/g, arising from a cellular basis of Hn.O/ and  O

T ˝O 1F D vT.

Finally, in [22, Lemma 5.12], the authors show that S�.K / has a seminormal basis

ffT j T 2 Std.�/g. This completes the background we require to prove our branching

rule; the proof will follow Mathas’s proof (in his “errata”) of [33, Proposition 6.1] very

closely.
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Definition 5.1. Let � 2P l
n and define

eki Std.�/ WD

8<:T 2 Std.�/ j iT D .: : : i i : : : i„ ƒ‚ …
k times

/

9=;
and E D E.i; k; �/ WD eki Std.�/= �, where � denotes the equivalence relation defined

by T � S if T�1.j / D S�1.j / for all j > n� k.

Note that jEj D
�
m
k

�
kŠ, where m is the number of removable i -nodes in �.

Example. Let e D 2, � D .0; 1/ and � D ..4; 3; 12/; .3; 1// 2 P2
13. The residue diagram

for � is
0 1 0 1
1 0 1
0
1

1 0 1
0

and thus we see that ek1 Std.�/ is the set of standard �-tableaux which contain the entries

13; 12; : : : ; 13� kC 1 in removable 1-nodes, and ek1 Std.�/ D ; if k > 4. For k D 1, the

four elements of E are given by the following four equivalence classes of tableaux:

fT 2 Std.�/ j T�1.n/ D .1; 4; 1/g, fT 2 Std.�/ j T�1.n/ D .2; 3; 1/g, fT 2 Std.�/ j T�1.n/ D

.4; 1; 1/g and fT 2 Std.�/ j T�1.n/ D .1; 3; 2/g.

Recall Robinson’s i -restriction functor; in [9, �4.4], the authors define a graded

analogue of this functor, which we here write as

ei;˛ WD
X
j2I
jnDi

e.j /H˛C˛i ˝H˛C˛i
� WH˛C˛i -mod �!H˛- mod :

The functor ei;˛ is simply left multiplication by the idempotent
P

j2I
jnDi

e.j / followed

by restriction to H˛ via the map shift0 WH˛ !H˛C˛i . Define ei WD
L
˛ ei;˛ where the

sum is over all ˛ 2 QC of height n� 1. Note that ei is an exact functor. Composing

such functors k times, we obtain the functor eki WHn-mod !Hn�k-mod.
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Theorem 5.2 (The graded branching rule). Let � 2 P l
n and suppose � has m removable

i -nodes. For any k 6 m, there is a filtration

f0g D V0 � V1 � � � � � V.mk/kŠ
D eki S�

such that for each 1 6 j 6
�
m
k

�
kŠ, Vj =Vj�1 Š S�j hci for some �j obtained from � by removing

k removable i -nodes, and some c 2 Z determined by j .

Remark. Note that when k D 1, this is just the branching rule in [10, Theorem 4.11],

projected onto a block according to the residue i .

Proof. We define a total order � on E as follows: for ŒT�; ŒS� 2 E, ŒT� � ŒS� if and only if

for some j > n� k we have that T�1.j / is lower than S�1.j / but T�1.d/ D S�1.d/ for

all d > j . We label the elements of E by E1; : : : ; E.mk/kŠ so that E1 � E2 � � � � � E.mk/kŠ.

Next, we construct the desired filtration as an O-filtration of eki S�.O/, where as

explained at the start of Section 5.1 we may take O D FŒx�.x/. Note that over O this will

not be a graded filtration, but when we tensor with F (to yield a filtration of eki S� over

F) we will see that we do have a graded filtration.

Now, we define V O
j WD h 

O
T j T 2 El for some l 6 j iO. To see that V O

j is in general

an Hn�k.O/-module, it suffices to note that for any generator h 2 Hn�k.O/ and any

T 2 El , h O
T D

P
aS 

O
S and for each S with aS ¤ 0 either S � T or S C T. This is a

consequence of the set-up of seminormal forms in [22].

If S � T, S 2 El so  O
S 2 V

O
j . If S C T, we have Shape.S#n�t / P Shape.T#n�t / for all

0 6 t 6 k, with equality when t D k. If there is equality for each 0 6 t 6 k, then T D S,

which is not possible. So let t be minimal such that Shape.S#n�t / C Shape.T#n�t /.

So T�1.n� t C 1/ ¤ S�1.n� t C 1/ but T�1.n� t 0/ D S�1.n� t 0/ for all t 0 < t � 1. Since

Shape.S#n�t / C Shape.T#n�t /, S�1.n� tC1/must be in a higher row than T�1.n� tC1/.

So S 2 El 0 for some l 0 < l , and in particular  O
S 2 V

O
j .

For each j , suppose the equivalence class Ej consists of tableaux with n; n �

1; : : : ; n� k C 1 in nodes A1; A2; : : : ; Ak respectively. Define �j WD � n fA1; : : : ; Akg.
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We will show that V O
j =V

O
j�1 Š S�j .O/, and subsequently Vj =Vj�1 Š S�j hci, where

Vj WD V O
j ˝O F and F D O=m for some maximal ideal m. In particular, we show that

the map ‚O
j W V

O
j =V

O
j�1 ! S�j .O/ defined by  O

T C Vj�1 7!  O
T#n�k

for each T 2 Ej

is an isomorphism. It is clear that dimV O
j =V

O
j�1 D dim S�j .O/ and thus that ‚O

j is an

isomorphism of vector spaces. It remains to show that‚O
j is an Hn.O/-homomorphism.

Recalling that S�.K / Š S�.O/˝O K , and considering S�.O/ as an O-submodule

of S�.K /, we see that ‚O
j is an Hn.O/-homomorphism if and only if ‚O

j ˝ 1K is an

Hn.K /-homomorphism, so we may work over K , where Hn.K / is semisimple and

S�.K / has a seminormal basis ffT j T 2 Std.�/g; S�j .K / has an analogous seminormal

basis.

We define a new homomorphism

‚K
W eki S�.K / �!

.mk/kŠM
jD1

S�j .K /

by fT 7! fT#n�k . It is clear that ‚K is a vector space isomorphism. From the proof of

[22, Theorem 5.7], it can be seen that there is a unitriangular transition matrix between

the bases ffT j T 2 Std.�/g and f O
T j T 2 Std.�/g and thus V K

j WD V
O
j ˝O K has a basis

ffT j T 2 El for some l 6 j g. We see that ‚K .V K
j / D

Lj
iD1 S�i .K /, so ‚K induces

a map V K
j =V K

j�1 ! S�j .K / for each 1 6 j 6
�
m
k

�
kŠ. Furthermore, analogously to

Mathas’s (revised) proof of [33, Proposition 6.1], ‚K is an Hn�k.K /-homomorphism,

and it follows similarly that‚K
j .mCV

K
j�1/ D ‚

K .m/ for allm 2 V K
j and 1 6 j 6

�
m
k

�
kŠ.

This suffices to prove that each‚K
j is an Hn�k.K /-homomorphism; it follows that we

have an O-filtration, and tensoring with F D O=m yields the desired filtration, as

ungraded modules.

That‚F
j W Vj =Vj�1 ! S�j hci is an isomorphism of graded modules follows from the

combinatorics; the fact that grdimVj =Vj�1 D grdim S�hci is clear, as is the degree shift

by c D dA1.�/C dA2.� n fA1g/C � � �C dAk .� n fA1; A2; : : : ; Ak�1g/. �

Remark. We have been slightly sloppy in the statement of Theorem 5.2 and not explicitly
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stated over which algebra we are considering the Specht module S�. In fact, the proof

works entirely over H �
n , but S�j� is a module over both H �

n and Hn. So in fact we have

filtrations for both!

Example. Let e D 2, l D 1, � D .0/ and � D ..3; 2; 1//. Then we have the filtration

f0g D V0 � V1 � V2 � V3 � V4 � V5 � V6 D e
2
0 S�

where for each j , Vj WD hvT j T 2 El for some l 6 j iF and

E1 D fT 2 Std.�/ j T�1.n/ D .1; 3/ and T�1.n� 1/ D .2; 2/g;

E2 D fT 2 Std.�/ j T�1.n/ D .1; 3/ and T�1.n� 1/ D .3; 1/g;

E3 D fT 2 Std.�/ j T�1.n/ D .2; 2/ and T�1.n� 1/ D .1; 3/g;

E4 D fT 2 Std.�/ j T�1.n/ D .2; 2/ and T�1.n� 1/ D .3; 1/g;

E5 D fT 2 Std.�/ j T�1.n/ D .3; 1/ and T�1.n� 1/ D .1; 3/g;

E6 D fT 2 Std.�/ j T�1.n/ D .3; 1/ and T�1.n� 1/ D .2; 2/g:

Then we have the following isomorphisms:

V1 Š S..2;12//h1i; V2=V1 Š S..22//h0i;

V3=V2 Š S..2;12//h�1i; V4=V3 Š S..3;1//h�1i;

V5=V4 Š S..22//h�2i; V6=V5 Š S..3;1//h�3i:

It can be checked that the graded dimensions of these six (shifted) Specht modules

sum to v4C 4v2C 6C 4v�2C v�4 D .vC v�1/4 D grdim S..3;2;1//.

5.2 Dominated homomorphisms for e D 2

In this section, we will mostly be concerned with the case l D 1 (cf. Section 3.1) though

we end it with a conjecture for arbitrary l . Until further notice, fix l D 1.
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For the most part, we will make steps towards proving that if l D 1, e D 2, � `2 n

and � ` n then HomHn
.S�; S�/ D DHomHn

.S�; S�/. Sadly, this work is currently

incomplete, but we have several conjectures we are confident in.

Definition 5.3. If � ` n and r 2N, we define the rth ladder of Œ�� to be

Lr D f.i; j / 2 Œ�� j i C .e� 1/.j � 1/ D rg:

If r is maximal such that Lr ¤ ;, then we call Lr the outer ladder of Œ��.

Remark. Note that all nodes in a given ladder Lr have the same residues, so we may

talk of the residue of a ladder.

For the remainder of the section, we fix e D 2. Thus the ladder Lr D f.i; j / 2 Œ�� j

i C j � 1 D rg. Furthermore, we will assume throughout that � is 2-regular.

Definition 5.4. If � `2 n with an outer ladder of size k, and N� is the partition of n� k

obtained by removing the outer ladder of �, then we define Std. N�/C to be the set of all

standard �-tableaux with entries n� kC 1; n� kC 2; : : : ; n in order going up the outer

ladder of �.

Henceforth we will assume that � `2 n such that Œ�� has an outer ladder of size k,

residue i . By Theorem 5.2, we see that eki S� has a bottom Specht factor (and therefore

submodule) isomorphic to a shift of S N�, given by hvT j T 2 Std. N�/CiF. To emphasise that

this is the degree shifted copy of S N� in S�, we denote it by S N�C .

Definition 5.5. Define TC
N�

to be the P-minimal tableau in Std. N�/C. That is, the tableau

T N� with an outer ladder of size k adjoined to it, with entries n�kC1; : : : ; n up the outer

ladder.

Proposition 5.6. S N�C is generated by zC
N�
WD v

T
C

N�

as an Hn�k-module. Furthermore,

 
T
C

N�

D  n�k n�k�1 : : :  n�tk�1 n�kC1 : : :  n�tk�2 : : :  n�t2
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where ti is the i th triangle number. w
T
C

N�

is fully commutative, and therefore this does not depend

on any choice of preferred reduced expression.

Proof. w
T
C

N�

is fully commutative by Lemma 1.9. It is clear that the above is a reduced

expression for  
T
C

N�

. �

Example. 1. Let � D .3; 2; 1/. Then k D 3, T N� D 1 3 6
2 5
4

and  
T
C

N�

D  3.

2. Let � D .4; 3; 2; 1/. Then k D 4, T N� D 1 4 6 10
2 5 9
3 8
7

and  
T
C

N�

D  6 5 4 7.

Definition 5.7. If � ` n, we call � a 2-core if � D .m;m� 1;m� 2; : : : ; 1/.

Remark. One may define an e-core for arbitrary e, but since the only place we will call

on e-cores is in Lemma 5.8, we give the restricted (but equivalent) definition above.

It is a well known result that if � is a 2-core, then S� D D�.

Lemma 5.8. Let � `2 n and � ` n and suppose ' 2 HomHn
.S�; S�/ is non-zero. Then

'.zC
N�
/ ¤ 0. In particular, '.S N�C/ ¤ 0.

Proof. The lowest node in the outer ladder of Œ�� is .k; �k/. Let � D .�1 � �k C 1; �2 �

�k C 1; : : : ; 1/. This partition can be thought of as the first k rows of �, from column

�k to the right. � ` tk is a 2-core, and therefore S� is an irreducible Htk -module, and

thus any non-zero element of S� generates it. In particular, z� D hzC
N� D h 

T
C

N�

z� for

some h 2 Htk . Since the first �k � 1 columns of T� and TC
N�

agree, expressions for the

basis of S� can be chosen in such a way that  
T
C

N�

D shiftn�tk . TC
N�

/. It is now clear

that shiftn�tk .h/z
C

N�
D shiftn�tk .h TC

N�

/z� D z�, and so zC
N�

generates S�. The result

follows. �

Example. If k D 3,

z� D shiftn�tk .� 3 4 5/z
C

N�
D shiftn�tk .� 3 4 5/ n�3z� D � n�3 n�2 n�1 n�3z�:
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Definition 5.9. If� ` n, we define the i -signature of� to be the sequence ofC and� signs

obtained by examining the addable and removable i -nodes of Œ�� from top to bottom,

writing aC for each addable i -node and a � for each removable i -node, and define the

reduced i -signature of � to be the subsequence of the i -signature obtained by successively

deleting adjacent pairs C�. We call the removable i -nodes of Œ�� corresponding to the

� signs in the reduced i -signature the normal i -nodes of �.

It is a well known fact (see [28, Theorem 7.4] for example) that if � `e n has x normal

i -nodes then exi D� ¤ 0.

Example. Let e D 2 and � D .6; 5; 3; 1/. Consider the addable and removable nodes of

Œ��:

01
01

10
01

0

:

So � has 0-signature CC�CC, reduced 0-signature CCC and therefore no normal

0-nodes. � has 1-signature ��C� and reduced 1-signature ��, corresponding to the

nodes at the ends of the first two rows. Thus, these two nodes are normal 1-nodes. In

particular, e21 D� ¤ 0.

Lemma 5.10. If � `e n has x normal i -nodes and � ` n with HomHn
.S�; S�/ ¤ 0 then �

has at least x removable i -nodes.

Proof. Since HomHn
.S�; S�/ ¤ 0, ŒS� W D�� ¤ 0. Thus, by the above comment we have

that exi D� ¤ 0, so exi S� ¤ 0. Recalling standard facts about the functors ei from the

proof of Theorem 3.2, we see that � must have at least x removable i -nodes. �

Remark. All i -nodes in the outer ladder of Œ�� are normal nodes, and therefore we may

assume that � has at least k removable i -nodes.

From this point on we have many conjectures and few proofs. We will assume

throughout that HomHn
.S�; S�/ ¤ 0, as otherwise our intended result holds trivially.

The following conjecture is almost a refinement of Lemma 5.10, except that we only
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consider the normal i -nodes in the outer ladder of Œ��. We provide a counterexample

to a corresponding statement for all normal i -nodes.

Conjecture 5.11. Let � `2 n and � ` n, and suppose the outer ladder of Œ�� has residue i .

Suppose ' 2 HomHn
.S�; S�/ with '.z�/ D

P
T2Std.�/ aTvT. Whenever aT ¤ 0 and j is in

the outer ladder of T�, j is in a removable i -node of T.

Remarks.

1. It it certainly not the case that the following stronger statement holds: suppose

' 2 HomHn
.S�; S�/ with '.z�/ D

P
T2Std.�/ aTvT. Whenever aT ¤ 0 and j is in a

normal i -node of T�, j is in a removable node of T. For an easy counterexample

to this, let � D .4; 1/ and � D .2; 13/. For any p, there is a homomorphism

' W z� 7! vT where T� D 1 3 4 5
2

and T D 1 3
2
4
5

. 2 is in a normal 1-node of T�,

but not a removable node of T. Note however that the outer ladder of T� consists

only of the node containing the entry 5, which is in a removable node of T.

2. If k D 1 or 2, the conjecture is easily seen to be true by examining residues of

standard tableaux.

We will be interested in the filtrations of eki S� and eki S�. For the former, we are in

fact interested in the bottom factor, which is a submodule. From now on, we shall thus

let E1 � E2 � � � � denote the equivalence classes of standard �-tableaux as in the proof

of Theorem 5.2. Analogously to the equivalence classesEj , we may define equivalence

classes E 0j , where we replace each n�m in the definition of Ej with n� tm. These

equivalence classes involve tableaux with n� tk�1; n� tk�2; : : : ; n� 1; n in removable

nodes. Although we have a natural correspondence Ej $ E 0j , Ej and E 0j do not

necessarily contain the same number of tableaux. Note that this definition relies on

Conjecture 5.11.
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Conjecture 5.12. Let ' 2 HomHn
.S�; S�/ with

'.z�/ D
X
T2E 0r

aTvTC
X
S2E 0

j

j<r

aSvS for some aT; aS 2 F

and some r . Then for each T 2 E 0r with aT ¤ 0 and each m D 1; 2; : : : ; k� 1, n� tm %T d for

all d > n� tm.

In particular, this conjecture says that in some sense the order of entries in the outer

ladder is preserved – this property is desirable for our approach.

Example. Let p D 0, � D .7; 6/ and � D .4; 4; 2; 2; 1/. Then HomHn
.S�; S�/ is spanned

by ' W z� 7! 3vT1 C 6vT2 C 3vT3 C 3vT4 � 6vT5 � 3vT6 C vT7 where

T1 D 1 3 9 11
2 5 1013
4 7
6 8
12

; T2 D 1 3 9 11
2 5 1013
4 6
7 12
8

; T3 D 1 3 9 11
2 5 1012
4 7
6 13
8

; T4 D 1 3 9 11
2 4 1013
5 7
6 12
8

;

T5 D 1 3 8 11
2 5 1013
4 7
6 12
9

; T6 D 1 3 5 7
2 9 1113
4 10
6 12
8

; T7 D 1 3 5 7
2 4 6 9
8 11
1013
12

:

It is easy to see that T7 is in the (4-)highest equivalence class out of all 7 tableaux

above, and is the only tableau from this class which occurs here. Since k D 2, the

conjecture predicts only that 12%T7 13, which is seen to hold.

Remarks.

1. The conclusion of Conjecture 5.12 is certainly false if we don’t include the condi-

tion that T 2 E 0r – in the above example, 13%T3 12!

2. If k D 1, the conjecture is holds trivially.

Conjecture 5.13. Assume ' 2 HomHn
.S�; S�/ is as in the statement of Conjecture 5.12.

Then for each S 2 E 0j with j < r and aS ¤ 0, there exists T 2 E 0r such that aT ¤ 0 and T B S.
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Remark. Examples suggest that perhaps only one tableau from E 0r occurs, and with

coefficient 1; if this were true, then in fact there is a unique maximal tableau T such that

aT ¤ 0 and T dominates all other tableaux S for which aS ¤ 0. This can be seen to be

the case in the previous example. Here, T7 dominates all 6 other tableaux, which are

pairwise incomparable in the dominance order.

Example. Let p D 0, � D .7; 6; 5/ and � D .7; 4; 22; 13/. Now k D 3 so perhaps we have

a more interesting example. There is a homomorphism ' W z� 7! 8vT1 �4vT2C2vT3CvT4

where

T1 D 1 4 9 12131618
2 5 1417
3 10
6 15
7
8
11

; T2 D 1 4 7 12131618
2 5 1417
3 8
6 15
9
10
11

;

T3 D 1 4 7 10131618
2 5 1417
3 8
6 11
9
12
15

; T4 D 1 4 7 10131618
2 5 8 11
3 14
6 17
9
12
15

:

This time, the tableaux are totally ordered (T1 C T2 C T3 C T4) and we see that the

predictions of Conjectures 5.12 and 5.13 hold. Again, we see that the most dominant

tableau occurs with coefficient 1.

Take a filtration of eki S� as in Theorem 5.2. For ' 2 HomHn
.S�; S�/, there exists

some r such that '.zC
N�
/ � Vr but '.zC

N�
/ › Vr�1. Composing with the natural surjection

Vr � Vr=Vr�1 yields a homomorphism S N�C ! S N�hci where N� and c are given in

Theorem 5.2. Let S N�C denote the copy of S N�hci seen in Vr=Vr�1 – by this we mean that

S N�C has a basis of �-tableaux in the equivalence class Er .

Conjecture 5.14. Suppose e D 2, � `2 n and � ` n. Then we have HomHn
.S�; S�/ D

DHomHn
.S�; S�/.
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Proof assuming Conjectures 5.11–5.13. We prove by induction on n. If n D 1, the result is

trivial. So suppose n > 1 and let ' 2 HomHn
.S�; S�/. By the paragraph above, there

is a homogeneous Hn�k-homomorphism N' W S N� ! S N�. By induction, N' is dominated.

Suppose

'.z�/ D
X
T2E 0r

aTvTC
X
S2E 0

j

j<r

aSvS for some aT; aS 2 F:

Then by Proposition 5.6 and Conjectures 5.11–5.13,

'.zC
N�
/ D '. 

T
C

N�

z�/ D
X
T2E 0r

aT TC
N�

vTC
X
S2E 0

j

j<r

aS TC
N�

vS

D

X
T2E 0r

aTvNTC C

X
UCT
T2E 0r
aT¤0

bUvU

where NTC D w
T
C

N�

T has the entries n� kC 1; n� kC 2; : : : ; n up the nodes of � n N� in

order. It follows that

N'.z N�/ D
X
ST2Er

aTv NST ;

where ST D w
T
C

N�

T (D NTC from above). Since N' is dominated, it follows that for each

ST 2 Er such that aT ¤ 0, NST is dominated, so NTC is dominated. Since T P NTC the result

follows by Corollary 2.2(1). �

Example. We build on our previous example, where p D 0, � D .7; 6; 5/ and � D

.7; 4; 22; 13/. Here, '.z�/ D vT4 C
P
SCT4

aSvS.

'.zC
N�
/ D '. 15z�/ D vs15T4 C

X
SCT4

aSvs15S:

Noticing that 16; 17 and 18 are in nodes .4; 2/; .2; 4/ and .1; 7/ of s15T4 respectively, we

have a homomorphism N' W S N� ! S N� where N� D .6; 5; 4/ and N� D .6; 4; 2; 13/ given by
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taking a quotient of tableaux from less dominant classes. That is,

N'.z N�/ D vU where u D 1 4 7 101315
2 5 8 11
3 14
6
9
12

is the tableau obtained from s15T4 by removing the nodes containing 16; 17 and 18.

We end with one final conjecture, which generalises the previous one to higher

levels, as well as generalising Theorem 2.7 to include the case where the �i may not

be distinct. First, we note that the level 1 notion of e-regular may be extended to the

higher level notion of regular multipartitions; we will not discuss the definition here. It

will suffice to note the following:

1. the definition depends on e and �;

2. these multipartitions are often called conjugate Kleshchev in the literature;

3. the set of regular multipartitions indexes a family of Specht modules with non-

isomorphic simple heads – these simple heads form a complete set of simple

H �
n -modules.

Conjecture 5.15. Suppose � 2P l
n is regular. Then HomHn

.S�; S�/ D DHomHn
.S�; S�/.
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For the reader’s convenience we conclude with an index of the notation we use in this

thesis. We provide references to the relevant sections.

F a field

N the set of positive integers

Sn the symmetric group of degree n 1.1

s1; : : : ; sn�1 the Coxeter generators of Sn 1.1

l the Coxeter length function on Sn 1.1

6L the left order on Sn 1.1

4 the Bruhat order on Sn 1.1

shiftk the shift homomorphism Sm ! Sn 1.1

HF;q.Sn/ the Iwahori–Hecke algebra of type A 1.2

HF;q;Q.Z=lZ oSn/ the Ariki–Koike algebra 1.3

I the set Z=eZ (or Z, if e D1) 1.4

� a quiver with vertex set I 1.4

i ! j there is an arrow from i to j (but no arrow from j to i ) in

�

1.4

i � j there are arrows from i to j and from j to i in � 1.4

˛i simple root labelled by i 2 I 1.4

ƒi fundamental dominant weight labelled by i 2 I 1.4

. j / invariant bilinear form 1.4

QC the positive root lattice 1.4

163
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ƒ� the dominant weight ƒ�1 C � � �Cƒ�l 1.4

def.˛/ .ƒk j˛/�
1
2
.˛ j˛/ 1.4

j�j the number of nodes of a (multi)partition � 1.5

P l
n the set of l-multipartitions of n 1.5

Q the dominance order on multipartitions or tableaux 1.5

Œ�� the Young diagram of a multipartition � 1.5

∅ the unique partition or l-multipartition of 0 1.5

�0 the conjugate (multi)partition to � 1.5

Std.�/ the set of standard �-tableaux 1.6

T0 the conjugate tableau to T 1.6

i #T j i and j lie in the same column of T, with j lower than i 1.6

i .T j i and j lie in the same component of T, with j strictly lower

and to the left of i

1.6

i wT j i .T j or i lies in an earlier component of T than j 1.6

T� the �-tableau obtained by writing 1; : : : ; n in order down

successive columns

1.6

T� the �-tableau obtained by writing 1; : : : ; n in order along

successive rows

1.6

wT the permutation for which wTT� D T 1.6

wT the permutation for which wTT� D T 1.6

Shape.T#m/ the l-multicomposition formed from the nodes of T whose

entries are less than or equal to m

1.6

resA the residue of a node A 1.7

cont.�/ the content of a multipartition � 1.7

def.�/ the defect of a multipartition � 1.7

i.T/ the residue sequence of a tableau T 1.7

i� i.T�/ 1.7

i� i.T�/ 1.7
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deg.T/ the degree of a tableau T 1.7

codeg.T/ the codegree of a tableau T 1.7

M the module obtained from M by forgetting the grading 1.8

M hki the graded module M with the grading shifted by k 1.8

Hn the KLR algebra of degree n 1.9

shiftk the shift homomorphism Hˇ !H˛ 1.9

H �
n the cyclotomic KLR algebra determined by � 1.9

BA the column Garnir belt corresponding to a Garnir node A 1.10

GA the Garnir tableau corresponding to a Garnir node A 1.10

gA the (column) Garnir element corresponding to a Garnir

node A

1.10

S� the column Specht module corresponding to a multiparti-

tion �

1.10

BA the row Garnir belt corresponding to a Garnir node A 1.10

gA the (row) Garnir element corresponding to a Garnir node

A

1.10

S� the row Specht module corresponding to a multipartition

�

1.10

z� the standard generator of S� 1.10

z� the standard generator of S� 1.10

 T  t1 : : :  tb , where st1 : : : stb is the preferred reduced expres-

sion for wT

1.10

vT  Tz� 1.10

D� the head of S� 1.11

d�� the composition multiplicity ŒS� W D�� 1.12

De;p the decomposition matrix of HF;q.Sn/ with qe D 1 and

char.F/ D p

1.12

Ap the adjustment matrix satisfying De;p D De;0Ap 1.12
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d��.v/ the graded composition multiplicity ŒS� W D��v 1.12

De;p.v/ the graded decomposition matrix of HF;q.Sn/ with qe D 1

and char.F/ D p

1.12

Ap.v/ the graded adjustment matrix satisfying the equality

De;p.v/ D De;0.v/Ap.v/

1.12

Std�.�/ the set of �-dominated standard �-tableaux 2.1

Std�.�/ the set of �-row-dominated standard �-tableaux 2.1

DHomHn
.S�; S�/ the space of dominated homomorphisms from S� to S� 2.2

DHomHn
.S�; S�/ the space of dominated homomorphisms from S� to S� 2.2

M~ the graded dual of a graded module M 2.3

Stdlr.�/ the set of �-tableaux in which the entries 1; : : : ; nl appear

strictly to the left of the entries nlC 1; : : : ; n

2.4

�l#�r the multipartition obtained by joining the left and right

parts �l; �r together

2.6

Tl#Tr the tableau obtained by joining the left and right parts Tl; Tr

together

2.6

D fvT j T 2 Std.�/g\ e.i�/ S� D fvT j iT D i�g 3.2

Dom.�/ the set of domino tableaux 3.2

‰
y

#
x

‰y‰y�2 : : : ‰x 3.4

‰
y

"
x

‰x‰xC2 : : : ‰y 3.4

Ti;j the tableau with dominoes fŒ2; 3�; Œ4; 5�; : : : ; Œb; bC 1�; Œj �

1; j �g n fŒi � 1; i �g in the leg

3.5

D
e;p
2 the submatrix of the De;p.v/ for H D HF;q.Sn/ which cor-

responds to two-part partitions

4

Hn.O/ Hu and Mathas’s O-deformed cyclotomic KLR algebra 5.1

Lk the kth ladder of Œ�� 5.2
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