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Abstract

This thesis concerns representation theory of the symmetric groups and related algebras.

In recent years, the study of the “quiver Hecke algebras”, constructed indepen-
dently by Khovanov and Lauda and by Rouquier, has become extremely popular. In
this thesis, our motivation for studying these graded algebras largely stems from a
result of Brundan and Kleshchev — they proved that (over a field) the KLR algebras
have cyclotomic quotients which are isomorphic to the Ariki-Koike algebras, which
generalise the Hecke algebras of type A4, and thus the group algebras of the symmetric
groups. This has allowed the study of the graded representation theory of these alge-
bras. In particular, the Specht modules for the Ariki-Koike algebras can be graded; in
this thesis we investigate graded Specht modules in the KLR setting.

First, we conduct a lengthy investigation of the (graded) homomorphism spaces
between Specht modules. We generalise the row and column removal results of Lyle and
Mathas, producing graded analogues which apply to KLR algebras of arbitrary level.
These results are obtained by studying a class of homomorphisms we call dominated.
Our study provides us with a new result regarding the indecomposability of Specht
modules for the Ariki-Koike algebras.

Next, we use homomorphisms to produce some decomposability results pertaining
to the Hecke algebra of type 4 in quantum characteristic two.

In the remainder of the thesis, we use homogeneous homomorphisms to study some
graded decomposition numbers for the Hecke algebra of type A. We investigate graded
decomposition numbers for Specht modules corresponding to two-part partitions. Our
investigation also leads to the discovery of some exact sequences of homomorphisms

between Specht modules.
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Introduction

In group theory, the symmetric groups are among the most classically studied; their
importance stems from Cayley’s Theorem — every group may be embedded in some
symmetric group. Their presence permeates mathematics — from algebra to combina-
torics, and even areas of physics, the symmetric groups’ ubiquity can be felt. A common
perspective when studying groups is the study of their representations, or actions on

vector spaces.

Despite the strength of Cayley’s Theorem, when studying the representation the-
ory of finite groups, the symmetric groups are especially suitable candidates. Their
inherently vast amount of internal symmetry gives rise to their combinatorial nature;
studying them via combinatorics eliminates the need for much of the heavy-duty ma-

chinery often seen in group theory.

Over the complex numbers, the representation theory of the symmetric group dates
back over a century, with the influences of Young [44] and Specht [42] still visible today
— the combinatorics of tableaux and indeed the construction of Specht modules were
their contributions. Decades later, in the 1970s, James developed much of our modern
standpoint on the subject. In particular, James constructed all irreducible modules over
arbitrary fields, as quotients of Specht modules. An excellent introduction to the subject

can be found in [24].

Later, in the series of papers [12, 13, 14], Dipper and James laid the foundations for
and built up the theory of the Iwahori-Hecke algebras of symmetric groups, or Hecke

algebras of type A. Their principal motivation for studying these algebras was that their

9



10 Introduction

modular representation theory provides a bridge between that of the symmetric groups
and that of the general linear groups GL, (¢) over fields of non-defining characteristic —
that is, over any field whose characteristic does not divide g. In the case of defining
characteristic, such a connection has been known since the work of Schur over a century
ago, via his construction of the algebras which now bear his name.

Almost a decade later, Ariki and Koike [2] generalised these Hecke algebras beyond
type A; here they defined Hecke algebras for the complex reflection group G(I/,1,n) =
Z/17.2 S,. This theory of Ariki—-Koike algebras was further developed in [3], among
others, and a survey of the subject can be found in [34]. At around the same time,
the idea was independently generalised even further to the cyclotomic Hecke algebras of
Broué and Malle [6]; here, they constructed Hecke algebras for a larger set of complex
reflection groups, including some of the exceptional types, motivated by the modular
representation theory of algebraic groups. Ariki also generalised his construction to all
complex reflection groups G(I, p,n) in [1].

In 2009, Khovanov and Lauda [27], and independently, Rouquier [39], defined a
family of Z-graded algebras which categorify the negative part of quantum groups
associated to Kac-Moody algebras. These algebras are known as quiver Hecke algebras,
or KLR algebras; in this thesis we shall favour the latter name. Khovanov and Lauda’s
construction of these algebras was purely diagrammatic, whereas Rouquier presented
them algebraically, and in more generality. Remarkably, Brundan and Kleshchev [8]
were able to show that the Ariki-Koike algebras were isomorphic to certain cyclotomic
quotients of these KLR algebras (of affine type A) — this result yields a grading on the
Ariki-Koike algebras; in particular, in positive characteristic the group algebras of the
symmetric groups are non-trivially Z-graded! This, in part, has given rise to the KLR
algebras receiving an abundance of attention since their inception.

In this thesis, Brundan and Kleshchev’s isomorphism is seen as our main motivation
for studying the KLR algebras. They allow us to study the graded representation theory
of the Hecke algebras of type A and, more generally, of the Ariki-Koike algebras. We

place an emphasis on studying the (graded) representation theory of these algebras via
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(graded) homomorphisms between their Specht modules. We shall begin, in Chapter 1,
with a detailed background of all necessary material. We will introduce our main
players — the symmetric groups, Hecke algebras of type A, Ariki-Koike algebras and
KLR algebras — and outline the combinatorics and representation theory relevant to
their study. We shall also give a brief overview of graded algebras.

In Chapter 2, we look at the KLR algebras of affine type A in full generality. Here,
we study the graded homomorphism spaces between Specht modules. Fayers and Lyle
[18] and Lyle and Mathas [30] proved row and column removal theorems for these ho-
momorphism spaces, for the symmetric groups and Hecke algebras respectively, in the
ungraded setting. In this chapter, we provide graded versions of these theorems, while
at the same time generalising them to higher levels so that they apply to all (degenerate)
Ariki-Koike algebras. More precisely, we prove analogues of these theorems for the
KLR algebras of affine type A.

In fact, our results apply not to all homomorphisms between two given Specht
modules but only to those of a certain type, which we call dominated homomorphisms.
However, in many cases (for example, for the symmetric group in odd characteristic)
every homomorphism between two Specht modules is dominated, so our results ap-
ply generally; in particular, via the Brundan-Kleshchev isomorphism, we recover the
original row and column removal theorems of Fayers and Lyle and of Lyle and Mathas.
Along the way, we produce a new result that Specht modules for the Ariki-Koike
algebras are always indecomposable, under some minor conditions. This chapter is
based on joint work with Fayers, and appears in [19]. The main result of the chapter is
Theorem 2.30 (generalised graded column removal).

In Chapter 3, largely taken from [43], we make a contribution to the problem of
determining which Specht modules are decomposable. Here, we concentrate on the
level 1 (i.e. the Hecke algebra of type A) situation. Over any field whose characteristic
is not 2, it is known that Specht modules for the symmetric group are indecomposable.
Likewise, when the quantum characteristic of a Hecke algebra of type A is not 2, an

identical statement holds true. We determine which Specht modules indexed by hook
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partitions are decomposable in quantum characteristic 2. This is achieved from the
KLR algebra perspective, though we do not invoke any graded machinery here; instead,
the bulk of the work involves constructing an endomorphism for a Specht module
and using it to decompose the Specht module into generalised eigenspaces. The result
arrived at is Theorem 3.41, which states that when char(IF) # 2, the Specht module
S(a.10) is indecomposable if and only if @ + b is even or b = 2 or 3 with char(F) | [5].

Next, in Chapter 4, we study the graded decomposition numbers corresponding to
two-part partitions, for Hecke algebras of type A. Once again, we make extensive use
of homomorphisms in our endeavour. This chapter contains work which is in progress;
here we present a complete solution to the problem in quantum characteristic 2, along
with an interesting result regarding exact sequences of homomorphisms between Specht
modules.

Finally, Chapter 5 is an attempt at generalising the results of Chapter 2. We con-
centrate on attempting to prove that in level 1 when e = 2, all homomorphisms are
dominated, subject to an extra condition on the partition indexing the domain. Our
approach begins with us proving a graded branching rule for restriction to a subalge-
bra, generalising existing results of this flavour. Using this, we are able to prove our
desired result with the aid of three conjectures which put conditions on the indexing
tableaux occurring in the image of a generator under a homomorphism. We end with
a conjecture which extends this beyond level 1.

We conclude the thesis with an index of notation for the reader’s reference.



Chapter 1

Background

In this chapter we recall some background and set up some notation.

1.1 The symmetric group

Let S, denote the symmetric group of degree n. Let s1,...,s,—1 denote the standard
Coxeter generators of S, i.e. s; is the transposition (i,7 + 1). Given w € &, a reduced
expression for w is an expression w = s;, ...s;; with [ as small as possible; we call
I = l(w) the length of w.

We will need to use two natural partial orders on S,. If w,x € &, then we say
that x is smaller than w in the left order (and write x <p w) if [(w) = [(wx~1) +I(x);
this is equivalent to the statement that there is a reduced expression for w which has a
reduced expression for x as a suffix.

More important will be the Bruhat order on S,: if w,x € S,, then we say that w is
smaller than x in the Bruhat order (and write w < x) if there is a reduced expression for
x which has a (possibly non-reduced) expression for w as a subsequence. In fact [23,
Theorem 5.10], if w < x, then every reduced expression has a reduced expression for w
as a subsequence.

The following proposition gives an alternative characterisation of the Bruhat order.

Proposition 1.1 [23, §5.9]. Suppose w,x € S,. Then w < x if and only if there are w =

13



14 1.2. The Iwahori-Hecke algebra

Wo, W1, ..., W, = X such that for each 1 <i < r we have w; = (u;, v;)w;j—1, where 1 < u; <

vi <nand wil (i) < wil (v).

Later we shall need the following lemma; in fact, this is a special case of Deodhar’s

‘property Z’ [11, Theorem 1.1].

Lemma 1.2. Suppose w,x € S, with x < w. If [(s;w) < [(w) while I(s;x) > [(x), then

SiX S w.

Proof. Sincel(s;w) < I(w), w has areduced expression s beginning with s;. We can find a
reduced expression for x as a subexpression of s, and this subexpression cannot include
the first term s;, since /(s; x) > /(x). So we can add the initial s; to the subexpression to

get a reduced expression for s; x as a subexpression of s. |

Occasionally, it will be useful to talk about fully commutative elements of the sym-

metric group:

Definition 1.3. We call an element w € &, fully commutative if we can go from any
reduced expression for w to any other via application of only the commuting braid

relations s;s; = s;s; for |i — j| > 1.

We end this section by defining some very natural and useful homomorphisms.
Suppose 1 < m < nand 0 < k < n—m, and define the homomorphism shifty : S,, — S,

by s; = s;+x for every i. Note that if k = 0, this is the natural embedding.

1.2 The Iwahori-Hecke algebra
We will fix a field IF throughout this thesis.

Definition 1.4. For any ¢ € F we define the Iwahori—-Hecke algebra H = H 4(S,) of the

symmetric group &, (also referred to as the Hecke algebra of type A) to be the unital
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associative [F-algebra with presentation

(Ti —g)(T; +1) =0for1 <i <n—1
TyooosTnoy | TiTj = T;Tifor1<i < j—1<n=2

TiTisaTi = TiaTiTigr for 1 <i<n—2

Remark. Note that setting ¢ = 1 recovers the Coxeter presentation for the symmetric
group. The degenerate case ¢ = 0 behaves very differently, and so we will assume that

g # 0 throughout.

Definition 1.5. Define e € {2,3,4,...} to be the smallest integer such that 1 + ¢ + ¢ +
-++¢¢"! = 0. If no such integer exists, we define ¢ = co. We call e the quantum

characteristic of H.

An excellent introduction to these algebras and their representation theory can be

found in [33].

1.3 The Ariki-Koike algebras

The Iwahori-Hecke algebras, or Hecke algebras of type A are deformations of the sym-
metric group. Soon after their study by Dipper and James, this theme was extended
to studying Hecke algebras of type B. In 1994, Ariki and Koike [2] further generalised
this work; they defined Hecke algebras for the complex reflection groups Z/1Z.: S,
or type G(I,1,n) as given in the Shephard-Todd classification of complex reflection

groups [41].

Definition 1.6. Given parameters ¢ € Fand Q = (Q1,...,0)) € F!, we define the

Ariki-Koike algebra H 4,0 (Z/1Z.2 S,) to be the unital associative F-algebra with pre-
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sentation

(To—Q1)(To—0Q2)...(To— Q) =0
(T; —q)(T; +1) =0for 1 <i <n-—1
To- T T ToThToTy = ' ToT1To

TiT; = T;T; for0<i < j—1<n—2

TiTi1Ti = Ti1 TiTigq for 1 <i <n—2

Remark. Setting [ = 1, we recover the Hecke algebra of type A. Similarly, when / = 2,
the Hecke algebra of type B may be recovered from this algebra, which generalises
these previous constructions. As in type 4, the Ariki-Koike algebra has an associated
quantum characteristic e defined identically. We will again assume throughout thatg # 0,

and similarly that Q; # 0 for all i.

Mathas has written a survey [34] of the representation theory of Ariki-Koike algebras
(and the associated cyclotomic q-Schur algebras). A result of particular interest is [15,
Theorem 1.1] — any Ariki-Koike algebra is Morita equivalent to a tensor product of
smaller Ariki-Koike algebras, each with the property that Q; = g% for some integers
a;. Thus, we may assume from now on that we work with Ariki-Koike algebras with

parameters Q; each an integral power of q.

Proposition 1.7. Let Q = (¢%',...,q%) for some integers a;. If Q" = (qbl,...,qbl)for
integers b; such that {q*', ..., q%} = {qP, . ... qPY as multisets, then HE,q,0(Z] 122 S,) =
Hr,q,0(Z] 122 Sy).

Remark. The above isomorphism is an obvious consequence of the presentation of
Hr,q,0(Z/1Z: S,). Though permuting the parameters leaves an isomorphic algebra,
the combinatorics of multipartitions is greatly changed by doing so, and thus the
representation theory is somehow distorted (for example, the set of multipartitions

indexing the simple modules may change).

Note that, strictly speaking, if e = char(F) we are interested in degenerate Ariki-

Koike algebras, which we do not define here. An analogous Morita equivalence result
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for these degenerations has been proved by Brundan and Kleshchev. Recently, Mathas
has given a unifying definition of the Ariki—Koike algebras and their degenerations in

[35, Definition 1.1.1].

1.4 Lie-theoretic notation

Throughout this thesis e is a fixed element of the set {2,3,4,...} U {oc}. We denoted by
e the quantum characteristic of the Hecke algebras of type A, and more generally, the
Ariki-Koike algebras; this apparent clash of notation will be resolved later. If e = oo
then we set I := Z, while if e < oo then we set I := Z/eZ; we may identify /
with the set {0, ..., e — 1} when convenient. The Cartan matrix (a;;);, jes is defined by
aij = 28i,j = 8i,(j+1) = 8i,(j-1)-

Let I" be the quiver with vertex set / and an arrow from i toi — 1 for each i. (Note
that this convention is the same as that in [29], and opposite to that in [8, 10].) The

quiver I' is pictured below for some values of e.

0 0 0
l /\ 7N
1 3 ...... (__1(_0(_1(_2(_3(_ ......
N
1 2

l¢——2

e=2 e=3 e=4 e =00

In the relations we give below, we use arrows with reference to I'; thus we may write
i > jtomeanthate #2and j =i—1,0ori 2 j tomeanthate =2and j =i —1.
We adopt standard notation from Kac’s book [26] for the Kac-Moody algebra as-
sociated to the Cartan matrix (a;;);, jes; in particular, we have fundamental dominant
weights A; and simple roots «; fori € I, and an invariant symmetric bilinear form ( | )
satisfying (A; | ;) = &, ; and (o; |etj) = a;j fori, j € I. Welet O := @, ¢; Zsoi be
the positive root lattice. Fora = Y ;c; cioi € QF, we define the height of a tobe )¢, ¢i.
Givena,B € QY witha = Y ;.; ciai and B = Y, dia;, we write @ > B if ¢; > d; for

eachi.
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Let I! denote the set of all /-tuples of elements of /. We call an element of /'
an e-multicharge of level 1. The symmetric group &; acts on I’ on the left by place
permutations. Given an e-multicharge x = (k1,...,k;), we define a corresponding
dominant weight Ay := Ay, + -+ Ay,. Foroa e 07, we then define the defect of «
(with respect to k) to be

def(@) = (Ax |@) = 5 (e | ).

1.5 Multicompositions and multipartitions

A compositionisasequence A = (A1, A2, ...) of non-negative integers such thatA; = 0 for
sufficiently large i. We write |A| for the sum A1 + A3 4 ---. When writing compositions,
we may omit trailing zeroes and group equal parts together with a superscript. We write
@ for the composition (0,0, ...). A partition is a composition A for which A > A, > ---.
We write A - n to mean A is a partition of n.

Now suppose ! € IN. An [-multicomposition is an I-tuple A = (A1, ... A D) of
compositions, which we refer to as the components of A. We write |A| = AD| 4. 41D,
and say that A is an /-multicomposition of |1|. If the components of A are all partitions,
then we say that A is an [-multipartition. We write . for the set of [-multipartitions of
n. We abuse notation by using @ also for the multipartition (2, ..., @).

If A and p are /-multicompositions of n, then we say that A dominates u, and write

A, if
|)k(1)|—|--"+|k(m_1)|—f—k§m)+-"+)t£m) > |M(1)|+"'+|M(m_1)|+ﬂ(1m)+"'+li;(«m)

foralll<m<landr > 0.

If A is an /-multicomposition, the Young diagram [A] is defined to be the set
{(r,c,m) e NxNx{1,...,[} ‘ ¢ < kﬁm)}.

We refer to the elements of [A] as the nodes of A. We may also refer to (r,c,m) as the
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(r,c)-node of A _If A € 9,11, a node of A is removable if it can be removed from [A] to
leave the Young diagram of a smaller /-multipartition, while a node not in [A] is addable

if it can be added to [A] to form the Young diagram of an /-multipartition.

We adopt an unusual (but in our view, extremely helpful —see Chapter 2) convention
for drawing Young diagrams. We draw the nodes of each component as boxes in the
plane, using the English convention, where the first coordinate increases down the
page and the second coordinate increases from left to right. Then we arrange the
diagrams for the components in a diagonal line from top right to bottom left. For example,

if A = ((2%),(2.1%),(3.2)) € &35, then [1] is drawn as follows.

We shall use directions such as left and right with reference to this convention; for
example, we shall say that a node (r, ¢, m) lies to the left of (+', ¢, m’) if either m > m’ or
(m = m’" and ¢ < ¢’). Similarly, we say that (r, ¢, m) is above, or higher than, (+’, ¢’,m’)

if eitherm <m’ or (im =m’ and r < r’).

If A is a partition, the conjugate partition A" is defined by
M={i=1]1; =i}
If A is an /-multipartition, then the conjugate multipartition A’ is given by
V=0 a0,

Observe that with our convention, the Young diagram [A'] may be obtained from [A] by

reflecting in a diagonal line running from top left to bottom right.
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Finally, for some parts of this thesis we will be particularly interested in the level 1
case, and therefore partitions (rather than multipartitions). The following definition is

extremely useful in this case:

Definition 1.8. Let A = (11,2, ...) - n. We say that A is e-reqular and write A -, n if it
does not have e equal non-zero parts; i.e. wedonothaveA; = A; 11 =+ = Aije—1 #0

for any i. Conversely, if A does have e equal non-zero parts we call A e-singular.

1.6 Tableaux

If A e 32,11, a A-tableau is a bijection T : [A] — {1,...,n}. We depict a A-tableau T
by drawing the Young diagram [A] and filling each box with its image under T. T is
row-strict if its entries increase from left to right along each row of the diagram, and
column-strict if its entries increase down each column. T is standard if it is both row- and
column-strict. We write Std(1) for the set of standard A-tableaux.

If T is a A-tableau, then we define a A’-tableau T’ by
T'(r,c,m) =T(c,r,l +1—m)

forall (r,c,m) € [A].

We import and modify some notation from [10] and [29]: given a tableau T and
1 <i,j <n,wewritei —r1 j to mean that i and j lie in the same row of the same
component, with j to the right of i. We writei 1 j to mean thati and j lie in the same
component of T, with j strictly higher and strictly to the right, and we writei /1 j to
mean that either i 't j or j lies in an earlier component than i. The notations i |t j,
i /v jandi @1 j are defined similarly.

There are two standard A-tableaux of particular importance. The tableau T, is the
standard tableau obtained by writing 1, ..., n in order down successive columns from
left to right, while T* is the tableau obtained by writing 1, ... , # in order along successive

rows from top to bottom. Note that we then have ™ = (Ty).
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Example. With 1 = ((22). (2. 1?), (3,2)) we have

T, = 1012, T*= 1]2].
11]13 34

‘OO‘\] o
‘Oo‘\] wn

[
W

5] 9[10/11]
214 1213

The symmetric group S, acts naturally on the left on the set of A-tableaux. Given a
A-tableau T, we define the permutations wr and w! in &, by
wrTy, =T = w'Th
We define the column reading word of a tableau T to be the word obtained by reading
the entries of T down successive columns from left to right. Occasionally, the following

result comparing fully commutative elements with the tableaux they correspond to will

be useful.

Lemma 1.9 [5, Theorem 2.1]. Let A & n. A permutation w € S, is fully commutative if and

only if the column reading word of wT,, has no decreasing subsequence of length 3.

Remark. Note that the above definition is independent of the choice of A, since the
column reading word of wT, is. In fact, in [5, Theorem 2.1], the result is not given
in terms of the reading word of a tableau — instead the condition is that there exist
i <j <kwithw(i)>w(j) > w(k).

Later we shall also need the following lemma; recall that <, denotes the left order

on G,.

Lemma 1.10. Suppose A € &, and S, T are A-tableaux with ws <y wr. If T is standard, then

S is standard.

Proof. Usinginductionon/(wr)—/(ws), we may assume /(wr) = /(ws) + 1, which means

in particular that T = s; S for some i. Since T is standard, the only way S could fail to be
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standard is if i + 1 occupies the node immediately below or immediately to the right
of i in T. But either possibility means that i occurs before i + 1 in the column reading
word of T. In other words, wy (i) < wy!(i + 1), but this means that /(ws) > [(wr), a

contradiction. O

Now we introduce a dominance order on tableaux. If S, T are A-tableaux, then we
write S = T if and only if ws > wr (recall that > denotes the Bruhat order on &,).
There should be no ambiguity in using the symbol > for both the dominance order on
multipartitions and the dominance order on tableaux.

There is an alternative description of the dominance order on tableaux which will
be very useful. If T is a A-tableau and 0 < m < n, we define T ,, to be the set of nodes
of [A] whose entries are less than or equal to m. If T is row-strict, then T, is the Young
diagram of an /-multicomposition of m, which we call Shape(T,,). If T is standard,
then Shape(T,,) is an /-multipartition of m.

Now we have the following proposition. This is proved in the case / = 1 in [33,
Theorem 3.8] (where it is attributed to Ehresmann and James); in fact, the proof in [33]

carries over to the case of arbitrary / without any modification.

Proposition 1.11. Suppose A € . and S, T are row-strict A-tableaux. Then S < T if and
only if Shape(S,,,) < Shape(T,,,) form =1,...,n.

In Chapter 2, we shall briefly consider a natural analogue of this notion for column-
strict tableaux. Suppose A € #. and T is a column-strict A-tableau; define the diagram

Tm as above, and define Tlm to be the ‘conjugate diagram’ to T ,,,, that is

Ty ={c.rl+1-k) | (r.c.k) €Ty}

Then Tlm is the Young diagram of an /-multicomposition of m, which we denote
Shape(T,,,)’. Now we have the following statement, which can be deduced from

Proposition 1.11 by conjugating tableaux.
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Proposition 1.12. Suppose A € P} and S, T are column-strict A-tableaux. Then S < T if and
only if Shape(S,,)" & Shape(T,,,) form =1,...,n.

1.7 Residues and degrees

In this section we connect the Lie-theoretic set-up above with multipartitions and
tableaux. We fix an e-multicharge k = (x1., ..., k7). We define the residue res A = res” A

ofanode 4 = (r,c,m) e NxINx{l,...,/} by
resA=kpm+(c—r) (mod e).

We say that 4 is an i-node if it has residue i. Given A € 2., we define the content of A

to be the element

cont(A) = Z Oresd € Q7.

A€[A]

We then define the defect def(A) of A to be def(cont(1)).

If T is a A-tableau, we define its residue sequence to be the sequence i (T) = (i1, ..., in),
where i, is the residue of the node T~!(r), for each r. The residue sequences of the
tableaux T; and T* will be of particular importance, and we set i; := i(T,) and i* =

i(T4).

Example. Take A = ((22), (2,1%), (3, 2)) as in the last example, and suppose e = 4 and

k = (1,2,0). Then the residues of the nodes of A are given by the following diagram.

O | —
— (N

[o]=]v

w
)
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So we have
i, =(0,3,1,0,2,2,1,0,3,1,0,2,1),  i*=(1,2,0,1,2,3,1,0,0,1,2,3,0).

Now we recall from [10, §3.5] the degree and codegree of a standard tableau. Sup-

pose A € 2. and A is an i-node of A. Set

addable i-nodes of A removable i-nodes of
da(A) = - ,
strictly below 4 A strictly below A
and
J A(/\) . addable i-nodes of A removable i-nodes of
strictly above A A strictly above A

For T € Std(1) we define the degree of T recursively, setting deg(T) := 0 when T is
the unique @-tableau. If T € Std(A) with |A| > 0,1let 4 = T~1(n), let T<, be the tableau

obtained by removing this node and set

deg(T) := da(A) + deg(T<n).

Similarly, define the codegree of T by setting codeg(T) := 0 if T is the unique @-tableau,
and

codeg(T) := d (1) + codeg(T<,)

for T € Std(A) with |A] > 0. We note that the definitions of degree and codegree depend
on the e-multicharge «, and therefore we write deg” and codeg” when we wish to

emphasise «.

Example. Suppose e = 3,k = (1, 1) and T is the ((2), (2, 1))-tableau

1]5]
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which has residue sequence i (T) = (1,0, 1,2,2). Letting A = T~1(5) = (1,2, 2), we find

that d4(A) = 1 and d4(}) = —1. Recursively one finds that for the tableau

Tes =
we have deg(T<s) = 2 and codeg(T<5) = 1, so that deg(T) = 3 and codeg(T) = 0.

The degree, codegree of a standard A-tableau are related to the defect of A by the

following result.

Lemma 1.13 [10, Lemma 3.12]. Suppose A € 2. and T € Std()). Then

deg(T) 4 codeg(T) = def(A).

1.8 Graded algebras

In this thesis we shall be concerned with algebras which are Z-graded. In general, one
can define gradings by any group G, but we limit our definitions to the situation we

are interested in. Recall that we have fixed a field IF throughout.

Definition 1.14. Let A be an F-algebra. A (Z-)grading on A is a decomposition 4 =
D,z Ai as vector spaces such that A;4; C A;4; foralli, j € Z. A (Z-)graded algebra

is an algebra with a chosen grading.

Example. 1. Anyalgebra Aisa graded algebra with the trivial grading —i.e. A = Ay.

2. The archetypal example of a graded algebra is A = F[x]. Here, we define 4; =

(x!)g foralli >0and 4; = 0ifi < 0. In particular, 4 is positively graded.

3. More generally, we can take A to be the ring of Laurent polynomials F[x, x!].

Here we set A; = (x')F for all i to obtain a graded algebra structure.

4. Let A = My, x,(F)—thering of n by n matricesover F. Set A; = (Ey; | k—1 = i),

where Ey; is the matrix unit with a 1 in position (k, /) and zeroes everywhere else.
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Definition 1.15. If a € A;, we say that a is homogeneous of degree i and write deg(a) = i.

Definition 1.16. Let A be a graded [F-algebra and M be an A-module. A grading on
M is a decomposition M = @, M, as vector spaces such that A; M; € M,y ; for all
i,j € Z. A graded module is a module with a chosen grading. We write M for the

module obtained from M by forgetting the grading.

Example. 1. For any graded algebra A, the (left) regular module 44 is a graded

A-module.

2. A =TF[x]and M = IF?, with x acting as

Set M1 = (()))r, M2 = ((}))rand M; = Oforall j # 1,2.
3. A= Myx,(F) and M = IF". Set M; = (e;)r if 1 <i <n and M; = 0 otherwise.

Definition 1.17. If M isa graded moduleand k € Z, define M (k) to be the same module

with (M (k)); = M;_,. We call this a degree shift by k.

Definition 1.18. Let v be an indeterminate. We define the graded dimension of a graded
module M to be

grdim M = Z dim M;v'.
i€Z

Note that grdim M (k) = v* grdim M.

Definition 1.19. Let A be a graded algebra. We say thata graded A-module is irreducible,

or simple, if it has no non-trivial proper graded submodules.

Next we quote a useful result which tells us that, in terms of the representation

theory, we do not lose information by considering grading, but in fact gain some.

Theorem 1.20. [38, Theorems 4.4.4(v) & 9.6.8] and [4, Lemma 2.5.3]. Let A be a finite

dimensional graded algebra. Then:
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1. If M is an irreducible graded A-module, then M is an irreducible A-module.

2. If M is an irreducible A-module, then M can be graded; the grading is unique, up to

degree shift and automorphism of M.

Definition 1.21. Suppose A is a graded algebra and let M and N be graded A-modules.
A map ¢ : M — N is a homogeneous homomorphism of degree r if ¢ is a homomorphism

of A-modules and ¢(M;) € N;4, foralli.

Example. If ¢ is the identity map on ungraded modules M — M (i), then ¢ lifts

naturally to a homogeneous homomorphism of degree i.

Proposition 1.22. If A is a graded algebra and M is a finitely generated (graded) A-module, then
Hom(M, N) can be graded. That is, Hom(M, N) has a basis of homogeneous homomorphisms.

Proof. Suppose M is generated by homogeneous elements xi,x2,...,x, and
¢ € Hom(M,N). Then ¢ is completely determined by what it maps the generators

to. Say

o(x;) = Z ni,j wheren; ; € N; for each j and only finitely many »n; ; are non-zero.
jez
Now, if we define ¢; : M — N to be the map such that ¢; (x;) = n; geg(x;)+,, then ¢;
is a homogeneous linear map of degree j. As only finitely many degrees arise in the
image of ¢, ¢ is a sum of finitely many homogeneous maps ¢;. To see that each ¢;
is a homomorphism, we simply consider degrees; suppose m € M is homogeneous.
Then mg; (x;) is homogeneous of degree deg(x;) + j 4 deg(m). But since ¢ is a homo-
morphism, we know that me(x;) = ¢(mx;) = )_mn; ; and thus that the constituent of
@(mx;) of degree deg(x;) + j + deg(m) is mn; geg(x;)+j- Thus @ (mx;) = mn; geg(x;)+;

and the proof is complete. O

1.9 KLR algebras

We now give the definition of the algebras which will be our main object of study.
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Suppose @ € Q" has height n, and set
1“={iel| o+ -+, =a}.
Now define .74, to be the unital associative F-algebra with generating set

{e@) [ i €I Uyt ....yn} UYL, Y}

and relations

e(i)e(j) = 6i,je(i);

D ei) =1

iel«
yre(i) = e(i)yr:

Yre(i) = e(sri)¥r;

Yr¥Ys = YVsYrs
Yrys = Ys¥r ifs#rr+1;
Urvs = Ys¥r if |[r —s| > I;

yrwre(i) = (WrJ’rH _Sirsir-i-l)e(i);

Yr+1¥re(@) = (Yryr +5ir,ir+1)e(i);

0 ifiy = ipt1,

e(i) ifipp1 # ir, iy £1,
Ve =3 (41— yr)e(d) if i, — iry1,

(Vr — yr+1)e(@) if iy < iry1,

Yr+1 =) r = yr+1)e(i) ifir 2ir41:
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(Yr+1¥r¥r41 + De(@) ifiy4o =i > iry1,

(Vr+1¥r¥r+1 — De(i) ifiry2 =iy < irq1,

Vrr1¥re(i) =
(Yre1¥r¥rd1 +yr —2yr41 + yr2)e() itip4o =iy irya,

(Vr1¥r¥ra1)e(i) otherwise;

for all admissible r, s, 1, j.

The affine Khovanov-Lauda—Rouquier algebra or quiver Hecke algebra 7, is defined to

be the direct sum P, 7, where the sum is taken over all « € O™ of height n.

Remarks.

1. We use the same notation for the generators ¥, and y; for different o; when using
these generators, we shall always make it clear which algebra 7, these generators

are taken from.

2. When e < 0o, we can modify the above presentation of /%, to give a presentation
for 74,: we take the generating set {e(i) | i € I"}U{y1,....yn} U{¥1,.... ¥u_1},
and replace the relation ) ;. ;o (i) = 1 with ) ;c;n e(i) = 1. The generator
in this presentation is just the sum of the corresponding generators v, of the
individual algebras .7 in the direct sum @, 7, and similarly for y;. When
e = oo we cannot do this, since the set /” is infinite (in fact, 7, is non-unital in

this case).

The following result can easily be checked from the definition of /7.

Lemma 1.23 [8, Corollary 11. There is a Z-grading on the algebra g such that for all

admissible r and i,

deg(e(i)) =0, deg(yr) =2, deg(¥re(i)) = —aii -
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Shift maps

Recall from Section 1.1 that shift; : S,, — S, denotes the homomorphism defined by

i = Sj+k. We now define the corresponding maps for the algebras 7.

Definition 1.24. Suppose | < m <nand 0 < k < n—m, and that o, € O with « of
heightn and B of heightm. Giveni € 1P, define J; :={j € I*| jsip = is for 1 <s <m},
and let e(i)tk = > jes; ¢(j). Now define the homomorphism shift : 73 — 7, by

e(i) e, yre() > Yrare@) ™, yre(i) = yrprel@) T

It is easy to check from the definition of 77, that shift; is a degree-preserving (non-
unital) homomorphism of algebras. Moreover, the PBW-type basis theorem for J7; in
[27, Theorem 2.5] and [39, Theorem 3.7] shows that if 8 < « then shift; is injective

(obviously shifty is the zero map if 8 £ «).

Cyclotomic algebras and the Brundan-Kleshchev isomorphism theorem

Given « € Q% and an e-multicharge k = (k1,...,k;) € I I we define ¢ to be the

quotient of .77, by the cyclotomic relations

YAy =0 fori e 1.

The cyclotomic KLR algebra 7 is then defined to be the sum &, /7. Here we sum
over all @ € Q7 of height n, though in fact only finitely many of the summands will
be non-zero, so (even when e = 00) JZ is a unital algebra. Note that the algebra 7

depends only on {x1,...,k;} and not on «.
Example. Of particular interest to us in some parts of this thesis will be the case when
I = 1. Here, the cyclotomic relations simplify to

y1 =0,

e(i) =0 foriy #0.
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Note that the embedding shifty passes naturally into the cyclotomic quotients.

Next, we state a stunning result of Brundan and Kleshchev.

Theorem 1.25 [8, Main Theoreml]. If e = oo or e is not divisible by char(IF), and k; = a;
(mod e), then J%) is isomorphic to the Ariki-Koike algebra Hy 4,0(Z/1Z.2 S,) with q a
primitive eth root of unity and parameters Q = (q%, ..., q%*). Similarly, if e = char(IF), then
6 is isomorphic to a degenerate Ariki-Koike algebra; in particular, when | = 1, ) is

isomorphic to the group algebra FS,.

As a consequence, the Ariki—Koike algebras, and in particular the Hecke algebras
of type A and (in positive characteristic) FS, are non-trivially Z-graded. This theorem

motivates our choice of notation 7%, for the KLR algebra.

Corollary 1.26. Suppose q # q' € IF are primitive eth roots of unity. Then Hy g4,0(Z/1Z.2
Gn) = Hrg,0(Z/ 12 S,) as F-algebras.

1.10 Specht modules

We now recall the universal graded row and column Specht modules introduced by
Kleshchev, Mathas and Ram; we closely follow [29, §§5,7], and refer the reader there for
turther details.

Fix an e-multicharge . Suppose A € £}, and let @ = cont(1). Say that a node
A = (r,c,m) € [A]is a column Garnir node if (r,c + 1,m) € [A]. The column Garnir belt B 4

is defined to be the set of nodes
Bga={(s.ccm)e[A]| s=r}U{(s,c+1,m)€e[A]| s<r}.

Suppose T, (r,c,m) = a and T,(r,c + 1,m) = b. Then we define the column Garnir
tableau G4 to be the A-tableau which agrees with T, outside of B4 and has entries
a,a+1,...,bin B4 in order from top right down to bottom left.

A column (A-)brick is aset of e nodes {(i, j,m), (i + 1, j,m),...,(i+e—1,j,m)} C By

such that res(i, j, m) = res A. Thus B4 is a disjoint union of the bricks it contains along
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with less than e nodes at the bottom of column ¢ and less than e nodes at the top of

column ¢ + 1, none of which are contained in a brick.

Example. Lete = 2 and A = ((3,22,1%),(2,1)). Look at the Garnir node 4 = (3,1, 1).

Then
4111014 41614
5[12 5[7
613 918
Vil 10
T) = 8| and Gy4 = 11]

12 12
10 13

1]3] 1]3]

2] 2]

For each w € &, we fix a preferred reduced expression w = sy, ...sr,, and define
Yw = ¥r, ... Yr,. Note that the elements ¥, may depend on the choice of preferred
reduced expressions, since the ¥, do not satisfy the braid relations. However, if w is
fully commutative, ¥, is uniquely determined.

Let k be the number of bricks in B4. Label the bricks B}. B, ..., Bff1 in B4 from top
right to bottom left.

If k > 0, let d be the smallest entry of B}l in G4. For each 1 < r < k, define brick

transpositions
d+re—1

w'y = l_[ (a,a+e)

a=d+re—e
which transpose the bricks B’ and B ;1“, and the related elements

oy = (—l)eww;1 € Ay and 1= (0 +1) € .

Define Gary4 to be the set of all column-strict A-tableaux obtained from G4 by brick

permutations (i.e. products of elements w’,). We recall some basic facts from [29]:

e Every T € Gary \{Gy4} is standard.

e There exists a unique minimal tableau in Gar 4, which we denote T4.



1. Background 33

e For each S € Gary, we can write ws = uswr,, where l(ws) = [(us) + [(wr,),
and ws, us and wr, are all fully commutative (by Lemma 1.9, for example). We
therefore have elements Vs, Y, and Y1, of 5% with ¥s = ¥ Y1, allindependent

of choice of reduced expression.

— "2 Ta us _ 112 ra : :
o lfus =wjwy]...wy thent,® =1,z . .7, is also independent of the choice

of reduced expression, as s, ...s,, is fully commutative. If S = T4 then by

a

convention we set rzs = 1.

Definition 1.27. Let A € [A] be a column Garnir node. The column Garnir element is

J4 = Z T};SWTA € %.

SeGary

In fact, as defined in [29], the column Garnir element g4 also involves an idempotent
e(i) which depends on A and makes g4 homogeneous, but this term can be omitted

without affecting the Garnir relation given below.

Example. Continuing the previous example, we have

614
11
12

Ty

[l
SIEle]e]]w ][+~

and Gary = {T4, wiT4, whw?T4}. Now
ga = (1 + 15 + 470V,
=+ (oz+1)+(og+D(of+ D)V,
= (3+205+04+0407) V1,
= B+ 2V10V11V9V10 + ¥s¥o7Vs + VsYoy7¥gVioVi1¥oVi0):
Ve¥7vs¥oviz¥ii¥io.
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Now define the column Specht module S, to be the graded 7 -module generated

by the vector z, of degree codeg(T} ) subject to the following relations:
L.oe(ix)zy =z
2. yrz; =0forallr =1,...,n;
3. Yyzp =0forallr =1,...,n—1suchthatr |1, r +1;
4. gaz; = 0 for all column Garnir nodes A € A.

We may relax notation and just write S,, if the e-multicharge « is understood. In
Chapter 2 we shall mostly consider S, as an .%;-module, by setting /3 S, = 0 for

B # a. Thus we have J7;-modules S, for all e-multicharges x and all A € 9,11

Remark. In the previous example, our Garnir element involved a superfluous term —
the term 0}1 = YgWor7Ys acts as zero on the Specht module’s generator and can thus
be omitted. Similarly, terms arising in the Garnir relations are not, in general, reduced
expressions. Work to clarify reduced expressions for Garnir relations can be found in
[17].

The main purpose of Chapter 2 will be to study the space of J7;-homomorphisms

S; — Sy, forA,u e @fl The following result is obvious from the definitions.

Lemma 1.28. Suppose A, 1 € @,’,, and let @« = cont(A). If Hom, (S;,S,) # 0, then

cont(p) = o (and in particular def(A) = def(n)), and Hom , (S;,S;) = Hom s, (S, S.).

We shall also need to consider row Specht modules; for these, the definitions are
largely obtained by ‘conjugating” the definitions for column Specht modules. Fix «, A
and o asabove. Say thatanode A = (r, ¢, m) € [A]isarow Garnirnodeif (r +1,c,m) € [A],

and define the row Garnir belt
B4 = {(rnd,m)e[A]|d=>c}U{(r+1,d.m)e[A]|d<c}.

This belt is used to define a row Garnir element g4. We refer the reader to [29, Definition

5.8] for the definition of this — it is morally the same as the column Garnir element, with
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conjugation applied throughout. In Chapter 2, where we consider these row Specht
modules, we will note the key facts we need to know about g4.
Now we can define the row Specht module S*, which is the graded .7#-module

generated by the vector z* of degree deg(T%) subject to the relations
1. e(i*)z* = 24,
2. y,z;L =O0forallr=1,...,n;
3. w,z)L =0forallr =1,...,n—1suchthatr - r+1;

4. g4z* = 0 for all row Garnir nodes 4 € A.

We define basis elements for the row and column Specht modules as follows. Recall
that for each tableau T € Std(4) we have fixed a preferred reduced expression s, ... sy,
for the permutation wr, and define Y1 := ¥, ... ¥, and vt := Yrrz,. Similarly, we fix a
preferred reduced expression s, ... sy, for w”, and set YT := v, ... ¥y, and v := YT A,

Note that the elements vy and v" may depend on the choice of preferred reduced

expressions, since the ¥, do not satisfy the braid relations. However, the following

results are independent of the choices made.

Lemma 1.29 [29, Propositions 5.14 & 7.14]. Suppose A € P, and T € Std(A). Then
deg(v?) = deg(T) and deg(vr) = codeg(T).

Lemma 1.30 [29, Corollaries 6.24 & 7.20]. Suppose A € Z.. Then {v* | T € Std(X)} is an
IF-basis for S* and {vr | T € Std(A) } is an [F-basis for S; .

Lemma 1.31 [10, Lemma 4.4]. Suppose A € L. Then for any T € Std(X), e(i)vr = 8; i, vr.

In spite of the dependence of these bases on the choices of preferred reduced ex-
pressions, we refer to the bases {v” | T € Std(1) } and {vr | T € Std(}) } as the standard
bases for $* and S; respectively.

For the remainder of this section we summarise some basic results about the action

of 4, on S). Many of these results are cited from [10], where they are stated for row
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Specht modules. In this thesis we concentrate as far as possible on column Specht
modules, so we translate all the results to this setting. Throughout we fix A € #!, and
let ¥1,. .., ¥u—1 refer to the generators of .74, where o = cont(4). Recall that if S, T are

standard A-tableaux, then we write S = T to mean that ws > wry.

Lemma 1.32 [10, Theorem 4.10(G)]. Suppose T € Std(A), and sj, ...sj, is any reduced

I

expression for wr. Then yj, ... . zy —vr is a linear combination of basis elements vy for

U<T.

Lemma 1.33 [10, Lemma 4.9]. Suppose T € Std(A) and that j —1 —t jor j —1 |1 j. Then

Y j—1vr is a linear combination of basis elements vy for U < T.

Lemma 1.34 [10, Lemma 4.8]. Suppose T € Std(A) and 1 < i < n. Then y,;vr is a linear

combination of basis elements vy for U < T.

We'll use Lemmas 1.32 and 1.34 to prove the following similar result, which is

suggested but not proved in the proof of [10, Theorem 4.10].

Lemma 1.35. Suppose T € Std(A) and j —1 /1 j. Then ;_qvr is a linear combination of

basis elements vy for U < T.
We begin with the following simple observation.

Lemma 1.36. Suppose T € Std(A). Then j —1 1 j if and only if wr has a reduced expression

beginning with s; 1.
Proof. Both conditions are equivalent to the condition that wil(j — 1) > wil(j). O

Proof of Lemma 1.35. By Lemma 1.36, wr has a reduced expression of the form

§j—18k, - - - Sk,. Using Lemma 1.32 we have

VT = Wj—lwkl cee Wk,Z;L +Z aygly

UeStd(A)
U«T
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for some ay € F. So

Yj—1vr = V7 Yk, - Vi Za+ ) aulj—1vu. ()

UesStd(A),
U«T

Using the KLR relations (and moving the appropriate idempotent e(i) through), the
first term on the right-hand side becomes gy, ...V, z5, where g is a polynomial in
V1s---sYn. NOW s, ... 58, is a reduced expression for the standard tableau S = s, 1T,

so by Lemma 1.32 we have

Vi, - Yk, 20 = Us +Z byvy

veStd(A),
v<S

for some by € F. So (since S < T) the first term on the right-hand side of (x) is a linear
combination of terms of the form gvy for V € Std(A) with V. < T. By Lemma 1.34 this

reduces to a linear combination of basis elements vy for V < T.

Now consider each of the remaining terms y;_jvy in (x). If j —1 Sy j, then by
induction on the Bruhat order v ;_;vy is a linear combination of basis elements vy for
V < U < T, so we can ignore any such U. If j —1 —y j or j —1 |y j, then we apply
Lemma 1.33 to get the same conclusion. If j —1 7y j, let R be the tableau obtained by
swapping j — 1 and j in U; then a reduced expression for wg may be obtained by adding
sj—1 at the start of a reduced expression for wy, and we have R < T by Lemma 1.2. So

by Lemma 1.32 again,
Yj—1vy = vr + Z Cyly

W<R

for some ¢y € F, and we are done. O

Lemma 1.37. Suppose A € &}, and T € Std(X). Suppose ji....,jr € {1,....n—1}, and
that when v ;, ...V}, z, is expressed as a linear combination of standard basis elements, vt
appears with non-zero coefficient. Then the expression sj, ...s;, has a reduced expression for

wr as a subexpression.
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Proof. We proceed by induction on r, with the case r = 0 trivial. Let j = j;. Then
by assumption v appears with non-zero coefficient in v ;vs, where S € Std(4) and vs
appears with non-zero coefficientin v, ... ¥, z,. By induction the expression sj, ... s},
has a subexpression which is a reduced expression for ws, so if wr < ws (i.e.if T < S) then
we are done. By Lemma 1.33 and Lemma 1.35, this happensif j —s j +1,j s j+1
or j /s j+1. Sowe can assume that j /s j + 1. But in this case wr = s;ws, with

[(wr) = l(ws) + 1, so wr has a reduced expression obtained by adding s, at the start of

a reduced expression for ws. So again the result follows by induction. |

1.11 Specht modules for .72 and homomorphisms

Throughout Chapter 2 we consider the Specht module S; as a module for the affine
algebra 77, (where o = cont(4)) and by extension for the algebra .7%,. In fact, it is not
hard to show that S, is annihilated by the element yfAK iy )e(i ) for every i, so that S, is

a module for the cyclotomic algebra .77 introduced in Section 1.9; we show this with

the following lemmas and proposition.

Lemma 1.38. Suppose T is a A-tableau. Then vy is a linear combination of basis elements vy

labelled by tableaux U < T.

Proof. This proof proceeds almost identically to that of [37, Corollary 5.10], and we omit

it here. O

Lemma 1.39. Suppose T € Std(A). Then yqvr is a linear combination of basis elements vy

labelled by tableaux U in which the number 1 lies strictly to the left of where it lies in T.

Proof. Suppose that wr(k) = 1-i.e. for some m the entry 1 appears in the node (1, 1,m)
of T, and k appears in the node (1,1,m) of T,. Then wr has a reduced expression

ws182 ...Sk—1, Where w = s, ...s;. forsomeiy,...,i, > 1. By Lemma 1.32,
k—1 1 r y

vr = Y Wi¥a ... Yr_121 + Zasvs for some ag € F.
S«T
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Note that the condition S < T is equivalent to ws < wsys2 ... s;—;. It follows that

YIvr = VYip Vi VY Vk—1Z2 + D dsY1vs

S<«T

k—1
= Zbil/fil VY ViV - Yk—124 + Z cyivy for somecy; € F
i=0

1<i<k—1
Wy<wWS]...8—18i+1-+-Sk—1

for b; = 0 or 1. Now we note that for each i,
Wy < WS ...8—-18+1---Sk—1 = WSi+1---Sk—151-.-5i—1
and thus

Vi - Vi Vv i1 Vidr - Yk—124 = Uy + Zdwvw forsome dy € F
WV
where wy(i) = 1, whenever ¥;, ... Vi, V1¥2 ... ¥i—1¥it1 ... Yx_125 # 0. Porif V=1(i) #
(1,c,m’) for some ¢, m’, it follows from the presentation of S that y;_z,; = 0. Similarly,
if V=1(i) = (1,c,m’) for some ¢ > 1 there is a Garnir relation ¥y V¥ x+1...¥i_12; = 0 for
some x > 1. So certainly V is a tableau with V=1(i) = (1, 1,m’) for some m’ < m, since
i < k. If Vis non-standard, then the most dominant term will in fact be indexed by an
even less dominant tableau, by Lemma 1.38. Since all other basis elements occurring
in yjvr are vs for S < V, we have that they must also satisfy the desired property, since
Shape(V ;) & Shape(S, ;). O

Ay i . .
Proposition 1.40. yi e 1).e(l) Sy =0 foralli.

Proof. We need to show that yf(i)e(i)SA = 0 for any i, where x(i) = (Alw;,) is the
number of times i1 appears in the e-multicharge x — note that this means there are at
most x (i) different places where the number 1 can appear in a standard A-tableau with
residue sequence i.

So suppose for a contradiction that there is a standard tableau T such that

yf(i)e(i Jur # 0. Applying Lemma 1.39 x(i) times, we find a sequence of standard
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A-tableaux T, Uy, Uz, ..., Uy(;), which all have residue sequence i and which have the
number 1 in successively more leftward positions. Hence there are at least x (i) + 1 dif-
ferent places where the number 1 can occur in a standard A-tableau of residue sequence

i —a contradiction! m]

In Chapter 2 we shall almost entirely be studying the space of .7,-homomorphisms
between two Specht modules S and S;, defined for the same e-multicharge «, and
clearly in this situation .7%;-homomorphisms between these two modules are the same
as ., -homomorphisms. In view of the Brundan-Kleshchev isomorphism theorem
Theorem 1.25, the results of this chapter can therefore be viewed as statements about
homomorphisms between Specht modules for (degenerate) Ariki-Koike algebras, and
so they generalise the results of Fayers and Lyle for homomorphisms between Specht
modules for the symmetric group [18, Theorem 2.1], and of Lyle and Mathas for Hecke
algebras of type A [30, Theorem 1.1].

In Chapter 3 we will be interested in the case / = I; in fact we will be studying
decomposability of Specht modules for the Hecke algebra of type A. The following

basic results for Specht modules in this setting will be useful for our purposes.
Theorem 1.41. S is decomposable if and only if S is.

Proof. The result follows from [13, Theorem 3.5]. O
Definition 1.42. For each A - n we define a module D, := hd(S;).

Theorem 1.43 [12, Theorem 7.6]. If e = oo, {Sy | A - n} is a complete set of pairwise
non-isomorphic simple modules for Hg 4(S,). If e # 0o, {D, | A ¢ n} is a complete set of

pairwise non-isomorphic simple modules for Hr 4(Sp).

Remark. For the Ariki-Koike algebra (of level / > 1) the corresponding result is much
more complicated. Even in the e = oo case, the Specht modules are not in general

simple.

Theorem 1.44. If e # 2, or if A is 2-reqular, then S is indecomposable.
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Proof. The result follows from [14, Corollary 8.7] using a similar argument to that
used by James to prove the analogous result for the symmetric group in [24, Theorem

13.13]. O

In view of this last result, we would like to determine which Specht modules S are
decomposable when 1 is 2-singular and e = 2. In Chapter 3 we will focus on (and fully
solve) the special case where 1 = (a, 12) for b > 2.

Note that throughout this thesis, GAP [20] has been used for calculations and
examples; in particular, we thank Matt Fayers for his GAP packages which have allowed
the computations of homomorphisms between Specht modules to take place — this has

been a great source for examples and conjectures!

1.12 Decomposition numbers when / = 1

In Chapter 4 we will be interested in the graded decomposition numbers for H =
HE,4(Sy,). Here we shall recall some basic definitions and results pertaining to decom-
position numbers. Note that this framework may be extended to higher levels —i.e. to
arbitrary KLR algebras. However, as we do not discuss decomposition numbers (or
even simple modules) when / > 1, we introduce them only in the simpler context of
cyclotomic KLR algebras for / = 1. We will let p = char(FF) throughout.

We begin by discussing the classical (ungraded) decomposition numbers.

Definition 1.45. Let A - n and u . n. The decomposition number d,, = [S; : D,] is
defined to be the multiplicity of the simple module D,, as a composition factor of S;.
The decomposition matrix D*? = (d;,) has rows indexed by partitions and columns

indexed by e-regular partitions.

Theorem 1.46 [12, Theorem 7.6]. Let A - n and p b, n. Then
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Theorem 1.47 [33, Theorem 6.35].  There exists a square unitriangular matrix A, =
(@pp)r,ubon Withentriesay,, € Z, whoserows and columns are indexed by e-regular partitions,
suchthat D¢P = D®°A,. Furthermore, the entries ay , of A are in fact non-negative integers.

Ap is called the adjustment matrix.

Next, we shalllook at these decomposition matrices with the extra structure afforded
by the grading on H.

A graded version of the famous Jordan-Holder Theorem exists and may be proved
completely analogously to the classical version. This in turn means we have a well-
defined notion of graded composition factors. Furthermore, Theorem 1.20 tells us
exactly what these composition factors may be (i.e. ungraded simple modules with
their unique gradings, up to degree shifts). Note that when defined as the head of the
Specht module S, the simple module D, has a canonical grading, not just up to shift.
In our graded setting, let «; be the number of times D, (i) appears as a composition

factor of S;. Note that ) ;. o; =[Sy : D,]. This motivates the following definition:

Definition 1.48. We define the graded decomposition number

dyp(v) = [S3 : Dply := ) a0’
ieZ
The graded decomposition matrix D¢ P (v) = (d;,(v)) has rows indexed by partitions and

columns indexed by e-regular partitions.

Remark. Setting v = 1 in the above definition recovers the decomposition number

Sy, : Dyl

Theorem 1.49 [9, Theorem 5.17]. There exists a square unitriangular matrix A,(v) =
(@ (V)2 ubon Withentriesay,, (v) € Zv, v symmetricin v, v, whose rows and columns
are indexed by e-regular partitions, such that D®P(v) = D¢%()A,(v). Furthermore, the
entries ay, (v) of Ap(v) in fact have non-negative coefficients. Ap(v) is called the graded

adjustment matrix.



Chapter 2

Graded column removal

In this chapter we consider the space of homomorphisms between two given Specht
modules for the (affine) KLR algebra. However, our results concerning row and column
removal will only apply to homomorphisms of a certain kind, which we call dominated
homomorphisms. Butas we shall see in Theorem 2.7, in many cases allhomomorphisms

between Specht modules are dominated.

In spite of the comments in Section 1.11, we restrict attention entirely to the affine al-
gebra /7, in this chapter. This is because we occasionally (in particular, in Theorem 2.17)

need to compare Specht modules defined for different e-multicharges.

Recall the presentation given in Section 1.10 for Specht modules. For our purposes
in this chapter, it will suffice to give g4 explicitly in a special case which we will use in
the proof of Proposition 2.11, and record some useful properties of g4 which apply in
general.

For our special case, we suppose that 4 is a Garnir node of A of the form (1, c, m).
If a is the entry in node A of T; and b is the entry in node (1,c¢ + 1,m), then g4 =
VaVa+1 - .. Yp—1, regardless of the value of e.

Now suppose A = (r, c,m) is an arbitrary Garnir node of A. Then in T, the nodes of
B4 are occupied by the integers a,a + 1, ..., b for some a < b. We will only rely on the

following properties:

43
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¢ g4 isalinear combination of products of the form v;, ... ¥;, wherea <iy,...,iz <

b;
e g4 depends only on ¢, r, a and the length of the column containing A.

Similarly, we make note of the following facts about row Garnir element g*:

e in T* the nodes of B are occupied by the integers a,a + 1,..., b for some a < b;
e g4isalinear combination of products of the form v;, ... ¥, wherea <ij,... iz <
b;

e g4 depends only on ¢, ¢, a and the length of the row containing A.

2.1 A-dominated tableaux

Suppose A, € 9”,1, and T € Std(u). Given 0 < j < n, we say that T is A-column-
dominated on 1, ..., j if each i € {1,..., j} appears at least as far to the left in T as it
does in T;. We say simply that T is A-column-dominated if it is A-column-dominated on
1,...,n. Weremind the reader of our unusual convention for drawing Young diagrams,
in which a node (r, ¢, m) lies to the left of (r/,c¢’,m’) if either m > m’ or (m = m’ and
c<c).

We write Std () for the set of A-column-dominated standard p-tableaux. It is easy
to see that Std (1) is non-empty if and only if A = u, and that Std, (1) = {T}.

We say T is weakly A-column-dominated on 1,...,j ifeachi € {1,..., j} appears in
a component at least as far to the left in T as it does in T,. We say that T is weakly
A-column-dominated if it is weakly A-column-dominated on 1, ..., n.

We also introduce row-dominance. Say that T € Std(u) is A-row-dominated if each
i €{l,...,n}appears at least as high in T as it does in T4, We write Std* (i) for the set

of A-row-dominated standard pu-tableaux, which is non-empty if and only if A < p.
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Example. Let A = ((3,2),(2,1)). Then T, = 4]6]8]. The tableau 4]5]is
507 7]
1]3] 8]
12] 1/3]
12|
6]
A-column-dominated on 1,...,4 but not A-column-dominated, as the entry 5 appears

further to the right (second column of the first component) than it does in T, (where
it appears in the first column of the first component). Transposing the entries 5 and 6

yields a A-column-dominated tableau.

Now, T* = |1]2]3]and so the tableau is A-row-dominated
415 6]
617 5]7]8]
8
on 1,...,4 but not A-row-dominated, as the entry 5 appears lower (in the first row of

the second component) than it does in T* (where it appears in the second row of the

first component). Transposing the entries 5 and 6 yields a A-row-dominated tableau.

Since we shall primarily be considering column Specht modules, we shall often
simply say ‘A-dominated” meaning ‘A-column-dominated’.
We give a helpful alternative characterisation of the A-dominated and

A-row-dominated properties.
Lemma 2.1. Suppose A, u € ), and S € Std ().

1. Sis A-column-dominated on 1, ..., j if and only if Shape((T;) ) = Shape(S,,,) for

alm=1,...,j.

2. Sis A-row-dominated on 1, ..., j if and only ifShape((TA)W,) < Shape(S,,,) for all

m=1,...,].

Proof. We prove only (2); the proof of (1) is analogous. Suppose first that S is not A-
row-dominated on 1,..., j. Choose an entry m < j which appears strictly lower in S
than in T, and let t = Shape((TA) im) and o = Shape(S,,,). Suppose that m appears

in position (r, ¢, k) in TA. The construction of T* means that the entries 1,...,m — 1 all
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appear at least as high as m in T#, and so
|-L—(1)| et |-[(k_1)| _|_-L—1(k) +"'+77r(k) = m.

On the other hand, m appears below row r of component k in S, so

oD+ oV 4 o™ 6RO <,
Hence t d 0.
Conversely, suppose Shape(Ti ) 4 Shape(S,) for some m < j; choose such an m,

and let t = Shape(Tim) and o = Shape(S,). Since © o, there are r, k such that
S B N 1Ol U P o A i

Ifweletd = |tM|+...+ |t D] 4 rl(k) +eo rr(k),thend < mand theintegers 1,...,d
all appear in row r of component k or higher in T*. Since |o(| 4 --- 4 |o*=D| 4

o® 4. o

< d, at least one of the integers 1,...,d appears in S below row r of
component k. So there is some i < j which appears lower in S than in T#, so S is not

A-row-dominatedon 1,..., j. O
Corollary 2.2. Suppose A, u € ), and S, T € Std(p).

1. If S is A-dominated on 1,...,j and S &= T, then T is A-dominated on 1,...,j. In

particular, if S € Std (u) and S = T, then T € Std (n).

2. If S is A-row-dominated on 1,..., j and S < T, then T is A-row-dominated on 1, ..., j.

In particular, if S € Std* (u)and S 4T, thenT € Std* (n).

Lemma 2.3. Suppose A, u € P, and T,U € Std(u) with U Q T. If T is weakly A-dominated

onl,...,j,thensoisU.

Proof. The proof follows almost identically to that of Corollary 2.2(1), with the exception

of m; needing to denote the sum of sizes of components which are at least as far to the
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left as the component containing i in T} . m]

2.2 Dominated homomorphisms

Given A, u € &}, we want to consider the space of .7 -homomorphisms ¢ : S; — S,
with the property that ¢(z,) lies in the IF-span of {vs| S € Std;(un)}. But we need to

show that this notion is well-defined.

Proposition 2.4. Suppose A, € 2. Then the subspace (vs | S € Std; (u))g of Sy is

independent of the choice of standard basis elements vs.

Proof. Let V denote the space (vs | S € Std, (1)), and take T € Std, (u). Let s, ...s),
be a new reduced expression for wr, and let vy = ¥, ...V}, z, (Where ¥, ..., ¥ are
taken to lie in #n(2))- Let V' be the space obtained from V by replacing vy with vy in

the spanning set {vs | S € Std; (p)}; it suffices to show that V' = V'. By Lemma 1.32,

v = vr + E ayvy for some ay € F.
U<T

By Corollary 2.2(1), each vy with U < T lies in V, and so v; € V. Hence V' C V; but
since the elements vs are linearly independent, dimp V' = dimg V' = |Std, (1)|. So

Vi=V. O

In view of Proposition 2.4 and an analogue for row-dominated tableaux, the follow-

ing definition makes sense.

Definition 2.5. Suppose A, u € ZL. If ¢ € Hom x, (S;,S,), we say that ¢ is (column-)
dominated if ¢(z)) € (vs | S € Std) (u))r. We write DHom y, (S;,S,.) for the space of
dominated homomorphisms from Sy to Sy.

Similarly, if y € Hom s, (SA,S“), we say that y is row-dominated if y(zh) e V3| s €
Std* (1))r, and we write DHom ., (S’l, S*) for the space of row-dominated homomor-

phisms from S* to SH.
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Proposition 2.6. DHom x,(S;.S,) and DHom y, (S*.S*) are graded subspaces of
Hom x, (S;.S,) and Hom y, (SA,S“) respectively. That is, DHomy, (S,,S,;) and

DHom », (S*, $*) are spanned by homogeneous homomorphisms.

Proof. The proof proceeds almost identically to the proof of the fact that Hom y;, (S;,Su)
is graded; see Proposition 1.22. The important additional observation is that

(vs | S €Std) (u))p is a graded subspace of S;, by Proposition 2.4. O

The rest of this section is devoted to showing that in certain cases every Specht

homomorphism is dominated. Specifically, we shall prove the following.

Theorem 2.7. Suppose e # 2 and that k1, ...,k are distinct. Then Hom x, (S;,S,) =
DHOI’II% (SA, SM)'

Remark. The hypotheses that e # 2 and that 1, ..., k; are distinct are equivalent to the
condition that .77 has exactly 2/ isomorphism classes of one-dimensional modules.
These hypotheses also appear in Rouquier’s work [40, Theorems 6.6, 6.8, 6.13] on 1-
faithful quasi-hereditary covers of cyclotomic Hecke algebras. The following small
examples show that these hypotheses are essential in Theorem 2.7; in fact, they show
that Specht modules labelled by different multipartitions can be isomorphic without

these assumptions.

1. Take e = 2, k = (0), A = ((1?)) and & = ((2)). Then there is a non-zero
homomorphism S; — S, defined by z; + z,, though the tableau T, = is
not A-dominated. So Hom #, (S53,S,) # {0} = DHom x, (S;.,S,.).

2. For any e, take k = (0,0), A = (@,(1)) and u = ((1),@). Then z; — z, again

defines a non-zero homomorphism S, — S, though T, is not A-dominated.

The proof of Theorem 2.7 requires several preliminary results. We fix A, u € 2}
and an e-multicharge « of level / throughout. If cont(1) # cont(u), then by Lemma 1.28
Hom ;, (S;,5,) = 0, so that Theorem 2.7 is trivially true. So we assume that cont(1) =

cont(i). In the results below, ¥1, ..., ¥,—1 are elements of 7 ne(1)-
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Lemma 2.8. Suppose j € {2,....n} with j —1 |1, j, and T € Std(n) is A-dominated on
1,...,j. Then yj_qvr is a linear combination of basis elements vy for standard tableaux U

which are A-dominatedon 1, ..., j.

Proof. If j —1 —1 jor j—1 |t jorj—1 g1 j,then the result follows from Corol-
lary 2.2(1) together with either Lemma 1.33 or Lemma 1.35. The remaining possibility is

that j —1 /1 j. Butnow if we let S be the standard tableau s; 1T, then by Lemma 1.32

V101 = Vs + ) _yas buvy for some by € F. Clearly, since T is A-dominated on 1,..., j
and j — 1, lie in the same column of Ty, S is also A-dominated on 1,...,j. Corol-
lary 2.2(1) completes the proof. m|

Proposition 2.9. Suppose e # 2, and that ¢ : S, — S, is a homomorphism, and write

o(z;) = Z arvy for some ar € F.
TeStd (1)

Suppose j € {2,...,n} with j —1 |1, j, and that each T for which at # 0 is A-dominated on

1,...,j—1. Then each T for which ar # 0 is A-dominatedon 1,..., j.

Proof. The fact that j —1 |r, j means that ¥;j_;z; = 0, so we must have
> testd(u) ¢1¥j—1v1 = 0. Assuming the proposition is false, there is at least one T
which is not A-dominated on 1,...,j such that ar # 0; choose such a T which is >-
maximal. Since T is A-dominated on 1,..., j —1, the entry j lies in a column strictly
to the right of j —1 in T. We claim that we cannot have j —1 —r j. If this is the
case, then the residue sequence i(T) satisfies i(T); = i(T)j—1 + 1. However, since f
is a homomorphism and vr appears with non-zero coefficient in ¢(z;), we must have
i(T) =iy, and the fact that j —1 |1, j means that (i;); = (i})j—1 — 1. Since e # 2, this
is a contradiction.

Hence j —1 /1 j, so the tableau S := s5; 1T is standard, and if we write y/;_jvr as
a linear combination of standard basis elements, then vs occurs with coefficient 1. We
claim that vs does not occur in any other ¥, _jvr when ar # 0: if T is not A-dominated

onl,...,J, then (defining S’ analogously to S) we have ¥/j_jvpy = vy + Y o Cyvy for
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some ¢y € IF; but the fact that T € T’ (by our choice of T being >-maximal) means that

S ¢ S/, s0 vs cannot occur. On the other hand, if T' is A-dominated on 1, ..., j, then the
result follows from Lemma 2.8, since S is not A-dominated on 1, ..., j.
So vs occurs with non-zero coefficient in } 1egiq(,) 1Y j—1v1, @ contradiction. |

We now turn our attention to the case where ; is in the top row of its component in

T,.

Lemma 2.10. Suppose 1 < a < j < n, j—1 /1, j and that the entries a and j ap-
pear in the same component of T;. If T € Std(w) is weakly A-dominated on 1,...,j then
VaVat1 ... Yj—1vr is a linear combination of basis elements vy for standard tableaux U which

are weakly A-dominatedon 1, ..., j.

Proof. We argue by induction on I(sqSq41...5j-1) = j —a. If j —a = 0, the result is
trivial. So suppose a < j, and assume by induction that Y441 ... ¥ j—jvr is a linear
combination of basis elements vy which are weakly A-dominated on 1, ..., j. We want
to show that for each vy, ¥, vy is a linear combination of basis elements vy for standard
tableaux U’ which are weakly A-dominatedon 1, ..., j.

Ifa »ya+1lora |lya+1ora yya+ 1, then the result follows from Lemma 2.3
together with either Lemma 1.33 or Lemma 1.35. The remaining possibility is thata Ay
a + 1. Let S be the standard tableau s,U. Then by Lemma 1.32, Y/qvy = vs + D iy 5 dv Vv

for some ay € F.

Recalling that U is weakly A-dominated on 1, ..., j and that a,a + 1 are in the same
component of Ty, S is weakly A-dominated on 1, ..., j and Lemma 2.3 completes the
proof. O

Proposition 2.11. Suppose ¢ : Sy — Sy, is a homomorphism with

o(z;) = Z arvy for some ar € F.
TeStd (1)

Suppose j € {2,...,n} with either j —1 /'t, j or j —1 —rt, j, and that each T for which
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ar # 0 is A-dominated on 1,...,j — 1. Then each T for which ar # 0 is A-dominated on
L...,J.

Proof. The proof follows the same lines as Proposition 2.9. The condition that j —1 ",
j or j—1 —, j means that S, satisfies a Garnir relation Y¥,¥441...¥j—1z3 = 0,
where a is the entry immediately to the left of j in Tj; since f is a homomorphism,
we therefore have } reqiq(y) @1¥a - - - ¥j—1v1 = 0. Assuming the result is false, there is
at least one T which is not A-dominated on 1, ..., j such that ar # 0; choose such a T
which is >-maximal. Since T is A-dominatedon 1,...,j — 1, butnot 1,..., j, we have
Jj—1 /71 j.Infact j — 1 and j are in different components of T: if not, what is the entry
immediately to the left of j in T? It must be some k < j, since T is standard, but by
assumption k is strictly left of j in T, and hasn’t moved to the right in T.

Let S denote the standard tableau s454+1...5;—1T. Then l(ws) = l(wr) + j —a,
so that when we write ¥4¥441...¥j—1vr as a linear combination of standard basis
elements, vs occurs with coefficient 1. We claim that vs does not occur with non-zero
coefficient in Y4 ¥q+1 ... ¥ j—1vp for any other T' with ap # 0: if T’ is not A-dominated
on 1,...,J, then (defining S’ analogously to S) we have Y ¥441...¥j—1vr = vy +
Y vas buvy for some by € FF; but the fact that T ;\Q T’ (by our choice of T) means that
S ¢ S/, so vs cannot occur. On the other hand, if T' is A-dominated on 1, ..., j, then the
result follows from Lemma 2.10, since S is not weakly A-dominatedon 1, ..., j as j — 1
and j are in different components of T.

So vg occurs with non-zero coefficient in ZTGStd(M) ar¥a¥a+1...¥j—1v1, a contra-

diction. O

The last thing we need for the proof of Theorem 2.7 is the following.

Lemma 2.12. Suppose k1, ..., k; are distinct, and that T € Std(p) satisfies i (T) = ij. If T is
A-dominated on 1,..., j — 1 and j appears in the (1, 1)-position of its component in T, then

T is A-dominatedon 1,..., .

Proof. Supposenot; then j appearsin T strictly to the right of where itappearsin T,. This

means that j must appear in the (1, 1)-node of some component of T, since otherwise
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there would be a smaller entry immediately above or to the left of j, contradicting the
assumption that T is A-dominatedon 1, ..., j — 1.
Sothereare 1 <r <s </lsuchthatT,(1,1,s) =j =T(1,1,r). Hence ks = (i); =

i(T); = &, contrary to the assumption. m]

Proof of Theorem 2.7. Suppose ¢ : Sy — S, is a homomorphism, and write

o(z) = Z arvr forsomear € F.
TeStd(w)

We must show that every T for which ar # 0 is A-dominated. In fact, we show by
induction on j that every such T is A-dominated on 1,..., j, with the case j = 0
being vacuous. So suppose j > 1, and assume by induction that T is A-dominated on
1,...,j — 1. Note that since ¢ is a homomorphism, we have i (T) = i,.

If j = lor j liesinan earlier component of T; than j — 1, then j lies in the (1, 1)-node
of its component in T;. So by Lemma 2.12 T is A-dominated on 1, ..., j. The remaining

possibilities are that j > 1 and that one of

j_li/T)l.j’ j_l_)T)l.j’ ]_I/T)l,]
occurs; these cases are dealt with in Propositions 2.9 and 2.11. O

We immediately see the following interesting result.

Corollary 2.13. Suppose e # 2 and that i, ...,k are distinct. If A,u € P) with
Hom y, (S;.S,) # {0}, then A = u. Furthermore (since Std, (A) = {T,}) Hom x, (S,,S,) is

one-dimensional. In particular, Sy, is indecomposable.

Remark. Note that if e = 2 then S; may be decomposable. For example, when / = 1
and char(IF) # 3, the Specht module S((s ;2y) is decomposable; this was shown in [24,
Example 23.10(iii)] in the case char(F) = 2, and we show it in Theorem 3.37 in odd

characteristic.
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Similarly, whenk; = «; forsomei # j, we canhave decomposable Specht modules:
takex = (0,0),e =3 and A = ((3), (3)). Then {id, ¢} form a basis for End (S, ), where
@ is given by ¢(z;) = V3VaV1Vaysyva¥syaszy. It can be checked that ¢?(z;) =
—2¢(z,), and thus the endomorphisms id +1/2¢ and —1/2¢ are idempotents whenever

char(FF) # 2.

In particular, S((3),(3)) is decomposable if and only if char(IF) # 2.

In exactly the same way, we can prove the corresponding result for row Specht

modules.

Theorem 2.14. Suppose e # 2 and that ki,...,k; are distinct, and A, ju € z@,l, Then
DHom , (5*,$*) = Hom. g, (5*.5"*). Hence Hom 4, (S*,S*) # {0} only if A < p,

Hom , (S*, %) is one-dimensional, and $* is indecomposable.

2.3 Duality for dominated homomorphisms

In this section we consider the relationship between row and column Specht modules,
as well as between Specht modules labelled by conjugate multipartitions. These rela-
tionships are encapsulated in [29, Theorems 7.25 and 8.5], from which it follows that a
(generalised) column-removal theorem for homomorphisms between Specht modules
is equivalent to the corresponding row-removal theorem. The main result of this sec-
tion, which requires considerable additional work, is that the same is true for dominated
homomorphisms.

Following [29, §3.2], let © : 4 — %, denote the anti-automorphism which fixes
all the generators e(i), yr, ¥, and define t : J%, — 7, by combining these maps for
allw. If M = P, ey My is a graded H;,-module, let M® denote the graded module
with Mg) = Homg(M_4, FF) for each d, with ,;-action given by (hf)m = f(t(h)m) for
me M, f € M® and h € s, Recall from Section 1.8 that for k € Z, M (k) denotes
the same module with the grading shifted by &, i.e. M (k); = M;_i. Finally, recall the

defect def(1) of a multipartition from Section 1.7.
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Theorem 2.15 [29, Theorem 7.25]. Suppose A € PL. Then
S* = (5,)®%(def(h))  and S, = (5*)®(def(})).

Now suppose A, u € Z}. Applying Theorem 2.15 to both A and u gives an isomor-

phism of graded vector spaces
Hom ;, (8", %) 2 Hom , (S, (def(1)). S3 (def(1)):

since by Lemma 1.28 def(1) = def(u) for any A and u with Hom, y;, (S, SA) # {0}, this

yields an isomorphism of graded vector spaces
Hom , (S*,S*) = Hom 4, (S,S%).

The anti-automorphism t is homogeneous of degree zero, so Hom , (S,.S?) is canon-
ically isomorphic as a graded vector space to Hom y, (S55,S,), and hence we have an

isomorphism of graded vector spaces
© : Hom 4, (S3.S;.) —> Hom z, (5%, S%).

Our aim is to prove the following.

Proposition 2.16. Suppose A, ju € @,’,, and let ® : Hom y;, (S;,S,) — Hom x, (S, SA) be
the bijection above. Then ®(DHom, x;, (S;,S,)) = DHom, 4, (S*, SA).

We shall prove Proposition 2.16 below. First we examine the consequences for
row and column removal. In order to be able to compare row and column removal,
we combine Proposition 2.16 with a result which relates to an analogue of the sign
representation of the symmetric group. Following [29, §3.3], let sgn : 775 — 7 denote
the automorphism which maps e(i) — e(—i), y, = —y, and y5 — — foralli, r, s, and
define sgn : 7%, — 7, by combining these maps for all «. Given a graded .7%,-module

M, let M*8" denote the same graded vector space with the action of 77, twisted by sgn.
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Recall that if A is a multipartition, then A’ denotes the conjugate multipartition to A,
and that if S € Std(1), then S’ € Std(1") denotes the conjugate tableau to S. Also define
the conjugate e-multicharge k' := (—«;, ..., —k1). Now the following is immediate from

the construction of row and column Specht modules.

Theorem 2.17 [29, Theorem 8.51. Suppose A € PL. Then there is an isomorphism (S*€)s8n ~

Sk of Hy-modules, given by v® > vy

Remark. Theorem 2.17 is one place where it is essential that we consider Specht modules
as modules for .74, rather than its cyclotomic quotients, since the two modules involved

are defined relative to different e-multicharges.

Now suppose A, u € Z2.. Since sgn is a homogeneous automorphism of 7%, we

have an equality of graded vector spaces
Hom , ((8*1€)%8", (§*1€)%81) = Hom 4, (S*I¢, S41¥), (%)
Combining this with Theorem 2.17, we have an isomorphism of graded vector spaces
Hom s, (S, Savjer) 2 Hom g, (SH1€, 51, (t)
Applying Theorem 2.15 yields an isomorphism of graded vector spaces

Hom z, (S,v|«» Sarer) = Hom g, (Spjics Spujic)- ()

We want to show that the same holds for dominated homomorphisms; this is immediate
when e > 2 and k1, ..., k; are distinct, by Theorem 2.7. In general, we observe that (x)
remains true with Hom replaced by DHom, and the explicit form of the isomorphism
in Theorem 2.17 shows that () does too, since S € Std,/(1) if and only if S’ € Std*(}).
Finally, Proposition 2.16 shows that (i) remains true for DHom too. So we have the

following theorem.
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Theorem 2.18. Suppose A, ju € P.. Then there is an isomorphism of graded vector spaces
DHom s, (Sp |« Syuc) = DHom g, (S, (7, Savir)-

It remains to prove Proposition 2.16; for the remainder of this section, all Specht
modules are defined for the e-multicharge «.

We begin by recalling how the isomorphism $* =~ S (def(4)) in Theorem 2.15 is
constructed. Given the standard basis {vr | T € Std(4)} for Sy, let {fT | T € Std(1)}
be the dual basis for S§; although the elements f7 in general depend on the choice of
the elements vr (i.e. on the choice of preferred reduced expressions), it is easy to see
that the element fT* does not: by Lemma 1.32 we know that if 5, ...s;, is a reduced
expression for wr then ¥, ... v}, z; and vr only differ by a linear combination of vy for
U < T. Since T* is the <-maximal standard A-tableau, vra will never appear as such an
error term when choosing different reduced expressions for the elements vr, and thus
™ is independent of such a choice.

The isomorphism 6* : 5% Sf (def(1)) in Theorem 2.15 is defined (see [29, Theorem
7.25]) by 6(z*) = fT".

Lemma 2.19. Suppose A € P., and let 6* : st S%(def(A)) be the isomorphism constructed

above.
1. Forany S € Std(}) we have 6*(v3) € (fT| T € Std(X), T &= S)F.

2. 0% maps the space (v® | S € Std* (L)) bijectively to the space (f3 | S € Std*(1))F.

Proof.

1. Foreach T € Std(}), write (¥*)vr = ) yesi(a) @1uvu- Then one can check that the
definitions give 6*(v%) = Y 1eguae) a7 ST S0 it suffices to show that app = 0
when T £ S. Clearly, to prove this, it is sufficient to show this in the case where
F = C, and so (as in the proof of [29, Theorem 7.25]) we can invoke the proof of

[21, Proposition 6.19]; here 6+ is given in the form x — {x, —}, for a bilinear form
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{, }: S* xS 1(def(1)) — C satisfying {v>, vr} = 0 unless T > S, which is exactly

what we want.

2. From (1) and Corollary 2.2(2) we have 84 (v%) € (fT | T € Std*(1))r whenever S €
Std* (), s0 0% ((vS | S € Std*(1))) < (f3|S € Std*(A)). But #* is an isomorphism

of vector spaces and
dimg(v® | S € Std*(A))f = [Std(1)| = dimg (/| S € Std™ (1)),

soin fact 6* ((vS | S € Std*(A))F) = (f3 | S € Std* (V). O

Lemma 2.20. Suppose A, ju € PL. Suppose S € Std(A) and Uiis a A-tableau such that ws > wy
and that for every 1 < i < n the number i appears in U weakly to the right of where it appears

in T¢. Then S € Std*(1).

Proof. Using Lemma 2.1(2) we just need to show that Shape(S,,,) > Shape(T’fm) for
all m. Let U. be the column-strict tableau which is column-equivalent to U. Then
by Proposition 1.1 wy > wy.. By Proposition 1.12, we have that Shape((Uc)n) &
Shape(S,,,)" for all m. Furthermore, the condition that every entry in U, lies weakly to
the right of where it lies in T# is equivalent to every entry in (U.)’ lying weakly below
where it lies in (T#)’, so we necessarily have that Shape((Uc) ) < Shape(T’fm)/ for all

m. Reapplying Proposition 1.12, we have wy, > wru. ]

Lemma 2.21. Suppose A, i € 9?’,’,, S € Std(A) \ Std*(A) and T € Std (). Then when Ysvr

is expressed in terms of the standard basis {vy | U € Std , the coefficient of vru is zero.
p 2

Proof. Suppose to the contrary that vr« does appear with non-zero coefficient in ysvr =
VYsyrzy,. Lets;, ...si, and sj, ...sj, be the preferred reduced expressions for ws and wr
respectively. Then by Lemma 1.37 there is a reduced expression for wru occurring as
a subexpression of s, ...s;,5, ...5;,. If we separate this reduced expression into two

parts, which occur as subexpressions of s;, ...s;, and s, ...sj, respectively, and let w, x
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denote the corresponding elements of &,, then we have
w < ws, X < wr, wx = wre, and [(w) +1(x) = [(wrn).

Putting V = xT,, we have V € Std(n) by Lemma 1.10, and in fact V € Std; (i) (using
Corollary 2.2(1), because wy < wrand T € Std (n)). If weletU = wT, then, as functions
(] — [A],

Ut =Ty T, = TV

The fact that V is A-dominated can be expressed as saying that the map T;lv ] = [A]
maps any node of  to a node weakly to the right. So each entry of U appears weakly to
the right of where it appears in T#, i.e. U satisfies the hypotheses of Lemma 2.20. Hence

by Lemma 2.20 S € Std* (1), contrary to the hypothesis. |

Proof of Proposition 2.16. We shall prove that ®(DHom ;, (S;3.S,)) € DHom 4, (S*,$);
the same argument with A and p interchanged and with row and column Specht

modules interchanged proves the opposite containment.

Suppose ¢ € DHom x, (S3,Sy.), and write ¢(23) = D resi, (i) 41VT fOr some ar € F.
Let ¢® : Sﬁ — S denote the dual map. We want to show that the homomorphism ©(¢)
which corresponds to ¢® via Theorem 2.15 is row-dominated, i.e. ©(p)(z*) € (v°|S €
Std"(1))r. By the construction of the isomorphism S#* — Si and by Lemma 2.19, this is
the same as saying that ®( /™) € (f3|S € Std*(A))F; in other words, ¢®( ™) (vs) = 0
when S € Std(1) \ Std“(1).

The dual map ¢® is given by f + f 0. In particular, ®(f™) = ™ 0 ¢, which
maps vs to the coefficient of vru in ¢(vs) = D regig, () 4T¥sv1. By Lemma 2.21 this

coefficient is zero when S ¢ Std" (1), and the result follows. O
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2.4 Generalised column removal for multipartitions

Now we come to the main results of the chapter, which give row and column removal

theorems for dominated homomorphisms between Specht modules.

Definition 2.22. Suppose A = (A(V,... 1)) € 2. Forany 1 <m </ and any ¢ >0,
define )\l(m)’c to be the partition consisting of all nodes in the first ¢ columns of A,

and /\ﬁm)’c

the partition consisting of all nodes after the first ¢ columns of A, That is,
()Ll(m)’c)i = min {kl(m), c} , (kﬁm)’c)i = max {/\l(m) —c, 0} foralli > 1.
Now define

Ar = Ar(e.m) = WD A0n=D j0m)ey

A= Ai(e,my = AE A0 D @)

Here is an enlightening pictorial representation of this construction, with/ = 3, m = 2

and ¢ = 3.
A Ar

2

1@

1®

third column of component 2

Now we consider tableaux. Suppose A1, A; are as above, and let n; = [A| and n, = |A,]|.
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Given a Aj-tableau T; and a A;-tableau T,, define Tj#T, to be the A-tableau obtained
by filling in the entries 1,...,n; as they appear in Tj, and then filling in the entries
n+1,...,nas 1,...,n;, respectively, appear in T,. If T} € Std(4;) and T, € Std(A,)
then Ti#T, € Std(A). Conversely, observe that if T € Std(1) and the integers 1, ..., n all
appear in T in column ¢ of component m or further to the left, then T has the form T|#T;
for some T; € Std(A)) and T, € Std(A;). We write Std(4) for the set of T € Std(1) with

this property.

Example. Take /! = 3and 1 = ((3), (2?), (2. 1)). Taking m =2 and ¢ = 1, we get
=(13).2D), A =(0).0%).

If we choose

[
=
-
[
|
|
|

T

2]4]
5]
then we obtain
Ti#T, = 7181010
116
319
214]
15

2.5 Simple row and column removal

Theorem 2.23 (Graded Column Removal). Suppose A, € 2L and 1 < m < 1. Suppose
that A+ = ... = 1D = 4D — .. = D = @ gpd k = Ay = (W), Let

Ar = Ac(1,m), pur = pe(1,m) and & = (k1,...,Kkm—1,km + 1). Then
DHom ;, (S|« Syujc) = DHom z, _, (Sa, 1, Sy, li,)

as graded vector spaces over IF.
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Remarks.

1. Recalling Theorem 2.7, this result in fact implies that
Hom z, (Saje» Spie) = Homuz,  (Si > Spucle,)

when e # 2 and k1, ..., k; are distinct.

2. In light of the first example after Theorem 2.7, the above result is clearly false
if we instead consider all homomorphisms, without any restrictions on e or «.
Indeed, building on this same example, we see that when e = 2 and « = (0),
Hom y, (S((22)), S((3,1))) = 10} (Whereas Hom s (S((12)), S((2))) # {0}). To see that
Hom ; (S((22)), S((3,1))) = {0}, note that the only (3, 1)-tableaux with residue se-
quence i((2)) = (0,1,1,0) are T((3,1)) and S = 52T ((3,1)), which have degrees +1
and —1 respectively. The Garnir element 31 does not kill z((3 1)) (as ¥3¥22((3,1))

is an element of the standard basis of S((3,1))), and y2v¥22(3,1)) = —2(3,1)) # 0.

Proof. We construct the isomorphism explicitly in the KLR setting. First note that
we may assume A > u, since otherwise Std, (u;) = Std;(u) = 9 and the result is
immediate. We also observe that cont(A) = cont(u) if and only if cont(A;) = cont(u,); if
these conditions do not hold then the result is trivial since both homomorphism spaces
are zero, so we assume cont(1) = cont(u), and set @ := cont(1), B := cont(A;).

For this proof we make an assumption about the choice of preferred reduced ex-
pressions defining the standard bases for S, |, and S, . GivenT € Std, (u.), we define

TT := T, #T, where
1 = juy(1,m) = ((1’<),@, N .,@) e plmtl,

In other words, TT is obtained from T by increasing each entry by k, adding the column

at the left of component m, and then adding / —m empty components at the end.

Now recall the maps (both denoted shifty) from S, _; to S, and from J73 to 5.
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Observe that for T € Std, (u:) we have wr+ = shifty (wr). By choosing compatible

reduced expressions for wr+ and wr, we may assume that Y+ = shift; (¥7) as well.

Now let ¢ = (kﬁm))/l. Then the entries 1,...,c all appear in the first column of
component m in T, , and hence if T € Std, (ur) these entries all appear in the first
column of component m of T. In particular, wr fixes 1, ..., ¢, so Yt only involves terms

Y for j > c; hence Y+ only involves terms y; for j > k +c.

Now suppose ¢ € DHom ;, _, (Si, x> S, lx,)- Then

ee(zy,) = Z arvr forsomear € F.
TeStd ), (14r)

We define @ S)LIK g Sp,|x by

p(z)) = Z arVr+.
TeStd,, (1r)
We must verify that this does indeed define a homomorphism, i.e. that A¢(z;) = 0
whenever i € Ann(z,). (Here and henceforth we write Ann(z,) for the annihilator of
z,.) Firstly, note that if T € Std_ (1) with ar # 0, then T has residue sequence i, ; this
implies that T has residue sequence iy, so that e(i})¢(z3) = ¢(z;), as required. For the
other relations, observe from the defining relations for the column Specht module that
shifty (Ann(z,,)) € Ann(z,) (and similarly for u, and u). Now for k < j < n we have

Yj—k € Ann(zy,), so (since ¢; is a homomorphism) y;_x > raryr € Ann(z,, ). Hence

Ann(z,) > shifty (yj_k ZGTWT) =Yyj ZaT¢T+,
T T

so that y;¢(z;) = 0. A similar statement applies to /; whenever k < j < n with
J i1, j +1, and to any Garnir element g4 where A does not lie in the first column of

component m.

It remains to check the generators of Ann(z, ) which donotlie in shift; (Ann(z, )), i.e.

the elements y1,..., vk, ¥1,...,¥x—1 and g4 for A of the form (j,1,m) with1 < j <c.
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Let i denote any of these elements, and observe that since each ¥+ is a product of
terms v; with i > k + ¢, h commutes with ¥+ (note that if 2 = g(; 1 ), then i only

involves terms v; fori < k + ¢). Hence

ho(zy) =h ZQTWTJrZM = ZaTwTJthM =0,
T T

since h € Ann(z,,).

So Ann(zy)e(z)) = 0, and ¢ is a well-defined homomorphism. So we have a
map ® : DHom y;,_, (Sj,|x,» Sy, lx,) — DHom , (Spjc.Spc) given by ¢ = ¢, and & is
obviously linear. To show that & is bijective, we construct its inverse. Any S € Std (u)
must have entries 1, ..., k in order down the first column of its mth component; that is,

S =T7 for some T € Std;_(i4r). So given 6 € DHom y, (Sajc> Spjc), we can write

0(z;) = Z arvr+ for somear € FF.
TEStd)»r (Mr)
Applying (a simpler version of) the above argument in reverse, we see that we have a

homomorphism 6, : S, — S, given by

9r(ZAr) = Z arvr.
TeStd ), (r)
So we get a linear map DHom s, (S;«.Sy«) — DHomy g, (Si . Sy, l,) Which is a

two-sided inverse to ®, and hence @ is a bijection.

Finally, to show that we have an isomorphism of graded vector spaces, we show
that ® is homogeneous of degree 0. That is, if 0 # ¢, € DHom #,_, (Sx,j«,> S, lc,) 18
homogeneous, then ¢ is also homogeneous with deg(¢) = deg(yr). To see this, we

write

¢r(zy,) = Z atvy for somear € IF.
TGStdAr(Mr)
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Then

p(z)) = Z arvr+,

TeStd ), (14r)

and for each T with ar # 0 we have
codeg(T™) — codeg®(T;) = codeg? (T) — codeg? (T, ) = deg(er).

Hence ¢ is homogeneous of degree deg(¢r). |
Now we make corresponding definitions for row removal.

Definition 2.24. Suppose A € Z.. For any | < m < and any r > 0, define
AT = A 00,0, AT =W A,
Now let

A= Ae(r,m) = AW, A n=D 3 0mry

Ap = Ap(r,m) = QU7 A0n D30y

and set ny = |A¢| and n, = |Ap|.

Corollary 2.25 (Graded Row Removal). Suppose A, € 2% and 1 < m < 1. Suppose
that AV = ... = Am=D = O — ... = =) — g gpd ko= A = J I Ler

A = Ap(1,m), up = up(1,m) and kp = (km — 1, km+1, ..., k7). Then
DHom , (SMK’ Sll«lK) =~ DHom »,_, (Slbllfb’ S,ubllcb)

as graded vector spaces over IF.

Proof.
DHom , (S|« Suc) = DHom , (S, (- Sav i) by Theorem 2.18,
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= DHom,ygn_k (S(Mb)/l(lcb)” S(/lb)’|(Kb)’) by Theorem 2.23,

=~ DHom s, _, (Sx, |k, Spulis) by Theorem 2.18 again. O

Now we prove a ‘final column removal’ theorem, where we assume that the right-

most non-empty columns of A and u are in the same place and of the same length.

Theorem 2.26 (Final Column Removal). Suppose A, € P. and 1 < m < I. Suppose

(™). Let Ay = Ai(d —1,m), = pi(d — 1,m) and ky = (km. ..., k7). Then
DHom sz, (Sp . Suje) = DHom , _, (Sayji> Spuifir)

as graded vector spaces over FF.

Proof. We first use Corollary 2.25 to remove the first k rows of length d from both 1

and ™. We obtain

DHom s, (Sjjk» Sulc) = DHomuz, ;i (Sl > Spislis)

where A, = Ap(k,m), up = up(k,m) and «p = (kmy — k, k2, ...,k7). We then use Corol-
lary 2.25 again to add k rows of length d — 1 to the top of both A7 and ™. We

obtain

DHom z, (Skblkb ) SMbIKb) =~ DHom y, , (SMIKP SM1|K1)’

which gives the result. o

It will be helpful below to be able to give a direct construction for final column
removal, as done in the proof of Theorem 2.23 for first column removal. We assume
the hypotheses and notation of Theorem 2.26, and for ease of notation we assume that
S, and S, are defined using the e-multicharge «, while S,, and S, are defined using «;.

We can also assume that cont(A) = cont(u) =: «, and hence cont(41) = cont(u;) =: B.



66 2.5. Simple row and column removal

We identify &,_; with its image under the map shifty : S, — S,, and similarly
for 7 and 77,. As in the proof of Theorem 2.23 we make an assumption on preferred
reduced expressions: given a standard ju;-tableau T, we define T to be the standard
u-tableau obtained by adding a column with entries n —k + 1,...,n at the right of
component m; then we have wr+ = wr, and we assume that our preferred reduced

expressions have been chosen in such a way that Y+ = V.
Lemma 2.27. With the above notation, we have Ann(z,,) = Ann(z,) N 73.

Proof. It follows directly from the presentation for column Specht modules that
Ann(zy) € Ann(z;) N.#p, so we must show the opposite containment. Consider
the J#g-submodule 73z, of S; generated by z;. For any T € Std(A;) we have
U+ = Yp+2z) = Yrz) € Hpz), and the vy+ are linearly independent, so dimp 73z, >

| Std(A1)| = dimg Sy,. So we have
dimp 73z, > dimg 3z,

ie.

i

> 7
Ann(z;) N A~

dimp — 2P
T Ann(zy,)

dim][:
and so Ann(zy,) 2 Ann(zy) N 7#p. O

Now we consider dominated homomorphisms. Observe that since A and u have
the same last column, Std; (1) = {T* | T € Stdy, (1) }. So if ¢ € DHom (S5, S,.), then

we can write

o(z) = Z arvr+ withag € F.
TeStd, (1)

Then we can define a homomorphism

¢ SlllKl ” SM1|K1
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Zy, — Z arvr.
TeStd, (i)
To see that this definition yields a well-defined homomorphism, we must show that
h) rarvr = 0 whenever & € Ann(z,,). By Lemma 2.27 we have & € Ann(z,), and
hence (since ¢ is a homomorphism) 4 ) ;arvr+ = 0; in other words, h ) ;aryr €
Ann(z,). We also have i ) ;aryr € 3, so by Lemma 2.27 again (with A replaced by
w) hY raryr € Ann(zy,), as required.

So we have amap ¢ — ¢~ : DHom ;, (Sp |, Suc) — DHom g, (Sp,jk,5 Spui)- This
is obviously an injective map of degree 0, and hence (by Theorem 2.26) a graded

isomorphism.

2.6 Generalised column removal

Armed with first column removal and final column removal, we can now consider
generalised column removal. In what follows, we fix ¢ > 0 and 1 < m <[, and for any
V€ L@,l, we write v; = vi(c, m) and v, = v(c,m). We suppose A, u € L@,l,, and assume
that |A| = || =: ny, so that |A;| = |u,| = n —n; =: n,. We also assume that A = u. This

assumption implies that A; = p; and A, = i, which in particular gives

AL > (Y, > (W™

so that it is possible to define a multipartition Aj#u, € 9”,11 with (Ai#u)1 = A and
(M) = Hr.

We write k1 = (km,....k1), kr = (K1,....km + ), H{ = I3, and J4 = 74,,. For ease
of notation, we will assume throughout the following that the Specht modules S;, S;,

and Sy 4, are defined using the e-multicharge «, while S, and S, are defined using «;

and S, and S, are defined using «.
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Suppose ¢; € DHom (S;,.Sy,) and ¢, € DHom 4 (S;,,Sy,), and write

eiza) = Y asvs.  @(zp) =Y bror

SeStdy, (1) TeStd ), (ur)

with coefficients as, by € IF. If there is a homomorphism ¢ : S, — S, satisfying

0(z2) = Y _ asbrussr,

SeStda, (1)
TeStd ), (r)

then we write ¢ = ¢i#¢;, and say that ¢ is a product homomorphism.
Lemma 2.28. Every product homomorphism Sy — S, factors through S 4,

Proof. Suppose that ¢ = @i#¢; is a product homomorphism, and as above write

pi(z3) = Z asvs, pr(zp,) = Z brvr.

SeStd, (ur) TeStdy, ()
Now define
gl)l#id . SAI#Mr —> SM’ id#gpr . SA — SAI#M,
Z tp, Z asvsst,, Zp Z bTUTAl#T~
SeStd, () TeStd ), (1r)

Then ¢#id and id #¢, are both J#;,-homomorphisms; this follows from the direct con-
structions of column removal homomorphisms in the proof of Theorem 2.23 and fol-

lowing the proof of Theorem 2.26. Clearly (gi#id) o (id #¢r) = ¢, so ¢ factors through

Skl#ur . O

Proposition 2.29. Assume the hypotheses (on A and p) and notation above. Then every

¢ € DHom , (S,.S,.) is a sum of product homomorphisms.

Proof. We may assume that cont(1) = cont(u) (since otherwise there are no non-zero

homomorphisms S, — S;;). So for this proof we write « := cont(1) and define shifty
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to be the map from 4 to /7, obtained by combining the maps shifty : 773 — 7 for
allp € O of height n; similarly, shift,, denotes the map from .7 to /%, obtained by
combining the maps shift,, : #3 — #, forall B € O of height n,.

For this proof we make an assumption about the choice of preferred reduced ex-
pressions similar to that in the proof of Theorem 2.26. Specifically, we assume that these
expressions have been chosen in such a way thatif S € Std;, (1) and T € Std,_(u,), then
the preferred expression for wsgr is just the concatenation of the preferred expression
for ws with the expression obtained by applying shift,, to every term in the preferred
expression for wr. Hence ysur = s shifty, ().

Now we show that every dominated homomorphism S; — S, is a sum of product
homomorphisms. To do this, we first discuss dominated tableaux. Note that the
conditions on A and p imply that Std (1) = {Tj#T, | T) € Stdy, (1), Tr € Std; (1ur) } -
Choose a total order » on Std, (i) with the property that if R, S € Std,, (1) and T,U €

Stdj, (ir), then
R#T » R#U <= S#T » S#U and R#T » SH#T <= R#U » S#U.

(For example, we could do this by choosing total orders »,», on Std;, (u1), Std; (j4r)
and setting V » W if and only if V; » W; or (V; = W; and V; », W;).)

Now suppose ¢ : S; — S, is a non-zero dominated homomorphism, and write
@(23) = Y resid, (u) d1vT With each ar € IF. Let U be the largest tableau (with respect to

») such that ay # 0, and proceed by induction on U.
Claim. Letl/ denote the set of tableaux T € Std () such that T, = U,. Then there

is an .74-homomorphism

golu 155, — S

Z,{l > Z artuT.
Teu

Proof. First we make an observation, which follows from the construction of
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Specht modules and our assumptions on preferred reduced expressions. If
W e Stdy(n) and h € 7, and we write hvy, = ZTGStd(M) brvr, then shifty(h)vy =
> testd(u) brvmsw,. In particular, shifto(h)vy is a linear combination of basis ele-

ments vs for S € Std.(u) with S; = W,.

Now take & € Ann(z,,). Then shifty(h) € Ann(z,), so shifty(h) ZTE&C‘A (1) ATVT =
0 (because ¢ is a homomorphism). If we look just at shifto(h) ) ¢, atvr, then by
the previous paragraph this lies in (vr| T € Stdi(p), Tr = U), while
shifty(h) ZT¢M arvr lies in (vr | T € Stdi (), Tr # Ur)p. The vr are linearly in-

dependent, and hence
(vr| Te Stdlr(ﬂ)v T, = Ur)]F N(vr| Te Stdlr(,u)’ T, ?é Ur)IF =0.

Hence shifto (k) D 7y atvr = 0.

Define a linear map #U; : S, — Su by vr — vy, for T € Std(u1). Then, from
above, we have

(hm)#U, = h(m#U,)

for any h € J4 and any m € S,. So for each h € Ann(z,), we have

h ZTGM arvr = 0.

We can do essentially the same thing left and right interchanged; that is, if we let

U ={T eStdy(n) | T1 = Uy}, then we have an 74-homomorphism

‘/’E 53, — Sy,

er'_) E arvr,.
Tey’

As in the proof of Lemma 2.28, we construct homomorphisms

(plU#id :Sa#pu, — S and id#golEI 25y — Sysues
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whose composition is the product homomorphism ¢#¢! : Sy — S;.. vy appears with
non-zero coefficient (namely a?) in ¢#¢Y, and U is maximal (with respect to the order
») with this property. So if we consider the homomorphism & := ¢ — i(pl#(pr, then (if
¢ # 0) the most dominant tableau occurring with non-zero coefficient in £ is smaller

than U. By induction & is a sum of product homomorphisms, and hence so is ¢. |

Now we can prove our main result.

Theorem 2.30 (Generalised graded column removal). Suppose A, € P, ¢ > 0 and
1 <m <[ and define Ay, Ay, p1, Wy as in Section 2.4. Assume |A(c, m)| = |ui(c, m)| =: nyand
[Ac(c,m)| = |pr(c,m)| =: ny for some fixed ¢ > 0 and 1 < m < [ and define 74 = 73, and
A = S,

1. Forany ¢ € DHom 4(S;,,S,,) and ¢. € DHom #(S;_, Sy,), there is a product homo-

morphism gi#e, € DHom 4, (S;.Su).

2. The map @1 ® ¢r — @i#te; defines an isomorphism of graded F-vector spaces

DHom »(S;,,Sy,) ® DHom 4 (Sy,.S,,) = DHom , (S4,5,).

Proof. First suppose A ¢ u. Then Stdy(u) = @, so DHom, (S;.S,) = 0. Further-
more, we have either A} 2 u; or A, ¢ p,, so that either DHom #(Sy,,S,,) = 0 or

DHom (S;,,S.,) = 0. So the result follows.

So we can assume that A > u, which allows us to define the multipartition A1#u, as

above. Applying Theorem 2.23 repeatedly, we have
DHOI’II% (S, S)tl#ll«r) = DI—IOI’IIL%Or (S)w S,u,r)-
Similarly, by Theorem 2.26 applied repeatedly we have

DHom ;, (S#y,» Sp) = DHomu(Sp,, Sy )-
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Combining these isomorphisms, and using the explicit constructions given above, we

have an isomorphism of graded vector spaces

DHom (S, Sy) ® DHOm (S, Sy.,) —> DHoOm z;, (S, S) ® DHOm (S5, S,)

0 ® ¢r —> (pi#id) ® (id #ey).
Composition of homomorphisms yields a map
o : DHom s, (Sp .. Si) ® DHom s, (S5, Sp,,) —> DHom , (S4.5,)

which is homogeneous of degree zero, and by Lemma 2.28 and Proposition 2.29  is

surjective. So we have a surjective map

DHom »(S;,, S;,) ® DHom 4 (S;,., S;,.) —> DHom s, (Sx,Su)

01 @ ¢r > i#ter.

This map is easily seen to be injective, and the result follows. O

2.7 Generalised row removal

Now we consider generalised row removal for homomorphisms between column
Specht modules. Fix 1 < m </ and r > 0, and for any v € 32,11 write vy = v(r, m),
Vp = Vp(r,m). Suppose A, i € 9}1 with [A¢| = |t =: ny, so that [Ay| = |up| = n—n =:
np. Set ky = (k1,....km) and kp = (km — 7, Km+1.....k7), and write & = 7%, and
4, = Sy,. In what follows we shall take S; and S;, to be defined with respect to the
e-multicharge «, Sy, and S;,, with respect to k¢, and S, and S;,, with respect to «y,.
With this notation in place, we can state a generalised row-removal theorem for
homomorphisms. This follows from Theorem 2.30 using Theorem 2.18 in the same way

that Corollary 2.25 is deduced from Theorem 2.23.

Theorem 2.31 (Generalised graded row removal). Suppose A, ju € L, r > 0and 1 < m <
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[ and define A, Ap, e, b, Nt Ny, F4, H, as above. Then there is an isomorphism of graded

F-vector spaces

DHomjg,;(S)Lt, SM) ® DHom 4, (S,xb, SMb) =~ DHom, (S;, SM)'

Our proof of Theorem 2.30 gives a direct construction of the column-removal isomor-
phism, but a direct construction for row removal seems to be hard to obtain, especially
using the standard bases for column Specht modules. The difficulty seems to arise when
passing through the isomorphism 6% from Theorem 2.15, which does not preserve the

standard bases.

Example. Takee = 2andx = (0, 1,0). LetA = ((1%), (2, 1%), (1)) and . = ((1). (3. 1), (3)),
and take (m,r) = (2,1),sothat 1y = ((1). (2)), b = ((1%), (1)) and ¢ = pp = ((1), (3)).
Set k¢ = (0,1) and «p, = (0,0). Then (regardless of the field IF) the graded dimensions
of DHom y (S3,«,» Sulx) @and DHom s, (S3, (- Syul,) @re v and 1 respectively. So by
Theorem 2.31 the graded dimension of DHom ;4 (Syc. Sy ) is v. The unique (up to

scaling) homomorphisms

Si — Sues Sis — Sups S, — Su

are given by

Zp, > Us, zy, > Ut, zZ) —> vy + 2vy,

where
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It seems hard to reconcile these homomorphisms when expressed in this form, except
perhaps in characteristic 2. (Note that the incompatibility of these expressions is not
an artefact of the choice of preferred reduced expressions — the standard basis elements

appearing in this example are independent of the choice of reduced expressions.)

In order to obtain an explicit row-removal construction, it seems to be necessary to
use a different basis for the Specht module. Suppose we have Ay, At, i, and jit as above,
with |ut| = ny = |A¢|. Partition the set {1,...,n} into two sets S, and S;, by defining Sy,

to be the set of integers in the bottom part of T and S; the set of integers in the top part;

that is,

Sy, = {Ta(s,c,k) | (s,c,k) € [A] and either k > mork =mand s > r},

St ={Ty(s,c, k)| (s,c,k) € [A] and eitherk <mork =mand s <r}.
Let laby, : {1,...,np} — Sp and lab; : {1,...,n¢} — S; be the unique order-preserving
bijections.

Now given a up-tableau T and a ui-tableau S, define a ji-tableau T#gS by composing

laby, with T and lab; with S and “gluing’” in the natural way.

Lemma 2.32. Suppose A and u satisfy the conditions above. If T € Stdy, (up) and S €
Std;, (i), then THRS € Std (w).

Proof. First we show that T#RS is standard. Suppose 4 and B are nodes in the same
component of [u], with B either immediately to the right of A or immediately below
A; then we require T#rS(B) > T#rS(A). This is clear from the fact that S and T are
standard and the functions lab; and laby, are order-preserving, except in the case where
A= (r,bm)and B = (r+1,b,m) forsome 1 < b < ,u%_)l. So assume we are in this
situation.

Let k = )Li"fr)l. Then the first k columns of /\t(m) all have length r. Since Std, (4t)

(m)

is non-empty we have A; = p, and hence the first k columns of x; ~ all have length r

also. Hence (since S is A-dominated) S agrees with T,, on these columns. So we have
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T#RS(A) = laby(Tj,(A4)) = Tr(A).
We also have A, & up since Std,, (up) # 9, so that k > uﬁ"fr)l > b (and in particular

B € [A]). Since T is Ap-dominated, we have T(1,b,1) > Ty, (1,5, 1), so that
T#rS(B) = labyp(T(1, b, 1)) > laby (T, (1,b,1)) = T, (B).

So T#RS(A) = Ty (A) < Tp(B) < T#rS(B), as required.
To see that T#RS is A-dominated, it suffices to note that since S € Std,, (u), every

element of S; appears in lab(S) at least as far to the left as it appears in T, , and likewise

for T € Std, (1p) and elements of Sp,. O

Now we can give a conjectured explicit construction for the generalised row-removal
isomorphism for homomorphisms. Recall from Section 2.3 the basis { fr | T € Std(u) }
for (S*)®; using Theorem 2.15 and shifting the degree of each fr by def(u), we can
regard { fr | T € Std(n) } as a basis for S;,. Note that by the analogue of Lemma 2.19(2)

for column Specht modules, any ¢ € DHom , (S;,S,,) can be written as

(zy) = Z arfr forsomear € F.
TeStd ) (un)

Conjecture 2.33. Suppose A, 1 € 3”,’1, r > 0and 1 < m < n. Define A, Ap, [it, [bb, Nt, b, H4,
H as above, and assume |uy = ng. Suppose ¢ € DHom (S;,.S,,) and

¢» € DHom 4 (S;,,, Sy,), and write

%(Zkb) = Z ar fr, ‘Pt(zkt) = Z bs fs

TeStdy, (1) Sestdy, ()

with ar, bs € IF. Then there is an J,-homomorphism gpu#re: : Sy — Sy, satisfying

PoHr@(z)) = Z arbs frigs.

TeStd, ()
SEStd)xt (/vl/t)
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Example. Retaining the notation from the last example, we have

T, = ,
8]

EIrSES

so that Sy = {2,6,7,8} and Sy, = {1, 3, 4,5}. Taking S, T and U as in the last example, we

get T#rS = U. It is easy to check that

Js = vs, Jr =vr, fu = vy + 2vy,

so the conjecture holds in this case.

Remark. If Conjecture 2.33 is true, then we have a map of graded [F-vector spaces

DHom 4 (S, Sp,) ® DHom #(Sy,, Sy,) —> DHom s, (S;.5,.)

Yb ® Yt > PpHRY:.

This map is obviously linear, and (since the fr are linearly independent) injective. Hence
by Theorem 2.31 it is a bijection. So we have an explicit construction for the generalised

row-removal isomorphism.



Chapter 3

Decomposable Specht modules

In this chapter, we will investigate Specht modules for the KLR algebra in level 1 with

e = 2; that is, the Iwahori-Hecke algebra in quantum characteristic 2.

Recall from Theorem 1.44 that if e # 2, it is known that all Specht modules for the
Hecke algebra are indecomposable. When e = 2 this is not the case; determining which
Specht modules are decomposable is an open and very difficult problem, even for the
symmetric group (i.e. when char(F) = 2). After Murphy’s result for hook partitions in
[36], no further progress was made until the paper of Dodge and Fayers [16], where
they were able to show that many Specht modules indexed by partitions of the form

(a,3, 1%) are decomposable, giving necessary and sufficient conditions for this.

Here we take a different approach. We would like to extend Murphy’s result for
the symmetric group to the Hecke algebra. We study Specht modules indexed by hook
partitions, for the Hecke algebra, and determine exactly when they are decomposable.
This is all studied using the KLR setting outlined in Chapter 1. For the reader’s ease,
we start by restricting the presentations of the (cyclotomic) KLR algebra and its Specht

modules to the relevant case.

77
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3.1 KLR algebras for/ =1,e =2

When e = 2 (that is ¢ = —1), the Hecke algebra H = H,, = HF,4(S;) is isomorphic to

the cyclotomic KLR algebra A2 with the following presentation:

Generators {e(i)| i €{0,1}*}U{y1,...,yntU{¥1,..., ¥n_1}.
Relations

e(ie(j) =38 je(i);

D el) =1

i€{0,1}"
yre(i) = e(i)yr;
Vre(i) = e(sri)Vr;

YrYs = Ysyr;
Yrys = Ys¥r ifs;ér,r—i—l;
VrVs = Ys¥r if |[r —s| > 1;

yrre(i) = (Yryr+1—8ipipyi)e(@);

Yr+1¥re(i) = (Yryr +8ir,ir+1)e(i)§

5 . 0 if ir == ir+1,
Yre(i) =
r+1=Yr)r — yr+1)e(i) ity #iry1:
. (Yr+1VrYr+1)e(i) ifir =irq10rirp1 =irqa,
VrVr+1Yre(i) =
(Yr+1¥r¥r+1 +Yr —2yr+1 + yr42)e(i) otherwise;
y1 =0;
e(i)=0 ifi; = 1.

Note that we have taken the usual convention x = (0) here, though in fact we
always have %”,,(Kl) >~ L%’il(“) for any «1, k2 € I. To see this, note that if r is the rotation
of the quiver I" which maps the vertex labelled by ;j to the vertex labelled by j + 1 for

each j € I, then there is an automorphism of J%, mapping e(i) — e(r(i)), Yk — Yk,
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Y = Yy foralli € I" and all admissible k. This automorphism maps the cyclotomic
ideal corresponding to an e-multicharge « to that corresponding to r(x). In view of
Brundan and Kleshchev’s isomorphism theorem, we identify A with H = H, in

this chapter.

Remark. Recall the remarks after we first defined 7, in Section 1.9 — since e = 2, intro-
ducing the generators y, and ¥, here makes sense; they are the sums of corresponding
generators in the algebras J%,. In fact, we can also see the validity of the presentation
because of the fact that we are taking a cyclotomic quotient, as discussed at the end of

Section 1.9.

3.2 Specht modules for hook partitions

For the remainder of the chapter, we fixn = a +b and A = (a, 1%). That s, A is a hook
partition of n. Specialising our homogeneous presentation from Section 1.10 to hook

partitions, we have

Sy =A(zalelin)zy =z, yxza =0Vk, ¥z =0Vj #b+1, Y1v¥2...Yp1123 = 0).

It’s useful to note that in the case of hook partitions, the standard basis { vt | T € Std(A)}
is independent of our choice of reduced expression for wr, since each wr is fully com-

mutative. We can, for example, appeal to Lemma 1.9 in order to see this.

Example. Let A = (3,12). It is easy to check that End(S;) has a basis {id, ¢} where ¢
is given by ¢(z;) = Y3¥2¥4¥323 = vpa. Moreover, 9%(z;) = —2¢(z;), so id +1/2¢ and
—1/2¢ are both idempotents so long as char(IF) # 2. In particular, S, is decomposable
if and only if char(IF) # 2.

Furthermore, since there are only two non-trivial idempotent endomorphisms
(along with the idempotents id and the zero map), we expect S; to decompose into
a direct sum of two indecomposable summands. If we look at the decomposition ma-

trix for Hs when e = 2, p # 2 (see for instance, the appendix of [25]) then we see that



80 3.2. Specht modules for hook partitions

S, has composition factors D(sy and D3 ), each appearing once. Now, z; and ¢(z ) are
both annihilated by y1, ..., ys, V1, ¥2, ¥4, and itis easy to check that y3¢(z)) = —2v3z;,.
Thus we see that im(id +1/2¢) = D(s) and it follows that im(—1/2¢) = D3 ,). It is also
quite easy to see that im(—1/2¢) is spanned by {vr | T # T, }.

A less direct approach to this example would be to consider the fact that, by [13,
Theorem 3.5], S(3,2) is self-dual up to a twist by the sign representation. Since e = 2,
the sign representation is isomorphic to the trivial representation, so S is in fact self-
dual. Now, since S has exactly two composition factors, which are non-isomorphic, it
follows that it must be decomposable.

When char(IF) = 2, D(s5) appears as a composition factor of Sy twice, which is why

this second argument no longer applies.

Decomposability of Specht modules for hook partitions was solved by Murphy in

the case of the symmetric group (i.e. when char(IF) = 2):

Theorem 3.1 [36, Theorem 4.5]. Suppose char(IF) = 2. Then S, y»y is indecomposable if

and only if n is even ora — 1 = b (mod 2%) where 2171 < b < 2L.

Using this result, we will be able to assume char(IF) # 2 where necessary. The

following result will also reduce our workload later on.

Theorem 3.2. Suppose a is odd and b is even. Then S, 1»y is decomposable if and only if

S(a+1,10+1) 18-

Proof. For any r > 0 and any i, functors

ei(r) : Hpgr-mod —> Hp,-mod

fi(r) : Hy-mod —> Hy4pr-mod

are introduced in [7, Section 2.2]. These functors are exact, and have the following
property: if M is a non-zero module and we let ¢; (M) := max{r | ei(r)M # 0}, then:

[7, Lemma 2.12] If D is a simple module, then el.(gi D) p is simple.
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)

Since ¢;"” is exact, we have ¢;(D) < & (M) when D is a composition factor of M,
and so by the above lemma we deduce that the composition length of el.(si M) p1 s at
most the composition length of M, with equality if and only if &; (D) = ¢; (M) for all
composition factors D of M.

A corresponding result holds with f;, ¢; in place of ¢;, ¢;.

Now consider Specht modules. By [7, Lemma 2.4] and [7, Equations (7)&(8)], el.(r)
and fi(r) can be interpreted as restriction and induction, respectively, followed by
projection onto particular blocks. In view of the block classification for Hecke algebras
of type A [31, Theorem 2.11] and the branching rules for induction and restriction of
Specht modules ([12, Theorem 7.4] and [3, Proposition 1.9] respectively), we deduce that
£; (S,) is the number of removable nodes of A of residue i, and ei(s" &) g 4 is the Specht
module labelled by the partition obtained by removing these nodes. A corresponding
statement holds for f; and addable nodes.

In particular, whene = 2,aisodd and biseven, letA = (a, 1?)and u = (a +1, 12+1).
Then &1 (S,) = ¢1(Sy) = 2,and e$2 5, =S, fPS, =S,..

In view of the above results, this means that S; and S, have the same composition
length and that e§2)D # 0 for every composition factor D of S;,. Hence (again by
exactness) eiz)N # 0 for every submodule N of S;,. Hence if S, is decomposable, then

so is S5;. The same argument the other way round shows that if S, is decomposable,

thensoisS,. o

Example. We illustrate the idea behind this proof with A = (3,1%) and u = (4, 13).
£1(Sp) = ¢1(S3) = 2,50 28, =~ S; and 25, = S, while ¢!¥s, = fPs; =o0.
As seen in the example preceding Theorem 3.1, S; has two composition factors when
char(F) # 2 and it follows that S;, does too. It follows that fl(z) D) # 0 # fl(z) Dgs,2)
and so S, = fl(z) Ds) eafl(z) Dg3,2)-
Conversely, if char(IF) = 2 we’ve seen that S, is indecomposable. If S, were
2

decomposable, then applying the functor e; ) to each direct summand would yield a

decomposition of S;, and thus a contradiction.
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Suppose f is an H-endomorphism of S;. We have z;, = e(i})z;, so we have
f(z;3) € e(iy)S,. Now consider the standard basis {vr | T € Std(1)}. Lemma 1.31 tells us
thate(i)vr = §; j;vr forany T € Std(A). Hence {vr | T € Std(A)} Ne(i)Sy = {vr | it = i}.

In particular, f(z,) is a linear combination of elements in

P = v | TeStdA)Ne(iy) Sy = {vr | it = iy}

This is at the core of our approach to understanding End/(S;).

Definition 3.3. When A = (a, 10 ), we define the arm to be the set of nodes

{(1,2),(1,3),...,(1,a)} of A and the leg to be the set of nodes {(2, 1), (3,1),..., (b + 1, 1)}.

Now, we separate our problem into cases where a and b are odd or even. When b is
even, we haveiy = 0101...01. If bis odd, however, we havei; = 0101...011010...10,

where we have a repetition in the positions b + 1 and b + 2.

Lemma 3.4. Suppose b is even and vr € 2. Then forall 1 <i < [n/2]—1, 2i + 1 appears
directly after 2i in T. That is, if 2i is in the leg of T then 2i + 1 is directly below it, and if 2i is

in the arm of T then 2i + 1 is directly to the right of it.

Proof. In defining i), we assign all nodes of [A] in which T, contains an even entry a 1
and all others a 0. First, we note that since b is even and vy € &, the final node in the
leg of A has residue 0. This ensures that if 2i is in the leg of T there must be some entry
immediately below it.

By induction oni > 1, assume that 2i + 1 appears directly after 2; in T, for all i < k.
Suppose our assertion is false for i = k. We assume without loss of generality that 2k
is in the leg of T and 2k + 1 is in the arm. Now by induction any even number, 2 < 2k,
is immediately followed by 2 + 1. This forces 2k + 1 to be adjacent to 2 + 1 for some
j <k,and vy ¢ 2. O

The fact that entries must stick together in these pairs motivates our next definition.
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Definition 3.5. We will call the pair of entries 2i,2i + 1 for 1 <i < [n/2] — 1 a domino.
We will denote the domino by [27,2i 4 1] or D;. We define a domino tableau to be any

A-tableau T such that vy € 2. We denote the set of domino tableaux by Dom(2).

Remark. 9 = {vr | T € Dom(A)} is a basis of e(i})S;.

We will now begin by solving the simplest cases, where 7 is even.

3.3 Decomposability of S, ;») when 7 is even

First, we will look at the case where a and b are both even.

Lemma 3.6. Suppose T € Std(A)and 1 <i <n. Ifi,i +1,...,n all lie in the arm of T then
Yivr = 0. If i lies in the leg of T and i + 1 lies in the arm, then y;vr = vy, where U is obtained

from T by swapping i and i + 1.

Proof. First, suppose i,i +1,...,n all lie in the arm of T for some 1 < i < n. Then vt
cannot possibly involve v; for any j > i —2. It follows that v; commutes with each
generator ¥ ; appearing in vt and the result follows from the Specht module relations.

To prove the second part of the lemma, we note that wy!(i) < wyl(i +1). This is
easily seen since wy ! (/) is the number that occupies the same node in T, that j occupies
in T. Hence if s;, i, . .. s;, is a reduced expression for wr, then s;s;, 4, . .. 5;, is a reduced

expression for s; wr. So ¥ vr = vy. O

Theorem 3.7. If a and b are both even, then Endy(S;) is one-dimensional. In particular, S;,

is indecomposable.

Proof. Suppose f € Endy(S;). Then by the above remark,

f(zy) = Z atvr for some ar € FF.
TeDom(A)

Then by Lemma 3.6, acting on the left by 1,1 annihilates all vr for tableaux T which

do not have D n=2 in their leg. Now, for any T € Dom(A) which does have D n=2 in the
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leg, Lemma 3.6 gives us that ¥, _jvr = vs,_,;t # 0. Since ¥,—1 f(z;) = 0, we must have
ar = 0 for all T which have D n=2 in the leg.

In this way, we act on f(z;) by ¥n4+1-2i fori =1,2,...,(a —2)/2, to annihilate all
vt for tableaux T which do not have D n=2i in the leg. Ateach step, we apply Lemma 3.6
to deduce that ar = 0if T has D n=2i in the leg.

Therefore f(z;) = az; for some o € F and the result follows. O

Next, we look at the case where a and b are both odd.

Theorem 3.8. If a and b are both odd, then Endy,(S,) is one-dimensional. In particular, S is

indecomposable.

Proof. The result follows from Theorem 3.7 by application of Theorem 1.41. |

3.4 KLR actions on ¥ when 7 is odd

When 7 is odd, much more work must be done. By Theorem 1.41, we can assume
throughout this section that b < n/2.
Using Theorem 3.2, we can focus on the case where a is odd and b is even, as it is
slightly easier to work with. The case where a is even and b is odd will then follow.
Recall that 2 = {vr | T € Dom(A)} is a basis of e(i3) S). At this point we introduce

some new notation which is much needed to keep things tidy!
Definition 3.9. We define ¥; := ¢;¥;j11¥j—1¥;. For3 < x <y < n-—2 two odd

integers, we then define:

y y
‘I’l,:: lpy\py_z...\llx al’ld \IJT:: ‘le‘llx+2...\lly.

If y < x we consider both of the above defined terms to be the identity element of our

field.

Remark. Given some T € Dom(), let 2d be the number of entries in the leg of T which
differ from the entries in the corresponding nodes of T,. Notice that these will consist

of the final d dominoes in the leg, since T € Std(1).
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Let j{...., j; be the odd numbers (in ascending order) in the d dominoes in the leg
of T which differ from the corresponding entries in Ty and define j; := j/ —2 for each

i. For example, if 1 = (7, 1°) then

T, =[1]8]9[1011112]13]. Let T=[1]4]5][6]7]10]11.
12 12
13 13
14 18
15 19
16 12
7] 13|

Then d = 2 and we see that j; = 7and j, = 11.
Now, we can see that vr can be written as the reduced expression
71 J2 Jd
vl v | LY oz
b+3—2d b+5-2d b+1
We will refer to this as the normal form for vr. Notice that j; 1 > ji foralli =1,...,d —1.

It will be useful to note thatif vr € Zisin our normal form, then any expression obtained

from it by deleting W terms from the left is also an element in Z.

Definition 3.10. Let T € Dom(A). We define the length r(T) of T to be the number of ¥

terms in the normal form of vy.

In the next three results, we examine the actions of the generators of # on the

elements of 2.

Lemma 3.11.
e(ip)V; =Y e(iy) forall j,
eV = Uy forallk > j +3andforallk < j—2,
VW = WYy forallk > j +3and forall k < j —3.

Proof. Clear from the definition of ¥; and the defining relations. O
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Proposition 3.12. Suppose T € Dom(A). Then

yivr = 0 forall k; (A4)
VY vr = 0 for all even k; (B)
1/[1 T = 0. (C)

Proof. Let (A,) denote the statement that (A4) holds for all T with r(T) = r, and define
(B) similarly. We first prove (4,) and (B,) simultaneously, by induction on .
First we must show that (4¢) and (By) hold. In this case, v = z, and the defining

relations give our result immediately.

J1 J2 Jd
Now, letvr =¥ | W | ...¥ | z,beinnormal form for some d, and define
b+3—2d b+5—2d b+1
J2 Jd
vty =W LWz,
b+5-2d b+1

We will show that (4,-1)&(B,—1) = (A;). We split our problem into 5 cases:

1 k= j1+2,
2 k= ji+1,
3. k= j1,

4 k=ji—1,

5. All other k.

We can now solve each case quite simply!

1—2

J
L Vi+2v1r = VY12V +1e(s i)Y, ‘I’b+ VT

{
3-2d
Jj1—2
=V Vi—1(Wj+1Y+1+ Dy, ¥ | UT(z)
b+3—2d

J1—2 J1—2

=V iV | v LYY Y ] v,
b+3-2d b+3—2d

=0 by (4r-1)
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J1—2

=(WJI—Ilewjl—l_YJl—l+2Yj1_YJ'H—I)\I’ ‘L vT(z)
b+3—-2d

J1—2 J1—2

=YV v VT — Vji—1¥ \ Ut(y)
b+3—2d b+3—2d

—0by (B,—1) —0by (4,-1)
1—2

J J
+2yjllp \L UT(2)_yjl+1\Ij
b+3-2d b+

1—2

UT(3)
3—2d

=0by (Ar—1) =0by (4,—1)

Jj1—2
2. Yi+vr = O +1¥j,e()y - bV ¥ L vrg,
b+3—2d

Jj1—2
=V Vi1 ¥in—1els; - i)y v | UT(a)
b+3—2d
J1—2
=Y V¥i+1(j—1y—1+ Dy v | UT(y)
b+3—2d

-2

-2 J1
V1 TV Vi1V lpb_m UT(y)

J1
=W, y;1¥
b+3

—2d —24
=0by (4r—1)
Jj1—2
= Wh+1ViVi+1+ i —2yj+1+yi+2)¥ VT
b+3-2d
=0 by (A4,—1)and (By—1).
. j172
3. vivr = i viels - iDVi+vji-1v Y VT,
b+3—2d
. j1_2
=V h+1¥+1es DDV v ;¥ L v,
b+3—2d
Jj1—2
=Y Wh+1yj+2—D¥jiv; ¥ | UT(ay
b+3—2d
Jj1—2
=V yj+2¥ | UT()
b+3-2d
—0by (4,_1)
Jj1—2

_(wjl_lelel_l_yjl—l+2yj1_yj1+l)\lj ‘L vT(z)
b+3-2d

=0 by (4r-1) and (By-1).
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2

J1—
4. Yii—1vr = Vi Vi1 (V1 —1e(sj - )Y, \pb_i_} o UT(y)

Jj1—2
=Y Va1 (Wi -1y =Dy L v,
b+3—2d
Jj1—2
:\ijl yjl"‘lqj \L vT(z)
b+3—2d

=0by (4,-1)
-2

J1
— Wi Vi Vi1 T Vi =2V 1 Y +2) Y V10,
b+3-2d

=0 by (4,-1)and (B;—1).

5. Now suppose k # j1 +2, j1 +1, j1 or j; —1. Then

J1—2
Yivr = Wy W Ur, by Lemma3.11
b+3-2d

=0 by (Ar-1).

Next, we show that (4,-1)&(B,—1) = (B;). Once again we split this into the

following cases:
1L k=j1+1,
2. k=ji—1,
3. All other k.

Jj1—2
1. Vii+1vr = (U 11V ¥ +1e(sj )V L v,
b+3—2d
. j1_2
= Vi Vi1 (W vi—¥e@)Y | vy,
b+3—2d
-2

J1
=Y Vi (V1Y V-1 —Yji-1+2y — Vj +1)‘Ifb+3 VT,

—2d
=0 by (4,-1) and (Br—1).
) Jj1—2
2. Vi—1vr = (V1Y ¥j—1e(sj )Y +1¥ ;¥ | v,
b+3—2d

Jj1—2

=Vi¥i-1(¥j Wj1+1‘/fj1€(i)t))‘pb+3i_2d UT(y)
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J1—2

=Y Vi1 (Via1Vi¥i+1+ i — 2V +1 +yj1+2)lpb+3¢_2d UT(3)

—0 by (4,-1) and (B,1).

3. Now suppose k is even but k # j; + 1 or j; — 1. Then

J1—2

Yrvr =V YW | vr, byLemma3.11
b+3—-2d

=0 by (Br-1).

And so, our results follow.
Now, we prove (C). If d < b/2, then W3 does not occur in vr, and so ¥; commutes

J2

/1
with all W terms in vr and the result is clear. So suppose d = b/2. Then vy = ¥| ¥
3 5

Ja
...W | zj.It's easy to see that
b+1

Ji+2d—b+1)/2 Ji+2d—b+1)/2

Vv ... iV l =V l VitaVits(V1v2 ... Yit2).

i+2 i+4

Applying this fori = 1,3,...,b— 1 in turn, we obtain

Yivr = ‘I’j£ ‘1’/; ---‘ij VaVa ... Yp2Viva ... ¥pi12a,

b+3
which is zero in view of the Garnir relation Y12 ... ¥py1z) = 0. O

Alternative proof. A shorter but less direct proof of (4) and (B) can be given using the
grading on H and S,, closely mimicking the proof of [29, Lemma 4.4]. We notice
that every domino tableau has codegree b/2, since each domino in the leg contributes
precisely +1 to the codegree. So e(i}) S, is homogeneous of degree b/2. Now, yrvr €
e(iy) Sy, but deg(yxvr) = deg(yx) + deg(vr) = 24 b/2. Hence yrvr = 0.

Similarly, if k is even, Y vr € e(sgiz) S; = 0, since no standard tableau has residue
sequence sii,. To see this, we may build up any standard A-tableau and note that once

we have placed 1,2,...,k —1 of residues 0, 1,...,0 respectively, the next entry must



90 3.4. KLR actions on & when n is odd

have residue 1. O
Lemma 3.13. Suppose j is odd and T € Dom(A). Then

1. ¢jWVvr = =2y v,

2. 1ﬂj‘l’j+2‘1’jv'r = T/ijT,

3. Vj¥jtavr =0,

4. YV oVjvr = yjvr,

5. Wi _pur = 0.

Proof.
L Y Weinvr = (Yrels;-i)Vjt1¥j—1¥,vr
= (=yF =i F 200V VY ur
=—Yj+1yj(yj¥j—1e(sj- i)y vr
—Vi+1(Vj+1¥j+1e(s; i) j—1¥ vr
+2y;(j+1¥j+re(sj - i))¥j—1y¥ vr
= —Yj+1yj(¥j-1yj-1+ Dy vr
—Vi+1(¥j+1yj+2—D¥j—1¥jvr
+2y;(Yj+1Yj42— DY -1y vr
=—Yj+1yj¥ivr+Vji—1yj+1¥vr—2(yj¥j—1e(s; i)y vr
=—Yit1¥jyj+1vr+¥;yyjvr—2(¥j—1yj—1+ Dyjvr

= —zlﬂj UT.

2-5. We have
ViVipaVie(iy)vr = YjtaV+3(¥vjr1vie(sjra s )V jra¥j+1¥ji—1¥;
=Vjr2Vj+3(Wjt1¥jvi+1 +y; —2yj+1+yj+2)

Vita¥j+1¥j—1¥;vr



3. Decomposable Specht modules 91

= Vj+2¥j+3¥i+1¥; (Vi+r1¥j+2¥j+1e(sj - )1y v
+ V2V +3¥j+2¥j+1(yj¥j—1e(sj i)y vr
=2V j 2V jt3V+2(yjr1¥jrre(s; - i) Vj—1¥ vr
+ V2V 43(vj+2¥j+2e(s; - V41 1Y v

= Va3V ir1¥ivi2¥i+1¥j+2¥ -1y v
+ V2V i3V Vir1(Vji—1yj—1 + Dyt
—2Y 2V +3Vj+2(Vj+1Yj+2 = DYy jvr
+YivaVi+3Vi+2yi+3Vi1¥i-1¥ v

=W oW jovr + VoV 43V 2V r1¥i—1¥) yj—10t
~——
=0

+ (Vjr2V 3V j2e(sj - i)¥j+1¥) vt

—2Yjto¥j3Vjt2Vir1Vi—1V¥j Y42Vt
——
=0

+ 212V +3Vjr2e(s) - ix)¥j—1¥; vt

tVjtoVi+3Vja¥j+1Vi—1¥; yj+3vr
——
=0

=W oWYjovr+ (Vj+3Vj+2Vj+3 +Yj+2—2Yj+3+Yj+4)
V1Yot
F2(Vj+3Vjt2Vi+3 +Yj+2—2Yj+3 + Vj+a) Vi1V vt

=VinWVivjtovr+Vip3¥jto¥iv1¥; ¥j+3vur
——
=0

+ (jt2vjr1e(sj - i))Yive + 2V 3oV 1V ¥j43vr
=0

=W oWV avr+ (Yjs1yi+1 + DYjvr
=W oWiYjipavr+¥ivr+ Y1y j+1¥, vt

=, 0¥ ppvr+Yior+¥41¥) yjvr.
N—
=0
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We also have
ViVjiaWie(ipvr = ¥joVj-3(Viyjavjelsj—2-sj-))Vji2Vj+1¥j-1¥ vt

=Vj—2Vj-3(Wj—1¥¥j-1—yj-1+2yj = yj+1)-
Vj—2¥j+1¥j—1¥;vr

= Vj-2Vj-3¥j1V;(Yj1¥j—2Vj-1e(sj - i))Vj+1¥,vr
—Vj—2¥j-3(yj-1¥j—2e(sj - )¥j+1¥j-1¥ v
+2Vj2Vj-3Vj2Vj+1(y;¥—1e(s; - i)Y vr
—VYj2Vj-3Vj2(yjr1¥jr1e(s; - )V j—1¥,vr

= V2V j-3¥j—1V¥j—2Vj-1Vj-2¥j+1¥,vr
—Vj—2Vj-3¥j-2yj-2¥j+1¥j-1¥,vr
+ 22V -3¥j2Vjr1(¥j-1yj—1+ Dyjvr
—Vj2Vj-3¥j—2(j+1yj42 = D1 v

=W WY vt — V2V 3¥jaVjr1¥j—1¥; yj—2vr
N —

=0
+2(Vj—2¥j—3V¥j—2e(s; - i) ¥j+1¥, v
+ (Yj—2Vj-3¥j—ze(sj - ) Vj-1¥,vr
= Vj2W;¢j-2vr
+2(j-3Vj—2Vj-3—Yj-3+2yj-2 = Yj-D)¥j+1¥;vr
+(Wj-3¥j2Vj-3—yj-3+2yj—2=y;-)¥j-1¥;vr
=V oWy 2vr+20) = (yj—1¥j-1€(sj - 2) ¥ v
=V oWy ovr—(Yj-1y; — Dyjvr

= VWY ovr—0+ ¥ vr.

So we have
ViViaWivy =yivr+ V0V yjiiavr (%)

YWV = yjvr+ ¥ oWy ovr. (%)
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Now all four statements will follow if we can show that 3 and 5 hold. We will
proceed by proving both simultaneously by induction on r(T). That is, we will
prove that

V¥ jiovr = 0 forany odd j and r(T) =r, (Ay)

V¥ j_pvr = 0forany odd j and r(T) =r, (Br)

by simultaneous induction on r.
First, we prove that (4,) follows if (4s) and (By) hold for all s < r.

(Ao) is clearly true. We have W; V1223 = V¥ j11¥j—1¥j4+2V¥;z5 = 0 since at

least one of ¥j, ¥ ;1> must annihilate z;.

J1 J2 Jd
Now let r > 0. Supposevr =¥ | W | ...V | z,isinnormal form and
b+3-2d b+5-2d b+1

J Ja Ja
define vy ;= W vl v oz

b+3—2d  b+5-2d b+1

1—2

If j1 > j+6o0r ji < j—4, then we clearly have ;¢ 1 ovr = W, W,y 10 and
our result follows by (4,-1). So we break our proof up for the remaining four

possibilities.

J2 Jd
(a) Suppose j1 = j +4. We will write vr,, :=W¥ | ... W | z;. Ifb+3—
b+5—2d b+1
2d = j + 4 also, we have
\IIJ.WJ.+2UT = lpjwj+2\pj+4v"f(2)

=0,

as we have a ¥; which commutes with everything to its right, given that the

lowest indexed W-term in vy, is ¥ +6.
If b+3—-2d < j +4,Dby (x) we have
v (Wj+2‘pj+4‘l'j+2)‘1’b+3i_2d V1) = V(Y42 + ‘I’j+4\1'j+21ﬂj+4)%3i;21);(2)
=0 by (4s) forsomes <r,

J
asWV | vr, €9

b+3-2d
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(b) Suppose ji = j +2. Then we have
VvtV ovr = =2V, 1pvp by part 1,

=0 by (A,-1),asr(T)=r—1.

(c) Suppose ji; = j. Then we have
\IJ]- lﬂj+2\11j v = —2\11]' lﬂj+2vT/ by part 1,

=0 bY (Ar-1).

J3 Jd
(d) Suppose j1 = j —2. We will write vr,, := W] ...¥] z;. Here, we must
b+7-2d b+1

divide into further subcases.

i. Suppose j> > j +4. Then we have

Jj—2 J2

Vivjpovr =V;¥0¥ | W ‘I’;+4‘1’1+2‘I’¢ U1,

b+3—2d j+6
Jj—2

=y i VW (Y42W)+4V; +2)‘I’¢ U1

Jj+6 b+3—-2d
Jj—2

=V ¢ WU (V)2 +VjpaVjtay; +4)‘1’¢ 1) by ()

Jj+6 b+3 2d

=V \L "IIJWJ'FZ\IJ \L v \L vT(3) +0

Jj+6 b+3—-2d  b+5-2d

J
by (As) for some s < r,as ¥| v, € Z,
b+5-2d

j—2 J
=0by (Ay) forsomes’ <r,as¥ | W | vp, €.

b+3—2d b+5-2d

ii. Suppose j» = j + 2. Then we have

‘1’1%+2UT—‘1’;%+2‘1’ i VoW i V1o

+3-2d b45—
J—=
= ‘I’ v i 1//]+2\111+2\p i UT(3)
b+3—2d 5-2d
=2V, ¥ i tﬁj+2\I! ¢ VT by part 1,
b+3—2d

e I I V1)

b+3-2d b+5-2d
j-2 j
= 0by (A4s) forsomes <r,as¥ | W | v, €9,

b+3—-2d  b+5-2d
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iii. Suppose j, = j. Then we have

Jj—2 Jj—2
\Djo'i‘ZUT = ‘IijH-ijb *L \IJ]"II J/ UT(3)
+

3—2d b+5—2d
=Y;Vir1Vj—1Vj2¥j—2(ivj—1¥je(sj—2-sj 1))
=;1/;*

Jj—4 j—2
ViaVjo¥jimy—1y; v L W | v,

b+3-2d b+5-2d

—v €9

= VsV 1Y ¥j—1 = yj—1 +2yj = yj+1)
Vj-3¥j2Vj+1¥j-1¥ v

= Va1V Vi-3(Vj-1¥j—2¥j—1e(sj - i))Vj+1¥ v
—VaVj—3(yj—1¥j—2e(s; - )IVj+1¥j-1¥ v
+ 20tV 2V j+1(y ¥ j—1e(s) - i)V vr
—Vx¥j—3Vj2(yj 1V +1e(sj - i)V j—1¥ v

= VVj1VjVj—sVj—2¥ i1V j2Vj+1¥, v
—VuVj-3Vj2yj—2Vi+1¥j-1¥;vr
+ 29V j—3¥ 2V j+1(¥j-1yj-1 + DY v
— VsV j3Vj2(Vj+1yj+2 — DYy v

=YV 1¥j-3¥; 2 V¥ 20 —04+0
D e —
=0by (Br—2)

+2ViVirmVjVjr2 ¥j2V¥j3¥ja¥jt1¥ v
=:’|/j*

— 0+ Y Y2V 3Vj—2¥ 1Y vr

=2y (Yj2¥ -3V j—2e(sj - i)V j+1V; V1
+ YV j—2V -3V j—2e(s; - D) Vj1¥ v

= 20" (Yj-3Vj2Vj-3—Yj-3+2Yj—2— Y-V 1V,
Y (Wj-3Vj2Vj—3 = Yj-3+2yj—2 = Yj-)V¥j-1V; V1

=20V 3V oVj+1¥; ¥j—3vrr —0+0—0
~————

=0as j—3iseven
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+Y YY1V ¥i—3vr 0+ 0
——
=0

—Y*(yj—1¥j—1e(sj i) Vv
=y *(Wj-1y; — Dyjvr
==Y Y1y + Y

=—0+Y¥;¥jt2vr.
N————’

=0 by (4r-2)

Next, we show that (B;) follows if (4) and (By) hold for all s < r.

For (Bo), wehave Wy _»z; = ¥ j¥jt1¥j—1¥j—2V¥;z; = 0 as at least one of ¥/,

¥ j—» must annihilate z;.
Now suppose r > 0.

If j1 > j+4or ji < j—06, then we clearly have W;vy; svr = WV W,y rvp
and our result follows from (B,_1). Once again, we break the proof up for the

remaining four possible values of j;.

(a) Suppose j1 = j +2.If b+3—-2d = j +2 then we have
Vjpj—avr = ¥;¥j-2Wjtovrg,

=0

as ¥ j—» commutes with everything to its right, since the lowest indexed term
in vy, is Wj4q.
Ifb+3—-2d < j,wehave

j—2
Wi _pvr = ‘ijj—zwjvtzq’j‘l’b VI P
+

3—-2d

=Yivit¥i1Vj2Vit2¥i+3(Uivjt1vje(sj4a-s5 i)
=;1//*

2
VitaVjir¥j—1y; ¥ | vy
b+3—-2d
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=VxWjr1¥i¥i+1+y —2yj+1+yj+2)
j—2
Viva¥jr¥ivi ¥ 1 v,
b+3—-2d
Jj=2
= Va1V (2 res; 'ix))iﬂj—llﬂj‘l’b+3¢ L, V1o
. Jj—=2
T VstV 1 Vj—1e(sj - DIY;Y | vrg,
b+3—-2d
. J=2
=29V jr2(yjr1¥j+re(sj - D))V L vrg,
b+3-2d
. J=2
+ Vs (Vj2Vjr2e(si - iDDVirvi—1y; ¥ | vy,
b+3—-2d
Jj—=2
=VuYir1¥iVi¥irvinyiayi¥ | v,
b+3-2d
j—=2
+ VYtV (Yj—1yj—1 + DY | v,
b+3-2d
Jj—2
=2y jt2(Vjt1yj+2— DY¥—1¥; ¥ | vrp,
b+3—2d
Jj—2
FYaVjp2yi 3V L v,
b+3—-2d

2

J—
= VsVj+1¥j+2 ‘Pj‘ﬁj+2‘lfb+¢ VT

3-2d

=0 by (4,_2)
+0+ VvV i—1Vj—2(Yj+2¥ 43V 42085 -i3)):
Vit1¥; Wb;}:d Uty
=042V, ViV 1¥j—2(Vjr2¥ 3V j2e(s; - ia))

j—2
Vi1V | vr, +0
b+3—2d

=WV Vi1V VjtaVjr3+yjit2—2Yj13+Yj+a)¥j+1
+2V Vi V-1V j—2(Vj3¥ 2V 43+ Vi+2 —2YVj+3 + Vj+4)

j—2
Viay; ¥ vrg,
b+3—-2d

2

=0+ vvjn¥ji1¥j—2yj+2¥jt1els; i)V ‘Ibe:I U1

3—-2d

-04+0+0+0-0+0
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Jj—2
=YiVit1¥i—1¥j—2(Wj+1yj+1 + DYy ‘1’b+3¢ L, V1o

J—2

=0+V,y,; ¥ 'l V15
b+3—2d

= 0by (Br_2).

(b) Suppose ji = j. Then we have
Wi ovr = =2V ovp by part 1,

= Oby (Bs—l)-

(c) Suppose j1 = j —2. Then we have
Wiy pvr = =29 ; svp by part 1,

= 0by (Br-1).

(d) Suppose j1 = j —4. We divide into subcases.

i. Suppose jz > j + 2. Then we have

Jj—6 —2

Vivjovr =Y,y W4V | ‘Ijl lp]+2“p]qj i UT (3

b+3-2d j+4 2d
Jj—2

=YV 2V 4V i ‘Ifi (YjV)42¥; )‘Ifi T

b+3—-2d j+4

=YV ¥j—1¥,j 2V, 4V l ‘D-i (Vi +V¥j2Vivjto)

b+3-2d j+4

j—2
v VT3, by (),

b+5—2d
j—4 J2 j—2

= lp]Wj—Z\IJ »l/ \IJ\L v »l/ vT(3)

b+3—-2d Jj+4 b+5-2d
Jj—2
+0by (A4s) forsomes <r,as¥V | wvr, € 7,

b+5-2d

Jj—4 J2 Jj—
= 0by (By) forsomes’ <r,as¥ | W| W ¢ V1) € 2.

b+3—-2d j+4 b+5-2d

ii. Suppose j>» = j. Then we have
J—2

j—4 .
Vivjovr =V | YW | g,

b+3-—-2d b+5-2d

j—4 Jj—2
=2W;y; >V | ¥ | ovr, bypartl,

b+3—-2d  b+5-2d
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J—4 i-2
=0by (Br—1),as¥ | W | vy €9.

b+3—-2d  b+5-2d

iii. Suppose j, = j —2. Then we have
j—6 j—4
Vjjovr =V oW;a¥jW | ¥ | v,

b+3—-2d  b+5-2d

=V

= VjYj—a¥j—s(Yj—2Vj-3V;-2e(sj—a-Sj—2-13))
Vj-aVj-1¥j-3Vj—2vr
=VV¥j-a¥jsj-3Vj2V;3—-yj-3+2yj2—yj-1)
Vj-a¥j-1¥j-3¥j—2vr
=VyjaVj-sVj-3Vj—2(Vj-3Vj-aV¥j-3e(sj—2-ip))
Vj-1¥j—2vr
—ViYj—a¥j—s(yj-3¥j—se(sj—2- i)V j-1¥ -3V 201"
+2W Va5V j—a¥j1(yj—2¥j-3e(sj—2-in)V 201
—ViVj-aVj—sVj-a(yj—1Vj-1e(sj—2- ) ¥j-3¥ 201"
=V Yj—a¥j-sVj-3Vj-2Vj-a¥j-3Vj-aVj-1¥j-2vr
—ViVj—aVj—sVj—ayj-aVj1¥j-3¥j—2v1
+2VVjaVjs¥j-a¥j1(¥j-3y;-3+ D¥j2vr
—ViYj—a¥j—sV¥j-a(Wj-1y; — D¥j-3¥j-2vr

=VVj-a¥j—sVj-3¥j-aVj2¥j-avr =0
S ——
=0by (Br—2)

+04+2W;(Yj—ayj—s¥j—ae(sj—2- D))V j-1¥j—2v1
0+ (Vj—aVj—sVj—ae(sj—2-ix)¥ -3V j—2v1
=2V (Yj—sVj—aV¥j-s5—Yj-5+2yj-4—yj-3)¥j-1¥j-2v1
+ Vi (Vj—sVj-aV¥j-s—yj-s+2yj-a—yj-3)V;j-3¥j2vr
=0-0+0-0+0-04+0—-W;(y;j—3¥;-3e(sj—2-ip)¥;—2vr

=—V;(Yj-3yj—2—D¥jovm
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=0+V;y,; svr
= 0by (B,—2).
Note that both inductive steps are possible because v € Z.
This completes our proof of statements 2-5. O

In the next two results, we are concerned with how the Garnir element Y15 ... ¥p 41

acts on elements of 2.

Lemma 3.14. Suppose j is odd with3 < j <n—2,and T € Dom(A). Then
1. Foralloddn—22>i> j+4,Y1¥2... ¥, Vivr = V¥ 1Ya...¥jvr.
2. Y. YiVjitovr = Yita¥jp3Viya ... Yo
3. Yiva .. Y Vjvr = —2Y1¥n ... Yjur.

4 Y1y YV ovr = Vi Y1y . Vv + YY1 . Yo ur

5. Forallodd3<i < j—4,
Viva.. . ¥jVivr = Viivave .. v +YitaViviVitaVita .. ViV .. Yivr.

Proof. 1 and 2 follow immediately from definitions and the commuting relations be-
tween ¥ generators. 3 follows immediately from Lemma 3.13. So only statements 4

and 5 require any real work!
4. Vive.. ViVt =Yva.. Via Vi3V 1Y —2e(s)j sj—2-03))
=y
Vivji1Vj-3y¥2vr
=V Y 32V +yi—2—2yj—1+Y;)
Vivi—1¥j—3¥j—2vr
= Vi1V Vi3V (Y ¥i—1e(sj—2 - i)Y j—3Yj—2vt
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F YY1V Y3y 2V j—se(sj—2 1) Vj—2v1
=29 ¥V 3(yj—1¥j-1e(sj—2 i) V-3V 201
Y Y3 ¥selsj—2 i)Y j—1¥j—3Vj—2vr

= Vi1V V32V V1V )V -3V j—2vr
Vi1 Y33y -3+ D¥j2vr
=2y Y 3(Vj—1yj — D¥j-3¥j—2vr
YV (Y DV 1Y -3V 2t

= Y1V (V-3 j2Vj—3e(sj—1-5j-sj—2-i3))
Vj-1¥j¥j—2vr
+0+ v V-3 j—2vr
=0+ 29" (YF ze(sj—2i2)¥j—2v1+0

= V¥V W2V -3V 1V ¥j—avr
+ YV Y3V 2vr +0

= ViV Vi—2V Va2V 1V —2e(sj - i3) ¥ vt
YY1 Y3V —2vr

= Vi1V V2V VY 3(Vj1Vj2¥ )V vr
+ YV Y3y —2vr

= VY Va2V vr + ¥V sy avr

5. Leti beodd and 4 <i < j —4. Then

Vive .. YjVivr = Yy . Vi Vi YiViriVi2 Vivies Yita .. Y5 UT
Vs ¥*

= YaVi—1(Viviv1Vie(Siy2-Si - Sita-Site-+Sj i)
VitoViv1 Vi1 ViVigesy  vr

= YY1 (Vi 1ViVit1 + Yi —2Vit1 + YVit2):
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VigoVit1Vio1V¥iViesy  vr
= Vir1VsVi1¥i (Viv1YitoViv1e(Si-Sita-Site--5j-ia)
Vie1¥iVitsy or
+ VivoVit1VsVi-1 (ViVi-1€(Si - Sita-Site -+ 5j - i3)):
Vivitsy T
—2Vit2 Vs Vi1 (Vit1Vir1e(Si - Siva-Sive--Sj-i3))
Vie1¥iVi+sy or
+ Va1 (Vit2Vit2e(Si - Sita-Site - 5j - i3)):
Vier1Vi—1Viviesy o
= Yir1VsVi-1Vi Vi Vit 1Vie2)Via¥iViesy T or
+ ViVt 1Vt (Yic1yi-1 + Divigsy Tvr
= 2it2 Vs VYim1 (Yis1Vit2 — DVim1Vivigsy o
+ YaVio1(Vis2Yie3) Vi1 Vi1 Viviez ¥ o
= Vit1Vito Vs (Yi1¥ivi-1e(Sit1-Sit28i - Siva--5j i)
Vit 1Vir2¥i Vi3V vr + 04+ Yipo i 1 Y Wi—1 Vi Vi 43y "ot
— 0+ 292V (Wi €(Si - Siva-Site -85 - L)) ViVitay “or
+ Viso Vi Vs (W7 e(si - Siva-Site - 5j - i))WiYitaVi+ay ™ vr
= Vit 1Vi+2¥s (Vi Vi1 Vi) Vi1 Vi Vi i3y "vr
+ Vi Vit 1Vie3V¥ Yaic1yivi +0+0
= Vit1Vira¥iVa¥i-1(ViViv1vie(Siva - Siva - 5j-i3))
VipaVi3¥ v + Vi Vi1 VitV Vo1 Yiv
= Vir1Vir2¥i Ve Vi1 (Vi ¥iViv ) Vis2Vitsy v
+ Vi Vit 1Vie3V¥ Ve tio1yivr
= Wi VYio¥iVit1VisaVivsy T ur
+ ViVt 1Vie3V¥ Yavio1givr. O
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Proposition 3.15. Let T € Dom(A). Then 12 ... ¥p1vr = 0.

Proof. Repeated application of the above lemma yields ¥1v2 ... ¥p4+1vr as a sum of
expressions ending in Y1y ... ¥z, for various odd values of j > 3. In all cases the

relations of the Specht module give us our result. |

Having determined the actions of most relators in the presentation of S, on each
element of 7, it remains to calculate the actions of the generators ¥; when3 < j <n—2
and j is odd. The rest of this section is devoted to this endeavour. Note that in order
to prove the main result of the chapter, the contents of the rest of this section are not
necessary, and were thus omitted from [43]. However, to calculate endomorphisms for
S, (and in particular, to find the endomorphism given in Proposition 3.30) we originally
computed the remaining actions, which is why we include them in this thesis.

We begin by looking at when basis vectors vr € Z have reduced expressions in

which certain terms W; appear on the left.
Lemma 3.16. Let T € Dom(A). Then

1. vr has a reduced expression with W on the left (cf. Lemma 3.13 (1)) if and only if T has

[j =1, jlinthearmand [j + 1, j + 2] in the leg.

2. vt has a reduced expression with W, W; on the left (cf. Lemma 3.13 (2)) if and only if

Thas[j—1,jland [j +1,j + 2] in thearm and [j + 3, j + 4] in the leg.

3. vr has a reduced expression with W; _»,W; on the left (cf. Lemma 3.13 (4)) if and only if

T has [j —3,j—2]inthearmand [j — 1, jland [j + 1, j 4 2] in the leg.

Proof. 1. First, suppose that ¥; can be moved to the left of some reduced expression
for vr using the commuting braid relations only. Then in the normal form for vr
we must have only terms Wy with k < j —4 or k > j + 4 appearing further left
than ¥; in the expression. W; corresponds to putting the domino [j + 1, j + 2] in
the leg of T by transposing it with [j — 1, j], which moves to the arm. Since, by

our hypothesis, ¥, cannot appear to the left of ¥;, [/ + 1, j + 2] must remain
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in the leg and any Wy terms to the left of ¥; correspond to placing the dominoes
higher up the leg. Therefore we have k < j —2. Butsince we can'thavek = j -2,
again by our hypothesis, we must have k < j —4. And so, [j — 1, j] stays in the

arm of T.

Conversely, suppose we have [j — 1, j]inthearm of Tand [j 4 1, j + 2] in the leg.
Then the normal form for vr has a W; which places the domino [j + 1, j +2] in
the leg, and all Wy terms to the left of this place the dominoes higher in the leg.
Since [j — 1, j] does not appear in the leg of T, and since T must be standard, we

know that these terms all have k < j —4. Our result follows immediately.
2.& 3. These both follow by applying part 1 twice. |

Corollary 3.17. Let j be odd and suppose that T € Dom(A) with corresponding vr € 9. Then

1. Suppose T has the dominoes [j — 1, j]l and [j + 1, j + 2] in the arm and [j + 3, j + 4]
in the leg, and let S be the standard A-tableau which agrees with T outside of these three
dominoes, but has them permuted so that the domino [j — 1, j] lies in the leg (note that

S K T). Then yjvr = Yjvs.

2. Suppose T has the domino [j — 3, j — 2] in the arm and the dominoes [j — 1, j] and
[j +1,j + 2] in the leg, and let S be the standard A-tableau which agrees with T outside
of these three dominoes, but has them permuted so that the domino [j + 1, j + 2] lies in

the arm (note that S < T). Then Y jvr = Y vs.

Proof. The result follows immediately from Lemmas 3.13 and 3.16. |

We now have some concrete actions of the /; on our elements of 7. However, these
actions do not necessarily give us a reduced form for ¥ ;vr. In fact, it isn’t even clear

when these may be zero! These are the problems we seek to tackle next.

Lemma 3.18. Let T € Dom(A) with corresponding vr € P and let 3 < j < n—2beodd. Then

T satisfies precisely one of the following four conditions with respect to j:

1. The domino [j — 1, j]is in the arm of T but [j + 1, j + 2] is in the leg.
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2. The dominoes [j — 1, jland [j + 1, j + 2] are in the arm of T.
3. The domino [j — 1, j]isin the leg of T but [j + 1, j 4 2] is in the arm.

4. The dominoes [j — 1, jland [j + 1, j + 2] are in the leg of T.
Proof. Clear. |

We must now work towards computing the ¥; actions on tableaux vr € Z in each
case of the above proposition. First we will look at case 2. That is, we want a reduced
expression for ¥ jvr when the dominoes [j — 1, /], [/ + 1,/ +2] and [j + 3,/ + 4] all
appear in the arm of T (otherwise we appeal to Corollary 3.17 (1)). We begin by
dismissing the “degenerate” situation — if vr only involves terms Wy for k < j —4 (a
trivial example being when T = T)) then clearly ;vr = 0. Likewise we may assume
Jj # n—2, as it does not make sense to talk about the domino [j + 3, j + 4] here; the
case j = n —2is easily dealt with in Proposition 3.27 (2).

Suppose we have W ; appearing in the sequence \Iljf for some £ but not any sequences
further left in the normal form of vy. Note that whekrel ¢ = 1, we have the sequence of
dominoes [2,3],[4,5],...,[j +r—1,j +r]inthearm of T for r > 4if k; = 3. Otherwise,
the domino [k1 — 3, k1 — 2] is in the leg.

Furthermore, in the sequence \1111 ... \I/jei_ 1 all ¥ terms have subscript at most j —4,
as [j — 1, j] is in the arm. This tellskllls thatkfp_; commutes with all of these terms, so we
will introduce the notation W* := \Illil . \Iljli_ ' for the duration of solving of our case 2.

k1 ke—1

J1 Jd

Lemma 3.19. Let v € & have normal form v = W] ...W | z,, ford > 1. Suppose
k1 kq

J €1{3,...,n—=2}isoddand suppose L is minimal suchthatky < j < jg. Then jo4;—1 > 4i +j

foralli =1,2,....,d —{+ 1ifand only if we have v ;vr = 0.

Proof. We shall first prove the only if part of the lemma. First note immediately that
our condition implies r > 4, so this part of the lemma always applies to tableaux of the

form we are interested in. We will prove it by inductionond —¢+1. If d —{ +1 =1
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(thatis, d = £), we have only the condition r > 4, so

Je Jj—2
lﬂjUT:wj\I’*‘If':L% WitaWioW,;¥ | z;
J

ke

Je =2
=y, V'V | W; 4V | z; byLemma3.13(2)
kg

Jj+6

N Je j—2
=y VTV | W] Wiz

it6 kg

=0.

Je j=2
Note ¥ | and ¥ | may be empty, but our condition guarantees that we have W, 14
j+6 k¢

there to give our zero.

J1 Jd
Now suppose we have vt = V| ... V| z, for some d > {, with the hypothesised
ky ka

conditions on vr. Then from our base case we have

. Je j—2 Je+1 Jd
Yo =y VW | W] Wi | LWz
J+6 kg kg1 ka

Now ky < j < j; implies that kg4 < j +4 < jy41, 50 in order to complete our
induction we need to show that j;4; > 4i + (j +4) fori = 1,2,...,d —{. But this
follows immediately from our conditions on vr.

Conversely, let  be minimal such that jy4,; <41+ j. If t = 1 we haver < 2, so
only have the cases r = 0 and r = 2 to consider. But these are both dealt with using
Lemma 3.16 and Corollary 3.17; we see in both cases that y;vr # 0, and we are done.

Now suppose ¢t > 1. By minimality of + we have j;4;,—» > 4t —4+ j and so

Je+t—1 = je+t— +2 >4t -2+ j. Sowein fact have jyi, 1 =4t -2+ .

Claim. Foreach1 <i <t—1,

j=2 Je Je+1 Je+i—2 Je+i—1  Je+i Jja
yiop=y, 0 () v v v | e v v oz
ke ket keqo Keti—1 4itj Ke+i ka

Proof. We prove the claim by induction on i. When i = 1 we have already seen
ji=2 g Jet ia
thatyur = y,;W*W | W | W | ...¥] z;,asclaimed.

ke Jt4 ke ka
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Now suppose, by induction, that we have

j=2 g Je41 Je+i—3 Jeti—2  Jedi—1 Ja
yivp=y, 0 (W) v v v | W | W] g
ke ke keqo keti—2 4iti—4  kegi kq

Asi <t—1wehave jy4 ;1 >4i+ j and so

Jeri—2  Jeti—1 jd Jeri—1  Jeti—2 4i+j—6
vl ow | LU= ) W Wi oWaig eV |
4itj—4  koyi_y kg 4i+j  4itj—4 koyi—1
Je+i Jja
W] L] oz
keti ka

Je+i—1  Je+i—2  4i4+j—6  Je+i

=V | v | v | \pl...\pjsz

4i+4j 4i+j—4 kl-i—i—l kf-‘ri kg
Je+i—2  Jeti—1 Je4i Jd
=V | U | U ..Uz
kepi—1  4itJ kg ka
Now, using the above claim,
« j=2 Je Je+1 Je41—3 Je41—2
ppor=y 0 (Wl w | v e ||
ke ket keyo ker—2 4rt+j—4
Je+i—1 Jd
W | ...¥| z, byourclaim
Ketr—1 ka
e d T2 Je Je+1 Je+1—3  Je4r—2 e+t Jja
=1/fJ\If\IJJ,\IJ¢\IJ¢‘I/¢ v ol v Y] oz
ke ket keqo Ke+r—2  Ke4r—1  Ke4s kq

as jy4r—1 =4t -2+ .

We can easily see that this final term is in our normal form, and is therefore a reduced

expression (and, in particular, non-zero). |
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Definition 3.20. Suppose

Vi

Je+1

Jet+2

Js+1

Js+2

Jo+1

Js'+2

Ja+1

Ja—+2

where the section of the arm [j — 1, j], [x1, ¥1], ..., [x¢, y¢] contains ¢ + 1 dominoes and
the section of the leg [jy + 1, jy + 2], ..., [js + 1, js + 2] contains ¢t dominoes. Here we
haves = £+t —2and s’ = s + I for neatness. Then we define (T)*/ to be the standard
A-tableau obtained from T by moving the domino [y + 1, js + 2] to the arm and the
domino [j — 1, j] to the leg; this can be seen as cyclically permuting the above 2¢ + 1
dominoes “anticlockwise” by one space but keeping all other entries the same as T.

That is,

Y1 Jsr+1

@ =[] = .

: \ X js/+2\

Ja+1

Ja+2

with all omitted entries as in T.
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Example. Let A = (7,1%)and j = 5. If

11415]16]7]8]/9] 116/718[9]12]13]
12] 12]
3 El
10 4
T= |1 and 7 =2then (T)>’ = |3
12 10
% L1
14 14
15 15

11 13 9 13

9
Note that in this example v = W] W| V| z; and v(qy2.s = W V| z;.
5 7 9 7 9

Corollary 3.21. Suppose T € Dom(A) and the dominoes [j — 1, j1,[j +1,j +2] and [j +
3,j +4] are all in the arm of T. Let vt = llfll \Iljf z). That is, for some { the arm of T
has dominoes [kg—l,kg],[kg—i—l,kg—i—Z],...,k[]j—l,]I'(]d, +1,j4+2,....[J+r—1,j+7],
where r > 4 and if ky # 3 the domino [ky — 3, kg — 2] is in the leg of T. Suppose Y jvr # 0 and

let t be minimal such that jgy,—y < 4t + j. Then ¥ jvr = ¥ jv(gy.;, which is in reduced form.

Remark. Note that, as we saw in the proof of Lemma 3.19, our minimality condition on
t ensures (jg =) je+1—1 =4t —24+].

Also, since the corollary is telling us that ¥ U(ryr.i is in reduced form, we know that
y2 = j +r. If not, the rotation action would be moving the domino [jy + 1, js + 2]
somewhere into the middle of the sequence [j — 1, j],....[j +r—1,j +r]. Butj +r =
je < js < js +2, 50 (T)"/ would not be standard, and therefore our corresponding
(vr)! would not be in reduced form.

Finally, note that for tableaux of the case 2 form but with [j + 3, j + 4] is in the leg,

our result agrees with this lemma, with ¢ = 1.

Proof. From the proof of Lemma 3.19 we have

j—2 Je Je+1 Je+1—3  Jetr—2  Je4t Jja
1/fj(v-r)=¢j\l-‘*\lli v vl ¥ v W] LY oz
ke  ket1  keq2 Kevr—2  Koeqr—1  Keds ka

which is in reduced form. But this is precisely the result we need. To see why ¢ + 1

of the dominoes in the arm are changed, we notice that the dominoes moved are all
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dominoes from [j — 1, j] to [jy4s—1 + 1, jets—1 +2] = [j + 41 —1, j + 4¢]. There are in

total 27 + 1 of these dominoes, and ¢ of them are in the leg. O

Next, we look at the final remaining unsolved case, case 4 from Lemma 3.18. This
time we are interested in finding a reduced expression for y;vr, when the dominoes
[j—3.j—-2.[j —1,j]and [j + 1, j + 2] all appear in the leg of T, else we may appeal
to Corollary 3.17 (2). Again, we begin by dismissing the “degenerate” case — if vr only
involves terms Wy for k > j + 4 (once again, T = T is a trivial example of this) then
clearly ¥ ;vr = 0. We may assume j # 3, where it does not make sense to consider the

domino [j — 3, j —2]; the case j = 3 is easily dealt with in Proposition 3.27 (4).

Definition 3.22. Let T € Dom(4). Then vt can be written in the following form, which

we will call reverse normal form, or RNF:

ky k2 ka
v =W Wt L WYz
J1 J2 Jd

with ji41 < jiand kj41 =k; —2foralli =1,2,...,d. Once again, kg = b + 1.

Remark. The existence of the RNF of vt can be realised as placing dominoes in the arm
of T, as opposed to our normal form which acted to place the dominoes in the leg.
Explicitly, the RNF is placing the dominoes [jz — 1, jgl. [ja—1 — 1, ja—1l,---, [j1 — 1, ji]
at the start of the arm, while any further dominoes the same as in T, obviously do not

have any impact on the expression.

ke
Suppose { is minimal such that W; appears in the sequence W1 in the RNF of vr.
Je

Having the dominoes [j —3,j —2],[j — 1, j] and [j + 1, j + 2] in the leg of T is then

equivalent to the conditions j; < j —4 and k; > j. Then we have

k1 ko kq
Lemma 3.23. Let vr € & have RNF vt = W1 W1 ... W1 z,, ford > 1, with j, < j —4and
J1 J2 Jd

ke>j. Then jyyi—y < j—4iforalli =1,2,...,d =€+ 1ifand only if Y jvr = 0.

Proof. With some minor tweaking of notation and indices, the proof follows the proof

of Lemma 3.19 almost identically. |
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Definition 3.24. Suppose

= [ sa | = [ o ot e ot | = i ]

where the section of the leg [x1, y1].....[j —1,j].[J + 1, j 4+ 2] contains 7 + 1 dominoes
and the section of the arm [jy — 1, j¢].[js — 1, jsl.....[je — 1, j¢] contains ¢ dominoes.
Here, as in Definition 3.20 we have s = £+t —2 and s’ = s + 1 for neatness. Then
we define (T)"/" to be the standard A-tableau obtained from T by moving the domino
[/ +1,j +2] to the arm and the domino [jy — 1, jy] to the leg; this can be seen as
cyclically permuting these 2¢ 4 1 dominoes “anticlockwise” by one space but keeping

all other entries the same as they are in T. That is,

Yt

jd_l‘ Ja ‘ ‘ X j.v_l‘ Js : ‘jz—l‘ Je ‘j+1‘j+2‘

M~ =]

Jsr—1

Js'

with all omitted entries as in T.
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Example. Let A = (7,18) and j = 13. If

114]5]6]7]8]9] 114]5]8[9]14[15
12] 12]
3 3
10 . o
T= |11 andt =2then (T)>'* = |7]
12 10
& N
1 12

9 11 13 13 11 9 11 9
Note thatin thisexample vy = W] W| W] z; = W1 W1 U1 z) and v(pypasc = W1 U1z,
5 7 9 7 5 9 5

9

Corollary 3.25. Suppose T € Dom(A) and the dominoes [j —3,j —2].[j — 1, j] and [j +

k1 kq

1,j + 2] are all in the leg of T. Let v = W1 ... W1 z,. That is, for some x the leg of T
71 Jd

has consecutive dominoes [x,x + 1], [x +2,x+3],....[j =3, 7 =2.[J - 1, j).....[j +r—

1,j +r], where r > 2. Suppose ¥ jvr # 0 and let t be minimal such that joi,—; > j —4t.

Then yjvr = U(ryri*s which is in reduced form.
Proof. Analogously to Corollary 3.21, this follows immediately from Lemma 3.23. O

Remark. For a given tableau T in the form of Lemma 3.18 (2) or Lemma 3.18 (4), we
have an equivalent way of calculating directly from T exactly when a certain v, acts
on vr to give zero or a “rotation” as in Definition 3.20 or Definition 3.24, and what
t should be for the latter. Suppose T has the dominoes [j — 1, j].[j + 1, j + 2] and
[/ +3,j +4] in the arm, and we wish to act on vy by ;. Examine, the dominoes
containing j, j +2, j +4,... in the natural order. Count how many are in the arm and
how many are in the leg as we go along. If at any stage we have counted 7 4+ 1 dominoes
in the arm and ¢ in the leg, for some ¢, we stop. We have found the ¢ in Corollary 3.21
and we can perform the corresponding rotation. If we reach the final domino (that is,
the domino [n — 1, n]) without ever satisfying this condition, ¥ ;vr = 0.

In the case of Lemma 3.18 (4), we have an analogous algorithm. Suppose we have
a tableau T with the dominoes [j —3,j —2],[j — 1, j] and [j + 1, j + 2] in the leg. This

time, we count the dominoes containing j 42, j, j —2, ... and stop if at some stage we
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have counted 7 + 1 dominoes in the leg and r dominoes in the arm. This gives us the ¢
seen in Corollary 3.25 and we can find the necessary tableau. If we reach the domino

[2,3] and our condition has not been satisfied at any point, we once again have 0.

Proposition 3.26. The algorithms in the previous remarks yield the correct reduced form for

1ﬂjUT-

Proof. We prove this for the first algorithm; the second may be proved analogously.
Our proof is mainly just a translation between the language of the algorithm and the
language of Corollary 3.21. Let £ be minimal such that k; < j < j;; equivalently, the
first domino in the leg our algorithm counts is [j; + 1, jy + 2]. Note that for each i, we
have that [jy4;—1 + 1, je4i—1 + 2] is the ith domino we count in the leg. When counting
the ith leg domino during the running of our algorithm, we must have counted at least
i +2 arm dominoes, else the algorithm would terminate. Therefore we have, in total,
counted at least 2i + 2 dominoes, starting with [j —1, j]and thus j,4;—1 > j +4i. Ifour
algorithm gets to the final domino without ever satisfying the condition that we have
counted one more domino in the arm than in the leg, it is clear that this inequality holds
for all i and Lemma 3.19 tells us that ;v = 0. Otherwise, counting the 7th domino in
the leg, where ¢ satisfies the desired property, we have counted exactly 2¢ + 1 dominoes,
and therefore jy;,_; = j + 4t —2. Appealing to Corollary 3.21 completes the proof.

Note that when ¢t = 1, this agrees with Corollary 3.17. O

In particular the following proposition gives actions of ¥; on vr in each case of

Lemma 3.18.

Proposition 3.27.
1. Suppose the domino [j — 1, j] is in the arm of T but [j + 1, j + 2] is in the leg. Then
vr = W vs, where vs is the tableau obtained from T by transposing the dominoes [j —1, j]

and [j 4+ 1, j + 2], and y jvr = =2y jvs, which is in reduced form.

2. Suppose the dominoes [j — 1, jland [j + 1, j + 2] are in the arm of T.

If j = n—2, then yu_pvr = 0.
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Ifforeveryk € {j +2,j +4,...,n}, more of the dominoes [j + 1, j +2],...,[k —1,k]
lie in the arm of T than in the leg, then yrjvr = 0. Otherwise, ;v = ¥ jvy, where U is

given in Proposition 3.26 and v jvy is in reduced form.

3. Suppose the domino [j — 1, j] is in the leg of T but [j + 1, j + 2] is in the arm. Then

Vvt is already in reduced form.

4. Suppose the dominoes [j — 1, jland [j + 1, j + 2] are in the leg of T.
If j = 3 then y3vr = 0.

If forevery k € {j, j —2,...,3}, more of the dominoes [j — 1, j], ..., [k —1,k] lie in the
leg of T than in the arm, then \ jvr = 0. Otherwise, W jvr = V¥ jvy, where U is given in

Proposition 3.26 and  jvy is in reduced form.

Proof. Case 3 falls out naturally as j is in the leg and j + 1 is in the arm. Cases 1, 2
(if [j +3,j + 4] is in the leg of T) and 4 (if [j — 3, j — 2] is in the arm of T) follow from
Lemma 3.16 and Corollary 3.17. The remaining parts of cases 2 and 4 are handled by

Proposition 3.26. O

We have now given all actions of the KLR generators on elements of &. This infor-

mation was crucial in our discovery of the endomorphism f given in Proposition 3.30.
Lemma 3.28. dim(End#(Sy)) < 1+5b/2.

Proof. Define M to be a matrix whose columns are indexed by T € Dom(A) (in increasing
order with respect to ), and whose rows are indexed by pairs (j,T) for 3 < j <n—2
odd, j # b+ 1and T € Dom(A). The entry of M in position ((j, T), S) is the coefficient
of vy T when ¥ ;vs is written as a linear combination of elements of . Thus we may
consider End (S, ) as the nullspace of M, and we have only defined M up to reordering
of rows.

First we note that every action of ¥/; on vr € Z yields a linear combination of
basis vectors indexed by tableaux which are dominated by s; T, unless ¥ vr is already

a reduced y-expression (equivalently, T has the domino [j — 1, j] in the leg and the
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domino [j + 1, j 4 2] in the arm). So, for j # b+ 1, ; givesrise to a family of relations
whose >-maximal term is some tableau with the domino [j — 1, j] in the leg and the
domino [j + 1, j + 2] in the arm. In particular, if we take a submatrix M; of M by
only choosing rows with first index j, we have an upper triangular square matrix; M;
has a 1 on the diagonal whenever the entry corresponds to a tableau with the domino
[/ — 1, j]in the leg and the domino [j + 1, j + 2] in the arm.

But every tableau in Dom(A) is of the above form for some odd j # b + 1, except
some of those with [b, b + 1] in the leg and [b + 2, b + 3] in the arm, and also the tableau
T*. In the former case, the tableau can still be viewed as being in the above form for
some j # b+ 1 unless the leg dominoes come in two consecutive strings, the first
ending in [b, b + 1] and the second ending in [z —1,n]. So in fact, we only have b/2
choices for the position of [b, b 4 1] in the leg and the rest of the tableau is completely
determined by this choice, if we would like the tableau not to correspond to a 1 on
the diagonal of some submatrix M;. So we have that the row rank of A4 is at least

| Dom(A)| —b/2—1, and thus the nullity of M is at most b/2 + 1. O

Example. Let A = (5, 1*). We have the following tableaux in Dom(2):

T, =[1]6]7]8]9], s=[1]4][5]8]9], T=[1]4][5]6]7]
12] 12] 12]
13 13 13
14 16 18]
5] 7] 9]
u=[1[2[3[8]9], v=[1]2]3]6]7] T*=[1]2][3][4]5]
14 14 16
15 15 7]
16 18] 18]
7] 9] 9]

We want to consider the actions of ¥3 and 17 on these six tableaux. The actions,

easily deduced from Lemma 3.13, are as follows:

1//‘3UT,'\ = Oa wl7vT)L = O,

Y3Us = Vgss, Y7Us = Vgys,
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V3V = Us3Ts Y7vr = =205,
Y30y = —2Vs;s, Y70y = Vgqu,
Y3vy = —2vg,T, Y7y = —2vs,v,
Y3vra = UssT, Y702 = Vgqu.

So the matrix A4 in the above proof is as follows.

Note that the top half of the matrix corresponds to y3 (or j = 3 if we are indexing
the rows as in the proof) and the bottom half to 7. It is clear that, as in the proof, the
matrix has row rank at least 3, as we having leading terms “on the diagonal” in columns

corresponding to S, T and U.

3.5 Decomposability of S, ;») when 7 is odd

We can now begin calculating #H-endomorphisms of S;. We now know that

f € Endy(S,) if and only if

f(zy) = Z arvy for some ap € F
TeDom(A)
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with ¥; f(z;) =0forallodd j #b+1with3 < j <n-2.

Definition 3.29. Let 7, j be odd integers with 3 <i < b +1 < j <n. We will denote

by T;,; the tableau with dominoes {[2, 3], [4,5],....[b,b+1],[j — 1, j]} \{[i — 1.i]} in the
leg.
Example. If A = (5,1%) then Ts,o = | 1|4[5[6]7]and T3 7 =[1[2[3[8]9].
12] 4]
13 15
18] 16
9] 7]
b—1 Jj—2
Remark. We observe that the normal form for vy, ; is W 1t ¥ | z,.
’ i b+1

Proposition 3.30. Suppose a is odd and b is even. Then there exists an H-endomorphism f of
S, given by
i—1 n4+2—j
f(Z/\) = Z T : 72 vTi.j‘
3<i<b+1

b+3<j<n
i,j odd

Proof. All we need to show is that ¥ f(z;) = Oforallodd k # b+ 1 with3 <k <n-—2.
We will rely extensively on our previous results regarding the actions of ¥ generators
on tableaux.

First, notice that y3vy; ; = O foralli > 7. So

n+2—j n+2—j
Jv J

V3f) =va | ) 2- = vr,, + —5—vny
J

n+2—j
= Z 7 (293 - vrs ; — 23 v15 ;)
J

= 0.

Next, suppose 5 < k < b — 1. We notice that Y vy, ; = 0 foralli < k —4 and for all

i >k+4. So
k+1 n+2—j k=1 n4+2—j
Vi f(z2) = Vi 5 5 UTk42., + 5 2 Uk
J
k=3 n+2—j

2 2 ka—Z.j)



118 3.5. Decomposability of S, 1») when n is odd

N2 (kA1 k=1 k-3
- Z 2 ( 2 _2' 2 + 2 )wvak'i‘Z,j
J

=0.

Now, for b +3 < k < n—4, we notice that Yxvr, ; = 0forall j < k—2 and for all

Jj=k+6.50

i—1 n+2-k i—1 n—k
Vi f(22) = Yk <Z2 T Uit T Uik

1

i—1 n—k-2

T.T'UTZ»J(_,’_“)

i—1 /n+2—k n—k n—k—2
=) 2( R i )w"UTi-k

i

= 0.

Finally, we notice that ¥,—vr; ; = O unless j =n—2orn. So

i — 1 i —1
Vn—2f(23) = Yn—2 (Z IT'z'vTi.n—z + lszi.n)
i
i—1

= Z(l - I)Wn—ZvTi,n—z -2 Twn_szi,n—Z
i

=0. O
Example. If A = (5, 1%), then our endomorphism is given by
f(zy) = 21)'[3.7 + 4UT5,7 + V139 + 2vT5.9 = 2W3Ws5z) +4Ws5z) + W3 W7 W52y 4+ 205 W5z, .

Remark. This endomorphism allows us to tackle our decomposability question. In
particular, S; can be decomposed into a direct sum of the generalised eigenspaces of f.

Thatis Ex ={v €S, | (f —xI)"v = 0 for some n € IN} for each eigenvalue x of f, and

Sy = @ E,.

X an eigenvalue of f°

From the definition of Ey it is clear that it is a non-zero H-module whenever x is an
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eigenvalue of f. The existence of two distinct eigenvalues of f would ensure that we
have at least two non-trivial summands in the decomposition above, and we would be

done.

The following lemma will be used repeatedly in further proofs.

Lemma 3.31. Suppose x1 > y1 > 3 and xp > y, > 3 are all odd numbers. Suppose also that
X € e(iy)S;. Then we have the following cancellation relations:
1. If x1 > x2 > y1 we have
xXo—4  Xq

VW[ X =W ] W] X

y1 y2 Y1 Y2

2. If xo = y1 > y2 we have
X1 X2 X1 X2
WU X=W| WU | X

yi »2 Y2 o yit4
X1 X2 xXp—4 X2
Proof. 1. VUL X =W | WU oW ) WX
y1 V2 Xo+2 y1 2

xXp—4 xXp—2
— le \L lIJx2le_X2 2‘1’)(2\11 \L \IJ \L X
x2+2 1 2
Xo—4  Xxp—2

v | U, | W X

x2+2 »1 2
xXo—4 X
=V | ¥ X
Y1 o
2. The proof proceeds similarly to the previous case. m|

Now, we work towards computing the eigenvalues of f. It is clear that f acts
on e(iy)Sy; f(vr) € e(iy)S; whenever T € Dom(A) by the nature of our actions of ¥
generators on elements of 2. We will show that the action of f one(iy) S, is triangular.
Take T € Dom(A), and write vy in normal form:

71 J2 Jd
vr=Vv | v | .Y z.

b+3—-2d b+5-2d b+1
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Then we want to look at

fo=v | W T W )

b+3—-2d b+5—-2d b+1
n+2 J1 J2 Jd b—1 j—2
Iy oW ] L w W W oz
3<l<b+l b+3—2d b+5—2d b+1 i b+1
b+3<j<n
i,j odd

We begin by looking at the simplified case where d = 1.

Lemma3.32. Let3<i<b+1<j<nand jz>b+1. Then

Jd
=2V | z, ifi =b+1land j =b+3,
b+1
Jd
v oz ifi =b+1land j =b+5,
b+1
0 ifi =b+1land j >b+7,
-2 Jd
\IJ¢ \IJT \IJ¢ =3V ] z; ifi=b—1land j =b+3,
b+1 i b+1 b+1

b—3 Jd Jj—2
\IJT V] W] z; fi<b—land jz <j—4,

b—1 b+1

0 ifi <b—1land jg > j—2and j =b+3,

s
\IJT \Ifi \IJL zy ifi<b—land jg>j—2and j >b+5.

b—1 b+1

Proof. First supposei = b+ 1. If j = b + 3 we have

Jd Jd
V| Wpigzp =-2¥ ] z;.
b+1 b+1

If j = b+ 5wehave

Jd Jd
U] WpysWpprza =V | z).
b+1 b+1

If j > b+ 7wehave

Jd j=2 Jd j=2
V)] V] z=v| W] z; =0
b+1 b+1 b+1 b+5
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Ifi=b—1and j = b+ 3 wehave

Jd Jd
U] Wy Uppiza =¥ | z;.
b+1 b+1

Next, suppose i < b—1. If j; < j —4 we already have an expression in reduced
form and the commuting relations alone put it into our normal form to give the stated

result.

Solet j; > j —2. Supposei < b —1and j = b+ 3. Then we have

Jd b—1 Jd b—3
U] W Wppzp =V ] W Uy W 1Wpi122
b+1 i b+3 i
Jd b—3
=V | U1t z
b+1 i
= 0.

Finally, let j > b + 5. Then we have

Jd b—1 j=2 b—3 Jd j=2
V| Wt W] z; =0 W] W] z

b+1 i b+1 i b—1 b+1

b—3 j—6 Jd
=Vt W] V] z

b—1 b+1
which is reduced and in our normal form. O
J1 J2 Jd o
Proposition 3.33. Suppose vy =¥ | W | ...V | z; € Zis in reduced normal
b+3-2d b+5-2d b+1

form, i and j are odd with3 <i <b+1 < j < nand let

W=w | w | v ez,

b+3—2d b+5-2d b+1 i b+1

Then (x) is a scalar multiple of either vr or some longer W-expression. In particular, () is

a scalar multiple of vy in precisely the following cases:

(x) =vrif
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o i+j=2b+6,i>2b+3-2d, j,>j—4—4(d —v) forall v;

o i+j=2b+2,i2b+1-2dand j, > j—2—4(d —v) forall v.
(¥) = =2vr if

o i+j=2b+4,i>b+3-2dand j, > j—2—4(d —v) forall v.

Proof. We will use the previous lemma and work down the cases in the order they

appear above. We will always look to put expressions into reduced normal form.

1. Let d > 0. Wheni = b+ 1, we can clearly see that we get (x) = —2vr when
j =b+3,(x) =vrwhen j = b+ 5and (x) = 0 otherwise. It is also clear that when
i =b—1and j = b+ 3 wehave (x) = vr, so in all further cases we will ignore this

combination.

2. Ifi <b-—1and j; < j —4, we must split into two subcases.

(a) First supposei < b+ 1—2d. Then we have

J1 J2 Jd b—1 j—=2
VAN /A AR R 7 N -
b+3—-2d b+5-2d b+1 i b+1
J1 J2 Jd—1 b—3  Jd j=2
=V | U | U W W] U oz
b+3—-2d b+5-2d b—1 i b—1 b+1
b—1-2d J1 Jj2 Jd j—2
=U 4+ W | W] U] W oz
i b+1-2d b+3—2d b—1 b+1

The above expression is reduced and longer than vr.

(b) Ifi >b+3—-2d,sayi =ks—2=b—1—2d + 2s for some s > 2, we have

J1 Js—1 Js Js+1 Jd Jj=2
W=w | v L ow o w ] vz
b+3—-2d b—1-2(d—s) b—1-2(d—s) b+1-2(d—s) b—1 b+1

=:y*
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Claim. Suppose for somes—1<u <d—1wehave j, >b+3—-2(d +5—

2v) for all s — 1 < v < u. Then the above expression is equal to

. Js Ju Ju+1 Ju+2 Jja  j—2
e/ J /) J )\ J )\ J LU W oz,
b+1—-2(d—s) b+142(d—u) b+7-2(d+s—2u) b+3—2(d—u) b—1 b+1

If for the maximal such u we have u < d —2, the expression above is reduced

and longer than vr.

Assuming the claim to be true, we need to look at what happens if the condition

in the claim holds for u = d — 1. In this instance, by the claim we have

" Js Jd—1 Jd j—2
(x)=v* Vv l LU v J v z
b+1—-2(d—s) b—1 b+34+2(d—s) b+1

—2vr ifj=b+5+2(d—s)and jz =2 b+3+4+2(d—ys),
UT ifj=b+7+2(d—s)and jz > b+3+2(d—y5),

0 ifj>b+94+2(d—s)and jg=b+3+2(d—s),

Vs otherwise, where vs is some expression longer than vr.

Note that the first case above never actually occurs here, by the condition
that j; < j —4. We can see that we get (x) = vr precisely when j, >

b+3—-2(d+s—2v)foralls—1<v<d-—land jz=b+34+2(d—s5)=j—4

Proof of claim. We prove the claim by induction on u. Whenu = s —1, we
have that j,_1 > b —1—-2(d —s) (which we already knew a priori) and
Jjs =b+1—-2(d —s). Then

. b+1—2(d—s) Js+1 Jjd  j—2 . Js+1 Jd  Jj—2
U | W | LW W =0 | LW W g
b—1-2(d—s) b+1-2(d—s)  b—1 b+1 b+1-2(d—s)  b—1 b+l

and the claim holds.

Suppose the claim is true forsome s —1 <u < d —2,and that j, > b +3-2(d +
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s —2v) forall s — 1 < v <u + 1. Then by induction, we have

" b+1-2(d—s) Js+1 ja  j—2
LV R U -
b—1—-2(d—s) b+1-2(d—s) b—1  b+1
Js Ju Ju+1 Ju+2 Jd j—2
=v*v | v | W ! A . U A

b+1-2(d—s) b+1+2(d—u) b+7-2(d+s—2u) b+3—-2(d—u) b—1 b+1

=yt
Ju+1 Ju+2 b+5—2(d+s—2u) Ju+3 Ja  j—2

=yryt g 1) v ! v ! VAR R -

b+7-2(d+s—2u) b+11-2(d+s—2u) b+3—-2(d—u) b+5—-2(d—u) b—1 b+1

since jy+1 = b +7—2(d + s —2u) by hypothesis

Ju+1 Ju+2 Ju+3 Jd j—2
=vvtey | w ! 2 A S

b+3—-2(d—u) b+11-2(d+s—2u) b+5-2(d—u) b—1 b+1

and the claim is proved.

3. Next, we look at the final case, i <b—1, j; > j —2and j > b + 5. We have that

w=v | v [ v ‘I’T‘I’iq’izk

b+3—-2d  b+5-2d b—1 b—1 b+1
Once again, we split into subcases.

(a) First supposei < b+ 1—2d. Then

b—1-2d Jj—6

(*)‘I’T‘Pi‘?i ‘Pillfillfiz/x

b+1-2d  b+3-2d b—3 b—1 b+1

Claim. Suppose for some 0 < u < d —1 wehave j < jz_, +4(v+1) for
al0<v<wuand j >b+3+42vforall0 < v <u. Then

(%) = prITZd\p (R T A A T R

b+1-2d  b+3-2d b—3—2u b—1—-2u  b+1-2u b+1

and this expression is of length 2(u + 1) less than the length of (). Further-
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more, if we take the maximal suchu and haveu < d —2and j > b + 5+ 2u,
itis reduced. If j = b 4 3 + 2u, the expression is equal to 0.

Proof. We prove the claim by induction on u. If u = 0, the result follows
immediately from Lemma 3.32. Now suppose the claim holds for some
0<u<d-2 and that j < jg_,+4(w+1)forall0 < v <u-+1, but
J = ja—u—2 +4u +3) (if u < d —3). Then by induction, we have

b—1-2d J1 Jd—u—2 u—1 Jj—6—4u Jd—u Jd
)=Vt W] @ ¢ v ¢ volow ] g
i b+4+1-2d b+43— 2(1 b—5—2u b—3—2u b—1—2u b+1—2u b+1
:.\y*
j—10—4u  j—8—4u Jd Jd
= w* lIJ\L \I’] 6—4u¥Vj-s8—au¥j-6-au¥ | ¥ | W »L Uz
J—4—4u b—3—2u b—1—2u b+1—2u b+1
J—10—4u Jd— —u Jd
A A R R
b—3—2u b—1—2u b+1—2u b+1

which is the claimed expression. In the induction step, 2 ¥ terms have
been deleted, which proves the length part of the claim. It is clear that if
J < b+ 5+ 2u then the expression in the claim is 0 and likewise that when

u<d-—2(and j > b+ 5+ 2u), we have a reduced expression.

Now, let u be maximal under the conditions in the claim. First, suppose that
u < d —2. By the claim, we can assume that j > b + 5 + 2u. This implies that

j—2
‘Ifji has length at least v 4 2. Similarly, i < b+ 1—-2d and u < d —2 imply
b+1

b—1
W 1 also has length at least u + 2. So by the claim, once (*) has been written in

a reduced form, it has length at least 2 more than vr.

But what if u = d — 1? The above claim tells us that

b—1-2d J—2—4d

x=v 1+ v | o

i b+1-2d

This is zero unless j > b 4 3 4 2d, in which case we have a (reduced) longer
expression than vr, or i > b +1—2d. Note that in the latter case, we in fact
havei = b + 1 —2d because of the conditions on the subcase we are looking at.

Looking at this case, we assume j < b+ 3 +2d, since j > b + 3 + 2d yields an
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expression longer than vr. Under these conditions, we have (x) = vr.

(b) Finally, suppose thati > b+3—2d. Sayi = ks—2 =b—1—2(d —s) for some

s = 2. Then
J1 Js—1 Js Js41 Jja  J-2
xH=v | ...v | ' v LU U oz,
b+3—2d b—1—-2(d—s) b—1—-2(d—s) b+1—-2(d—s) b—1 b+1

Claim 1. Suppose we have —1 < u < d —s—1 with js4, 2 b +3-2(d —

s)+4v forall -1 < v <u. Let

. J1 Js4u
UE=w | 0 .
b+3—-2d b4+1-2(d—(s+u))
Then
" Js4u+1 Js+u+2 Js+u+3 Ja j—2
K =w*w ] W] v v v
b+7—2(d—s—2u) b+3—2(d—(s+u)) b+5—2(d—(s+u)) b—1 b+1

The above claim is proved by a simple but tedious induction, in the spirit
of previous claims in this proof. Now first suppose we have u = d —s —1

satisfying the conditions in the claim, but also j; > b +3 4 2(d —s). Then

J1 Jd—1 Jd j—2
D=V | Wl w | Wz
b+3—2d b—1 b+34+2(d—s) b+1

2T ifj =b+5+2(d—s),

=T  ifj=b+3+2d—s)orj=b+7+2(d—ys),

0 otherwise.

Otherwise, take ¥ maximal, satisfying the conditions of Claim 1. We have

N Js+u+2 Js4u+3 jd  ji-2
() =v*- v l v { LW Uz,
b4+3—2(d—(s+u))  b+5-2(d—(s+u)) b—1 b+l

by the claim. Note that for these conditions on u to hold, we have js4, =

b+3—-2(d—s)+4uand jsyyr1 =b+5-2(d —5) + 4u.
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Claim 2. Let 0 < r < d —s—u—2 be such that j;_, > j —2—4v for all

0< v <r. Then

Js+u+2 Jd—r—1 Jj—6—4r Jd—r Jd—r+1 Ja
(x) = U*U ! LU W v w Wz
b+3—2(d—(s+u)) b—3—2r b—1-2r b+1-2r b+3-2r b+1

If r is maximal such that j;_, > j—2—4v forall0 < v < r and r <

d — s —u — 3, then this expression is reduced.

Again, this claim can be proved by induction as with the previous claims. Note

that the above term is zero unless j > b + 5+ 2r.

Whenever r < d —s —u — 3, the reduced expression above is longer than vr. To
see why, note that we have the condition js4y4+1 = b+ 5—2(d —s —2u) from
Claim 1. Since j;+1 > j; +2, this yields jz_,—1 > b+142(u—r). Now, we
have assumed that j;_,_; < j —6—4r, so we can combine these inequalities

toyield j 2b+9+2(u+r).

We now have enough information to compare lengths. To leave this reduced
form, we first deleted 2u + 4 W terms from (x) to arrive at the result from Claim
1. Next, we deleted 2r +2 ¥ terms to arrive at the result of Claim 2. So in
total, we have deleted 2(r +u + 3) =: § ¥ terms from (x) to leave a reduced

expression.

Now, how many V¥ terms did we append to vr in the definition of (x)? Call the

b—1
number of terms appended «. Sincei = b—1-2(d —s), ¥ 1 is a product of

Jj—=2

d—s+1Wterms. Since j >b+9+2(u+r), ¥ ] haslengthatleast4+u+r.
b+1

So,a > d +u+r —s+ 5. By the definition of r, we have thatd —s > r +u +2,

soa =2(u+r+3)+1> 34, and we are done.

Now suppose r = d —s —u — 2 satisfies the conditions of Claim 2, and we are
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left with a reduced expression. The claim tells us that the reduced expression is

. JH2—4(d—(s+u)) Js+u+2 Jd
(x) = W*W ! /] ! LWz,
b+3—2(d—(s+u))  b+5—2(d—(s+u)) b+1

Now, using the fact that js1u = b+ 3 —2(d —s) 4 4u, we see that for this
expression to be reduced we have j > b 4 3 +2(d —s). Now, arguing as above,

b—1
wehaved = 2(r +u +3) = 2(d —s + 1), thelengthof ¥ 1 isonceagaind —s+1

Jj—2
and the length of ¥ | is atleastd —s 4 1. Hence o > §, with equality precisely
b+1

when j = b + 3+ 2(d —s), in which case we have (x) = vr.

Now suppose r = d —s —u — 2 satisfies the conditions of Claim 2, but we are

not left with a reduced expression. Then

o F2mH A=) Jstu+2 Jd
(%) = V*W¥ d ) l LU oz
b+3—-2(d—(s+u)) b+5—-2(d—(s+u)) b+1
=1P**

which is zero unless j > b + 1+ 2(d — (s + u)), and we have the following:

Claim 3. Let —1 < x < s4+u —1be such that js4y—y = j+2—4(d+v—

(s +u)) forall -1 < v < x. Then

J1 Js4u—x—1 Jj—2—4(d+x—(s+u)) Js4u—x
(x)=U | ..U ! 7 ! 7 ..
b+3—2d b—1-2(d+x—(s+u)) b+1—-2(d+x—(s+u)) b+3—2(d+x—(s+u))
Istu o
Y d Uz,

b+3—-2(d—(s+u))

Note thatif x < s+ u —2, thistermis zerounless j > b+3+2(d +x— (s +
u)).

Take x to be the maximal such that the conditions in Claim 3 are met. First,
suppose x < s +u —2. Then jspu—x > j +2—4(d +x — (s +u)) and js4u—x—1 <
J—2—4(d +x—(s+u)). When x < u—1, we have our assumption in using
Claim 1 that jy4y—x—1 = b—1—-2(d —s) + 4(u — x). Comparing these inequali-
ties yields j > b +342(d — ).
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Similarly if x > u, js4u—x—1 > b—1—-2(d + x — (s + u)) can be read off from
the expression in Claim 3. But this yields j > b +34+2((d —s) + (x —u)) >

b +3+2(d —s). Now in either case,

b+3—-2(d —s)+4u = jsiu by the comment after Claim 1,
> j +2—4(d — (s +u)) by the conditions in Claim 3,

=>b+5-2(d—s)+4u.

We have a contradiction, and so if js4+y > j +2—4(d — (s +u)) but j; <

Jj +6—4d,we must have (x) = 0.

Now suppose x = s +u — 1. Then we have j > b —1+2d, or else (x) = 0 and

we're done. So

b+3—-2d +2s+4u = jg4yu by the comment after Claim 1,
> j +2—4(d — (s +u)) by the conditions in Claim 3,

>b+1-2d +4(s +u).

This implies s = 1, and so i = b 4+ 1 —2d. But this breaks the initial conditions
of the subcase we are in, so we again have a contradiction. So in fact we never
get terms that look like the expression in Claim 3; U* remains intact in the final

reduced expression for (x), if it is non-zero.

If we collect the cases where (%) is equal to a scalar multiple of vy, we get the
following list:

(%) = vr if

ei=b+1,j=b+5d >0-fromcasel;

e h+3-2d<i<b—1,j=2b+6—i,j;=2b+2—i,and j, > j —4—4(d —v)

for all v — from case 2(b);
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e h+3-2d<i<b—-1,j=2b+6—iand j, > j—4—4(d—v) for all v — from
case 3(b);

ei=b—1,j=b+3,d > 0-from case 1;

i=b+1-2d,j=b+14+2d 2b+5and j, > j —2—4(d —v) for all v — from

case 3(a);

b+3-2d<i,j=2b+2—-i2b+5,jg>j—2and j, > j—2—4(d —v) forall

v — from case 3(b);

b+3-2d<i,j=2b+2—i>2b+5,j;>j—2and j, > j—4(d —v)forallv-

from case 3(b).

These conditions can be written compactly as the first and second conditions in the
statement of the proposition.

(*):—2UTlf
ei=b+1,j=b+3,d>0-fromcasel;

e b+3-2d<i<b-1,j=2b+4—i>b+5,and j, > j—2—4(d —v)forallv -

from case 3(b).

These two conditions can be written compactly as the final condition in the statement

of the proposition. |
The above result immediately leads to the following crucial fact.

Corollary 3.34. Order & so that vy comes after vy whenever r(U) > r(T). With respect to this
ordering, the action of f on e(iy)S, is lower triangular. In particular, for each T € Dom(2),

the coefficient of vt in f(vr) is an eigenvalue of f.

Proposition 3.35. f has the eigenvalues

~dm—2d+1) for d=0.1.....b/2.
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Proof. Fixsomed € {0,1,...,b/2}. Let

n—2d n—4 n—2
vr=V¥ | ...¥| V] z.

b+3-2d b—1 b+1

Using the three bullet points in Proposition 3.33, we will compute the eigenvalue
—%(n —2d + 1) as the coefficient of vr in f(vr). First, note that by choice of T the
inequality on j,; for each bullet point is the strongest. So to check when the family of
inequalities at the end of each bullet point holds, it suffices to only verify the inequality
on j;.

Ifi +j =2b+6andi > b+ 3 —2d, then we claim that the inequalities in the first
bullet point are always satisfied by vr. For this, we need j; > 2b +2 —i. Using that
d <b/2andn > 2b we also get that 2b +2—i < b—1+2d <2b—1 < n—-2. So the
inequalities always hold in the case of the first bullet point.

Now,ifi + j =2b+2andi > b+ 1—2d,we claim that the inequalities in the second
bullet point are always satisfied by vr. To see this, we must show that j; > 2b —i. We
have2b—i <b—1+2d <2b—1 < n—2and so the inequalities always hold in the case
of the second bullet point.

Finally, i +j = 2b+4 and i > b+ 3 —2d, then we claim that the inequalities in
the third bullet point are always satisfied by vr. We need j; > 2b + 2 —1i but have
2b+2—-i<b—-1+2d <2b—1<n-2and we are done.

So now we only need to verify which pairs (i, j) satisfy the first two conditions
in each bullet point. For the first bullet point, we have the pairs (b +3—2d,b +
342d),(b+5-2d,b+1+2d),...,(b+1,b+5). For the second, we have the pairs
b+1-2d,b+1+2d),(b+3—-2d,b—1-2d),...,(b—1,b+3). For the third, we have
the pairs (b +3—-2d,b+1+4+2d),(b+5-2d,b—14+2d),....,(b+1,b+3).

J=2 i—1 n+2—j

b—1
Recall that the coefficientof W 1 ¥ | in f(z,)is . Hence the coefficient
i b+1

2 2

of vrin f(vy) is

d—1
i Y (b-2r)@—3-2r)+ (b—2-2r)a—1-2r)—2(b—2r)(a—1-2r)
r=0
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d—1
1
= > 8r—2(n—1)
r=0

d—1
1
= —Ed(n—1)+22r
r=0
d
= —E(n —2d +1). O

Remark. The sequence of eigenvalues given above is

(n—1)

0,— 3

3 b
s _(n —3), —E(l/l —5), Ceey —Z(Cl + 1)
If we write @ = 2r + 1 and b = 2s then this sequence can be rewritten as
0,—(r+s),20r+s—1),-3(r+s—-2),...,—s(r +1).

Lemma 3.36. If p > n, then {1, f. f2...., f%/2} is a basis of End(S}).

Proof. Since p > n, all b/2+ 1 eigenvalues of f are distinct. Thus, we know that the
minimal polynomial of f has b/2 4+ 1 distinct linear factors, so {1, f, f 2 .. b2y are

linearly independent. o

Remark. Note also that our proof shows that we have an exhaustive list of eigenvalues
of f, since we would otherwise have more that /2 + 1 linearly independent maps
in Endy/(S,), contradicting Lemma 3.28. We also see that the upper bound on the

dimension of Endy (S;) given in Lemma 3.28 is obtained when p > n.

Theorem 3.37. Suppose char(IF) # 2. Then S, »y is decomposable if either b > 4 or b = 2
n—1

with char(IF) t 5

Proof. By the remark after Proposition 3.30, it suffices to show that f has at least two
(-1
2

distinct eigenvalues. When s > 2, 0, — and —(n — 3) are three eigenvalues of f;
if S(, 10y were indecomposable, these would be equal. Since p # 2, this is impossible,

and we have the desired result.
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(n—1)
— and

When b = 2 and char(F) 1 %, we have the distinct eigenvalues 0 and —

we are done. O
. —1
It remains to resolve the case a = 2r + 1, b = 2 when char([F) | nT We have

r 342(r—c)
f@) =rvry, 5+ =D v, 5+ g, ZZC"IJ Iz
c=1 3

When b = 2 and char(FF) | %, we will prove that Sy is indecomposable by showing

that Endy (S, ) has no non-trivial idempotents.

Lemma 3.38. Suppose a isodd. Then {1, f} is a basis of End(S(,,12)), where I is the identity

map on S 12y-

Proof. Suppose we have g € S, 12) \(/, f)F. Since the coefficient of vy, , in f is 1, we

can add multiples of / and f to assume without loss of generality that

(n=3)/2 n=3/2 .
gz) =) v, =) oV Yoo
j=2 j=2

We will show that applying the relations ¥, _»xg(z3) =0fork =1,2,...,(n—5)/2
yields o, —2k—1)/2 = 0. It then follows that g is the zero map, a contradiction.
Suppose, by induction on k, we have

(n—2k=1)/2 .|

g(zy) = Z aj\lf£ Z).

j=2

n—2k—2
Then, acting on g(z3) by ¥,k yields «p_ok—1)2¥n—26¥Y | z3 = 0 and we are
3

done. O

In order to find idempotents, we would like to know how to compose elements of

our basis. This amounts to the following lemma.

Lemma 3.39. Leta = 2r + land b = 2. Then f2(z;) = —(r + 1) f(zy).
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3+4+2(r—c)

Proof. Notice that W3-¥ | z; =0forallc <r—2.So
3

e =3cv | fi)
c=1 3

3+4+2(r—c)

.
=Y W | (r—1WsWUsz; +r¥szy)
c=1 3

r 34+2(r—c)

=Y W | (=(r+Dz)
c=1 ?
=—(r+1f (). 0O
Lemma 3.40. Suppose a = 2r + 1 and char(F) | ngl. Then the only idempotents in

Endy(S(4,12)) are 0 and I, and hence S, y2) is indecomposable.

Proof. Leta, B € F. Using Lemma 3.39, we have f2(z;) = 0 and therefore
(al +Bf)?* = o*1 +2apf.
So ol + Bf is an idempotent if and only «? = & and 2a8 = .

Whether @ = 0 or « = 1, we must have f = 0. The result follows. O

With the aid of Murphy’s result (Theorem 3.1), we have now completely deter-
mined decomposability of the Specht modules S, ;). We summarise our result in the

following theorem.

Theorem 3.41. Suppose char(F) # 2. Then S, y») is indecomposable if and only if n is even,
or b = 2 or 3 and char(F) | [§].



Chapter 4

Graded decomposition numbers for

two-part partitions

In this chapter, we will study the graded decomposition numbers for H = HE 4(S,).
This problem is extremely difficult in full generality, and we here restrict our attention to
the case of two-part partitions. We make use of homogeneous homomorphisms between
Specht modules to calculate these decomposition numbers. In the final section, we also

investigate some exact sequences of these homomorphisms.

Recall from Section 1.12 that the ungraded (classical) decomposition number [S; :
D, ] is defined to be the number of times D, appears as a composition factor of S, while
the graded decomposition number [S; : D], also records the graded shift of each copy

of D, in 5.

We will now seek to determine all graded decomposition numbers [S, : D,],, where

A and p are both two-part partitions.

Remark. The ungraded decomposition numbers here are known, with a relatively sim-

ple formula proved by Gordon James. Let p = char(FF) and let e be the quantum

135
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characteristic of . The function f , : N xIN — {0, 1} is defined as

o) 1 ifL%ijLxT'HJande|yore|x—y+1,
eap'x’y =

0 otherwise,

where we say a <, b if the p-adic expansions of a and b are
a=ag+aip+ap*+---+ap” and b=bo+bip+byp*+---+bp'
respectively, witha; = 0ora; = b; foralli. Thenif A = (n—m,m)and p = (n—r,r),
[Si :Dul = fe,p(n—2r,m—r).

Example. Lete = p = 2 and n = 6. We will use James's result to calculate the decom-
position numbers for all two-part partitions of 6. First, since (6), (5,1) and (4,2) are
all 2-regular, we know that the three corresponding Specht modules have simple heads
D6), D(s,1) and D4 ») respectively, giving 1s down the leading diagonal of the two-part
component of the decomposition matrix. Next, we see that d(s 1)) = f2,2(6,1) = 1
since the condition 0 <, 3 holds trivially and the condition “e | x —y +1”7is“2 | 6”. Sim-
ilarly, d(4 2)(5,1) = d(3,3)(4,2) = 1 as each involves evaluating f> »(x, 1) for some even x;
the condition 0 <, LxTTlJ is always satisfied trivially. Next d(4 1)) = f2,2(6,2) = 1 as
1 A2 3and “e | y” becomes “2 | 2”. d(3 3)(6) = f2,2(6,3) = lasl <> 3and“e | x—y +1”
becomes “2 | 4”. Finally, d(3 3)(5,1) = f2,2(4.2) = 0as 1 £ 2. This yields the following

submatrix of the decomposition matrix of H when e = p = 2 (which is just FSe).

© 6.1 (4.2)

6) | 1 :
G| 1 1 :
4,2) | 1 1 1
3.3) | 1 : 1

Definition 4.1. We define D;’p (v) to be the submatrix of the graded decomposition
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matrix for H which corresponds to two-part partitions.
Theorem 4.2. Each column of D57 (v) for p > 0 is a sum of columns of DS°.

Proof. Since we know for any p that every entry of D5'” (v)|y=1 is 0 or 1, the ungraded
adjustment matrix (for any p) must also have entries 0 or 1. By Theorem 1.49, entries
of the graded adjustment matrix have non-negative coefficients and are symmetric in

v,v™L. So the graded adjustment matrix also consists of just Os and 1s. m|

Remark. Using this theorem, it is sufficient to calculate graded decomposition numbers
for p = 0. To calculate those for p > 0, there is a unique choice of entries obeying the
above result. The author is extremely grateful to Sinéad Lyle, to whom this result must

be attributed, for pointing it out.

We now give a presentation for the Specht modules (in the KLR setting) for two-part

partitions, which we will use extensively.

Definition 4.3. For A = (n —m, m), Section 1.10 gives us the presentation

Yz, =0Vj =13,....2m=1or j =2m+1.2m+2,....n—1,
Sa=\ Za|Y; ¥, 1122 =0V) = 1.3,....2m—1, ¥;¥;_12, =0 V) = 3.5.....2m—1,

Yizp =0Vk, e(ij)zy =z,

Remark. For any two-part partition, A, we have unique reduced expressions for standard
A-tableaux, up to applying the commuting relations on the i generators. So we get
a well-defined basis {vr | T € Std(1)} of S; without having to worry about fixing any

reduced expressions for elements of &,.

4.1 Decomposition Numbers when ¢ = 2

We here look at the case e = 2. In some ways, we expect this to be the hardest case to
work with, partly because of the more involved relations on the generators ;. We will

split this into the two subcases where n is either even or odd. The parity here makes a
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difference to the block structure of H; when n is even all Specht modules (for two-part
partitions) lie in the same block, but when 7 is odd they are split between two different
blocks, determined by the parity of m. However, we see that when » is odd the result

is extremely simple.

Theorem 4.4. If n is odd, then [Sy, : D]y = [Sy : Dyl for any two-part partitions A and p of

n.

Proof. James'’s result tells us that when p = 0, [Sy : Dy] = 8, ,. Application of

Theorem 4.2 completes the proof. O

For the remainder of this section, we let n be even. All Specht modules lie in
the same block so we would like to consider them simultaneously. We will start by
calculating [Sy : D,)]y for all two part partitions A = (n —m,m). We obviously have
Sty : Dayly = 1.

As in our work with hook partitions, we can see the following result.

Lemma4.5. Let A = (n—m,m). Then e(i(,)) Sy, has a homogeneous basis indexed by standard
“domino tableaux”. That is, a basis 9 = {vr | T € Dom(A)} indexed by the set Dom(1) of
standard tableaux where the entries i and i + 1 appear consecutively in the same row, for all

even2<i<n-—2.

Remark. If m is odd, then every element of & is homogeneous of degree 1, as the entry
n must be placed at the end of the second row. If m is even, every element of 7 is

homogeneous of degree 0.

Lemma 4.6. Let T be a standard (n —m, m)-tableau with residue sequence i(,y. Then yrvr = 0

forany k.

Proof. The proof is morally the same as that of [29, Lemma 4.4], and thus Proposi-

tion 3.12. We note that

YUt = yke(i(n))UT = e(i(n))yva € e(i(n))s(n—m,m)
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and so yxvr is a linear combination of elements in Z. These are all homogeneous of
degree 1 or 0, depending on whether m is odd or even, respectively. But then vt also
has this same homogeneous degree, and so y;vr must have degree 3 or 2, respectively.

So in fact we must have yvr = 0. O

Lemma 4.7.

0 forall even j > 2m,
Yi- 1a”j—le—Z cee meZ(n—m,m) =
Vi2Vi-3...VomZin—m,m) forallodd j >2m.

Proof. We will prove this by induction on j. When j = 2m the result follows trivially
from the relations in the Specht module (y2,, annihilates the generator z(,_ m)). Now

let j > 2m be even. Then

Vi Vi-1¥j—2 ... VomZin—m,m)
= jvj-1e(sj—2 - -s2m l-mmDV¥j=2 - V2mZn-m,m)
= wj_lyj_1lﬂj—21ﬁj—3 cee WZmZ(n—m,m)

=0 by induction.
Finally, let j > 2m be odd. Then

Yj- WJ—IW]'—Z cee lﬁZmZ(n—m,m)
= Yj—1Yj—1+D¥j2¥-3... Y2mZin—m,m)

=Y 2¥j-3... 1//2mZ(n_m’m) by induction. O

Lemma 4.8. The map fo . S(n) —> S(n—l,l) defined by f()(Z(n)) = lﬂn_llﬁn_z . wzz(n_l,l)

defines a degree 1 H-homomorphism.

Proof. First, note that fo(z(,)) = vrm-1.1). T=L.D has residue sequence i(,) because n is
even. Likewise, the previous lemma gives us yj fo(z(,)) = O for all k. All that remains

is to check that ¥ vr(-1.10 = 0 for all ;.
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Firstly, Y1 - Yu—1...¥22(-1,1) = ¥n—1... ¥3(¥1¥22(n—1,1)) = 0.

Next, if 2 < j <n —21is even, we have

Vi Vn-1.--V2Z(n-1,1) = ¥Yn—-1-- - Vjt2(¥;¥jr1¥je(sj—1...52 i(n-1,1)))
Vi—1V¥j—2...¥2Z(n—1,1)
=Yn—1...Vit2(Wjr1Vi¥vi+D¥j—1¥j—2 ... ¥2Z(n-1,1)

=0.

Next, if 2 < j < n—21is odd, we have

Vi Vn-1.. - V2Z(n-1,1) = ¥Yn-1-- - Vjr2(¥¥j+1¥ e(sj-1...52 i(n—1,1))
Vi—1V¥j—2...¥2Z(n—1,1)
=Vn—1-- - Vjit2(¥jr1¥¥Vj+1+ ¥ —2yj+1+yj+2)
Vi—1..-V2Zm—1,1)

=0,

as Vj+1, ¥j+2, ¥j+1 and yj4, commute through to the right hand side in the four

summands, respectively.

Finally,

YUn1 "Y1 V2Z1.1) = W2 1e(Sn—2 .52 in_1.)))Vn—2 - - - V2Z(n—1.1)
= (=Y2 = Y2+ 2Vn—1Vn)¥n—2 - - V2Z(n—1.1)
= —Vn—1Vn—1¥n—2e(Sn—3...52 iGu_1,0))¥n—3 . .- ¥2Z(u—1,1)
= —Yn—1¥Yn-3...¥Y2Z(n—1,1) by Lemma47,

= 0. O

We immediately have the following result.
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Corollary 4.9. [S¢;—1,1) : D(n)lv = v, regardless of the characteristic of IF.
Remark. 1If p = 0, we have filled in the only two non-zero entries of the first column of
the decomposition matrix (that is, the column corresponding to [S; : D(,)]v)-
Lemma 4.8 and Theorem 2.23 immediately imply the following:
Corollary 4.10. f : Sgi—m.m) = S(r—m—1,m+1) With
SmCZ—m,m)) = VYn—1¥n—2 - .- Vom+2Z(n—m—1,m+1) defines a degree 1 H-homomorphism

forallm <n/2-1.

Proof. This can be seen easily by looking at the tableau given by

Sn—1---S2m+2T(n—m—1,m+1), which is

1 3 2m—12m+12m+2| --- n—1
2 4 e 2m n
and considering the homomorphism column removal in Theorem 2.23. O

Remark. f,/»—; is surjective, as our construction clearly gives this homomorphism
as mapping generator to generator. Note also that the homomorphisms f; for i =
0,1,...,n/2 -1 explicitly give the one-node Carter-Payne homomorphisms found in

[32].

The following is a simple lemma in a general (ungraded) setting which will be useful

to us.

Lemma 4.11. Let M and N be (left) R-modules for some ring R, and suppose f : M — N is
a non-zero homomorphism, and that hd(M ) is simple. Then hd(im( f)) = hd(M).

Proof. Let I =im(f) and K = ker(f). Then

hd(/) = hd(M/K) by the first isomorphism theorem,

e

(M/K)/rad(M/K) Dby definition,

= (M/K)/((rad(M) + K)/K)
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=~ M/(rad(M) + K) by the third isomorphism theorem,
=~ (M/rad(M))/((rad(M) + K)/rad(M)) by the third isomorphism theorem,

~ hd(M)/((rad(M) + K)/ rad(M)).

But 7 # 0, so hd(/) # 0, and since hd(M) is simple its only non-zero quotient is itself,
so ((rad(M) 4+ K)/rad(M)) = 0 and hd(/) =~ hd(M). O

Corollary 4.12. [S(;—m—1,m+1) : Dn—m,m)] = vforall0 <m <n/2—1.

Proof. We have a non-zero degree 1 homomorphism f; : S;i—m.m) = Str—m—1,m+1) and

we know that D, ») = hd(S¢y—m,m)). Therefore

D(n—m,m) (1) = hd(lm(fm))
and the result follows. O

Remark. If p = 0, we have filled in all decomposition numbers (for two-part partitions).
Thus, by Theorem 4.2 we can calculate the graded decomposition numbers for two-part
partitions for any p. Explicitly, we can replace the function f. , in James’s formula with

a graded version f,’, : NxIN — {0, I, v} given by

1if[2] <, |22 ande ] y,

Ty =qv if |2] <, [*Fande | x—y +1,

0 otherwise.

Example. It is easy to verify that Dg 2 is the following.

(6 5.1 (42
6) | 1 :
G, 1) | v 1

“4,2) | 1 v

(3,3)| v
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4.2 Exact sequences of homomorphisms between Specht mod-

ules

Next, we build on the work of the previous section and investigate the homomorphisms
we have found when e = 2. In particular, our main result will be the construction of
an exact sequence of homomorphisms between Specht modules when e = 2 and n is

even, for any p.

Lemma 4.13. Let j > 2m + 4. Then

0 if j is even,
ViVji+1V¥j ... Vom+aZn—m—2,m+2) =
Vi—2Vj—3 .. Vom+aZ(n-m—2.m+2) if j isodd.

Proof. First, suppose j is even. Then

Vi Vit1V¥j - - Vom+aZ(n—m—2,m+2)
=¥ r1¥je(sj—1-5j—2S2m+a - in—m——2,m+2))Vi—1 - - - Vom+4Z(n—m—2,m+2)
=V 1ViVi+1Vj—1- - Vom+4Z(n—m—2,m+2)

= 0.
Now suppose j is odd. Then

Vi Vit1V¥j - Vom+aZ(n—m—2,m+2)

= Wivji+1¥je(sj—1-Sj—2" S2m+a - in—m—2,m+))Vj—-1 - Vom+4Z(n—m—2,m+2)
= Wj+1¥iV¥i+1+ Y —2Vj+1+Yji+2)Vji-1 - Vam+4Z(n—m—2,m+2)
=0+y¥i1¥j—2-. - Vam+4Zn-m—2,m+2) —0+0

= lﬂj_2§ﬁj_3 R w2m+4z(n—m—2,m+2) by Lemma 4.7. O

Lemma4.14. (4;) y; - V¥j-1¥j—2...Vom+2ViV¥j—1.. . Yom+aZ(n—m—2,m+2) = O for all

even j 2 2m+2.
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(Bj) VjV¥jaV¥j—2...Yomt2¥V¥j—1...Yom+aZ(n—m—2,m+2) = 0 forall j >2m +3.

Proof. We will prove these by simultaneous induction. First, we prove (A2,42) and

(B2m+3). (A2m+2) holds trivially, as Yam+3¥2m+2Z2(n—m—2,m+2) = 0 is a relation in
St—m—2,m+2)- (Bam+3) also holds trivially, as the statement becomes

Yam+2Z(n-m—2,m+2) = 0, which is a relation in S¢;, _, 2, 42)-

Next, we will show thatif j > 2m + 2 is even, (4;,2)&(B;_3) = (4,).

Vi Vji-1¥j—2. Vomt2¥jV¥j—1. .. Vom+aZin—m—2,m+2)
= (j¥j—D¥j—2.. . Vam+2¥ Vi1 - Vom+4Z(n—m—2,m+2)
= Wi—1Yji-DVj—2.. - Vom+2ViVj-1.. - Vom+aZ(n—m—2,m+2)
=Y 112V —3 ... Vom+2¥; Vi1 .. Vom+4Z(n—m—2,m+2)
=Vj1(¥j2yj—2+ DVj-3...Vomi2VjV¥j-1 ... Vam+4Z(n—m—2,m+2)
=Y ¥j2ViVi—1(Vj—2Vj-3... Vom+2Vj—2 ... Vom+4Z(n—m—2,m+2))
+ Y. Vamt2(Vi— 1V Vi1V ji—2 . . Vom+aZ(n—m—2,m+2))
=0+Vj-3...Vomt2¥j-3Vj-a... Vom+aZ(n—m—2,m+2)
by (4;-2) and Lemma 4.13, respectively

=0 by (B,_3).

Next we will show that if j > 2m + 3 is even, (Bj_1) = (Bj). In this case, we have

Vi Vi—1V¥j—2.. . Vom2¥i¥j—1 .. Vom+4Z(n—m—2,m+2)
= WiV i)¥j—2.. . Vom+2¥j—1 - Vam+4Z(n—m—2,m+2)
= V-1V Vi—D¥j—2 ... Vam+2¥j—1 - Vom+4Z(i—m—2,m+2)

=0 by (Bj-1).
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Finally, we show that if j > 2m 43 isodd, (4;-1), (Bj-1)&(Bj_2) = (Bj). Then

Vi Vi-Vj—a.. . Vom2¥ V-1 Vom+aZ(n—m—2,m+2)

= (WiViV)V¥i—2- . Yam+2Vj—1 - Vom+4Z(n-m—2,m+2)
=Wi¥ivYj—1—Yj—1+2y; = yji+D)Vji—2 .. . Vamt2¥j—1 .. Vom+4Z(n—m—2,m+2)
=2%j ... Vom+2(ViVi—D)Vj—2 ... Y2m+4Z(n—m—2,m+2) Where the first summand is
0 by (Bj—1), the second by (4,_1), and the fourth as y;+; commutes through all ys,
=2Y%j ... Vom+2(¥j—1Yj—1+ DV¥j—2 ... Yom+4Z(n—m—2,m+2)

=0 by Lemma 4.7 and (B;_>). |

Theorem 4.15. The sequence

f- f f Jnj2—2 Jny2—1 Jns2
0— Sm) = S—-1,1) s Sm/2+1,n/2-1) —> Sm/2,n/2) — 0

is an exact sequence.

Proof. We begin by showing that f;,+1 0 f;» = 0 for any m > —1. Exactness at the end
of the sequence follows by surjectivity of f;,/>—1, so we can assume that m < n/2—2.
It suffices to show that f,+1(fm(Z(gn—m.m))) = 0. We will show this by induction on m.

When m = —1, the result is obvious. So assume 0 < m < n/2—2.

Jm+1(UmCa—mm)) = fm+1(Un-1¥n—2 ... Y2m+2Z(r—m—1,m+1))
= Yn-1Vn—2 ... Vom+2(fm+1Cn—m—1,m+1))
=VYn-1V¥n—2 ... Vom+2 Yn—1¥Yn-2 - .. Vom+4Z(n—m—2,m+2)

=0 byLemma 4.14.

Hence we know that im( f;,) C ker( f;u+1) for all m > 0. We will use a dimension

counting argument to complete the proof. First recall that the hook length formula (see
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[24], for example) yields

n\n—-2m+1
dim(S,,— = _
im( (n m’m)) (m) n—m+1
Now, looking at
Jm(Z—m.m)) = 1 3 e | 2m—12m+12m+2| --- n—1
2 4 2m n

it is clear that

o ' n—1\n—-2m
dim@im(fm)) > dim(Sp—m—1,m)) = ( m ) n—m’

Similarly,

m+1 n—m

. n n—2m-—1
dlm(s(n—m—l,m—i—l)) = ( )—

and

.. ) n—1\n—-2m-2
dim(im(fm+1)) = dim(Sp—m—2,m+1)) = ( )—

m+1) n—m—-1"

So we have

dim(ker(fps1)) < ( n )%_(”—1)%

m+1 n—m m+1) n—m-—1

n—1 nn—2m-—1) (n—2m-2)
m+1 ((n—m—l)(n—m)_ (n—m—l))
n—1\nm—-2m—1)—m—-2m—2)(n—m)
m+1 m—m—1)(n—m)

n—1\ (m—2m)(m—+1)
m+1)(n—m—1)(n—m)

_ n—1\n—-2m
o m n—m

< dim(im( f,)),
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which completes the proof. |

Corollary 4.16. If m is even and S(;—m m) and S—m—1,m+1) both have S,y (where the
underlining represents forgetting all information of the grading, as in [29]) as a composition

factor, then

Sty S im(fm).

Proof. We will argue by induction on m. Firstly, note that from the James formula we
know that S, is a composition factor of S;;—m m) if and only if it is a composition factor
of S(n—m—1,m+1), when m is even. Now, when m = 0, the result is clear. So suppose
m # 0. S —m+2,m—2) and S¢y—m+1,m—1) both have S,,) as a composition factor, then the
induction hypothesis, along with exactness, yields our result. If neither S, _, 42 m—2)
nor S(y—m+1,m—1) have S,y as a composition factor, we know that im(f,—1) cannot

contain S, so ker(fm) can’t. The result follows. O






Chapter 5

The branching rule and dominated

homomorphisms fore = 2

In this chapter, we wish to prove an analogue of Theorem 2.7 when e = 2, which
in turn would yield a column removal result as in Theorem 2.30 for the whole of
Hom , (S;.S,.), not just DHom s, (S;.S,.). Unfortunately we were unsuccessful in this
venture, but made some progress towards it, and include our ideas in this final chapter.
We end the chapter with Conjecture 5.15, where we boldly hypothesise that in the
most general scenario, with A, u € 22, Hom #, (S;.,S,) = DHom x, (S;.S,) when A is
regular. In practice, however, we attempt to prove a level 1 version of this in Section 5.2.
Remark. In light of the example after Theorem 2.23, we clearly need some extra con-
ditions for any analogous result, even in level 1. Indeed, the example showed that
we cannot even expect a single column removal result to hold without some extra

conditions.

5.1 The branching rule

Our approach to proving that all homomorphisms are dominated (under certain combi-
natorial conditions) will make great use of (a generalisation of) the branching rule given

in [10, Theorem 4.11]. However, there are some problems with the proof presented by

149
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the authors — in particular, the main obstacle is a reliance on the proof of the analogous
ungraded result in [3, Proposition 1.9]. The author thanks Professor Andrew Mathas
profusely for communicating a problem with the original proof of [3, Proposition 1.9],
the details of a fix in this classical case (which may be found in his “errata” for [33,
Proposition 6.1]), and an explanation of how to put this proof into the graded context
using results from [22]. Mathas’s proof (for restriction to .7%,_1) is due to appear in a

short note of his.

In [22], the authors are, in part, concerned with the following disparity: the Ariki-
Koike algebra, as defined in Definition 1.6, the KLR algebra, and its cyclotomic quotient
may all be defined as algebras over an integral domain O, rather than a field. However,

Brundan and Kleshchev’s isomorphism theorem Theorem 1.25 only holds over a field.

In [22], the authors construct deformations of JZ (viewed as an O-algebra, where
O must be what they call an idempotent subring of some field .%"), which we denote by
3 (0). They show ([22, Theorem A]) that J7,(0) = Ho,4,0(Z/1Z.: ,), and that over
a field F = O/m for some maximal ideal m, the presentation of .7, (0O) coincides with
that of J7¢. Crucially, for % = Frac(O), H ¢ 4,0(Z/1Z ;) is semisimple, and hence
so is (%) = 74(0) ®o # . Note that 77, (0) is not in general a graded algebra!

Importantly for us, we see in [22, Example 4.2b)] that given a field F, the ring
O = F[x]() satisfies the desired properties, where m is the ideal generated by the

indeterminate x and %" = Frac(O).

The authors define Specht modules S, (0) over 74,(0) and show that S, (FF) =
5,(0) ®o F and likewise S, (#") = S3(0) ® o #". The Specht module S (O) has a basis
{¥& | T € Std(A)}, arising from a cellular basis of /%, (0) and ¥¥ ®¢ 1 = vr.

Finally, in [22, Lemma 5.12], the authors show that S, (") has a seminormal basis
{fr | T € Std(1)}. This completes the background we require to prove our branching
rule; the proof will follow Mathas’s proof (in his “errata”) of [33, Proposition 6.1] very

closely.
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Definition 5.1. Let 1 € . and define
ek std(1) == {T e Std(A) | it = (.. .i;_.di)}
k times

and £ = E(i,k,A) = elk Std(A)/ ~, where ~ denotes the equivalence relation defined

by T~ Sif T"1(j) = S71(j) forall j > n—k.
Note that |E| = (’,’{’)k!, where m is the number of removable i-nodes in A.

Example. Lete = 2,k = (0,1) and A = ((4,3,1?),(3,1)) € 2%, The residue diagram

for A is

—
=)

1]

—_—

REEE

1]0]1]

and thus we see that e’f Std(A) is the set of standard A-tableaux which contain the entries
13,12,...,13—k + 1 in removable 1-nodes, and e’f Std(A) = @if k > 4. For k = 1, the
four elements of E are given by the following four equivalence classes of tableaux:
{TeStdA) | T '(n) = (1,4, 1)}, {Te Std(A) | T ' (n) = (2,3, 1)}, {T e Std(A) | T '(n) =
(4,1,1)}and {T € Std(A) | T"'(n) = (1,3,2)}.

Recall Robinson’s i-restriction functor; in [9, §4.4], the authors define a graded

analogue of this functor, which we here write as

eiog =Y e(j)Hara; ®ty iy, — : Hiata;-mod —> H-mod .
jel
Jn=i

The functor ¢; o is simply left multiplication by the idempotent ) ;<; e(;) followed
Jn=i

by restriction to %, via the map shifty : /% — Hy1q;. Define e; := P, i o where the

sum is over all @ € QO of height n — 1. Note that ¢; is an exact functor. Composing

such functors k times, we obtain the functor elk : Hy-mod — H,_p-mod.
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Theorem 5.2 (The graded branching rule). Let A € 22} and suppose A has m removable

i-nodes. For any k < m, there is a filtration
k
{0y=VcCcVicC--C V(’;cl)k! =e; Sa

such that foreach 1 < j < (7)k!, V;/Vj—1 =S, (c) for some v obtained from A by removing

k removable i-nodes, and some ¢ € Z determined by j.

Remark. Note that when k = 1, this is just the branching rule in [10, Theorem 4.11],

projected onto a block according to the residue i.

Proof. We define a total order > on E as follows: for [T], [S] € E, [T] > [S] if and only if
for some j > n —k we have that T~!() is lower than S™!(j) but T"!(d) = S™!(d) for
all d > j. We label the elements of E by Ej, ..., E(l]’?)k! sothat £1 < E5 < -+- < E(Zl)k!.

Next, we construct the desired filtration as an O-filtration of elk S,(0), where as
explained at the start of Section 5.1 we may take O = FF[x](y). Note that over O this will
not be a graded filtration, but when we tensor with FF (to yield a filtration of e S, over
IF) we will see that we do have a graded filtration.

Now, we define VJ.O = (y? | T € E; forsome [ < j)o. To see that Vj(9 is in general
an J;,_;(O)-module, it suffices to note that for any generator h € J%,_;(O) and any
T € E;, hyf = Y asy& and for each S with as # 0 either S ~ Tor S < T. This is a
consequence of the set-up of seminormal forms in [22].

IfS~T,Se€ E;so 1//50 € VJ-O. If S < T, we have Shape(S,,,—;) < Shape(T,,_;) for all
0 <t < k, with equality when ¢ = k. If there is equality foreach0 <t < k, then T =S,
which is not possible. So let 1 be minimal such that Shape(S,,_;) < Shape(T,—;).
SoT 'n—t+1)#S Y n—t+1)butT '(n—1t)=S"'(n—-1t)forallt’ <t—1. Since
Shape(S},—;) < Shape(T,—), S~!(n— + 1) mustbe in a higher row than T~ (n —7 + 1).
So S € Ey for some !’ < I,and in particular ¥ € V].O.

For each j, suppose the equivalence class E; consists of tableaux with n,n —

l,....,n—k +1in nodes A1, A3, ..., A respectively. Define v; := A\ {A41,..., Ax}.
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We will show that VJ.O / VJ.O_1 =~ Sy, (0), and subsequently V;/V;_; = Sy, (c), where
Vi = Vjo ®o F and F = O/m for some maximal ideal m. In particular, we show that
the map @? : V].O/ VJ.O_1 — S,,(0) defined by ¥ + V1 — w%n_k foreachT € E;
is an isomorphism. It is clear that dim Vjo / Vjo_1 = dimS,, (O) and thus that @5? is an
isomorphism of vector spaces. It remains to show that @5) is an .72, (O)-homomorphism.

Recalling that S, () = 5,(0) ®o ', and considering 5, (0) as an O-submodule
of 53(), we see that @5-9 is an %, (0)-homomorphism if and only if 6? ® 1, is an
(' )-homomorphism, so we may work over %, where 7%, (%) is semisimple and
S, (') has a seminormal basis { fr | T € Std(4)}; Sy, (¥") has an analogous seminormal
basis.

We define a new homomorphism

(k!
0" :ef () — P S (X)
j=1

by fr+ fry,_,- Itis clear that ®7 is a vector space isomorphism. From the proof of
[22, Theorem 5.7], it can be seen that there is a unitriangular transition matrix between
thebases { fr | T € Std(A)} and {y¥ | T € Std(1)} and thus V]’."/ = VJ.O ®o # has abasis
{f1 | T € Ej forsome! < j}. We see that ©7 (V) = {=1 Sy, (#), so @ induces
a map Vj%/ / Vjt}f L = Sy () foreach 1 < j < (',?)k!. Furthermore, analogously to
Mathas'’s (revised) proof of [33, Proposition 6.1], ®* is an ., (#)-homomorphism,
and it follows similarly that @fg (m+ Vj'.%_/ ) = 0% (m)forallm € Vj:%/ and 1 < j < (P)k!.
This suffices to prove that each ®j"-£/ is an J%,_x (% ')-homomorphism; it follows that we
have an O-filtration, and tensoring with F = O/m yields the desired filtration, as
ungraded modules.

That @115 :Vi/Vj—1 = Sy, {c) is an isomorphism of graded modules follows from the
combinatorics; the fact that grdim V;/V;_1 = grdim S, (c) is clear, as is the degree shift

by c =dAt(A) +dA2A\{A1}) +--- +dAAA\{A1, Aa, ..., Ak_1 ). O

Remark. We have been slightly sloppy in the statement of Theorem 5.2 and not explicitly
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stated over which algebra we are considering the Specht module S,. In fact, the proof
works entirely over ., but S, is a module over both /7 and .7%;. So in fact we have

filtrations for both!

Example. Lete =2,/ =1,k = (0) and A = ((3,2, 1)). Then we have the filtration

{0}=V0CV1CV2CV3CV4CV5CV5=€(Z)SA

where for each j, Vj := (vr | T € E; for some ! < j)rand

Ei={TeStd) | T ') =1,3)and T '(n—1) = (2,2)},
E>, ={TeStd) | T '(n) =1,3)and T '(n—1) = (3, 1)},
E3={TeStd)) | T '(n) = (2.2) and T '(n — 1) = (1,3)},
Es={TeStdA) | T ') =@2,2)and T '(n—1) = (3, 1)},
Es={TeStd}) | T ') =@, Hand T '(n—1) = (1,3)},

E¢ ={TeStdA) | T ') =@, Hand T '(n—1) = (2,2)}.

Then we have the following isomorphisms:

Vi = S(a.12y)(1), V2/ V1 = S((22))(0),
Vi)V, = S((z’lz)) (—1), Va/ V3 = S(3,1)) (=1),
V5/V4 = S((zz)) (—2), V6/V5 = S((3,1)) (_3)-

It can be checked that the graded dimensions of these six (shifted) Specht modules
sumto vt +4v2 +6+4v 2+ v 4 = (v+ v H)* = grdim S(3.2.1)).-
5.2 Dominated homomorphisms fore = 2

In this section, we will mostly be concerned with the case / = 1 (cf. Section 3.1) though

we end it with a conjecture for arbitrary /. Until further notice, fix / = 1.
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For the most part, we will make steps towards proving thatif / = 1,e =2, Ao n
and p = n then Hom #, (S;.S5,) = DHom, (55,S,). Sadly, this work is currently

incomplete, but we have several conjectures we are confident in.

Definition 5.3. If A - n and r € IN, we define the rth ladder of [A] to be

L, ={G/j)elAlli+(-D( -1 =r}

If r is maximal such that I, # @, then we call I, the outer ladder of [A].

Remark. Note that all nodes in a given ladder IL, have the same residues, so we may

talk of the residue of a ladder.

For the remainder of the section, we fix e = 2. Thus the ladder IL, = {(i, j) € [A] |

i + j —1 = r}. Furthermore, we will assume throughout that A is 2-regular.

Definition 5.4. If A k5 n with an outer ladder of size k, and A is the partition of n — k
obtained by removing the outer ladder of A, then we define Std(1)* to be the set of all
standard A-tableaux with entriesn —k +1,n —k 4+ 2,...,n in order going up the outer

ladder of A.

Henceforth we will assume that A F, n such that [A] has an outer ladder of size k,
residue i. By Theorem 5.2, we see that e{‘ S, has a bottom Specht factor (and therefore
submodule) isomorphic to a shift of Sy, given by (vr | T € Std M) To emphasise that

this is the degree shifted copy of S5 in S;, we denote it by S; ;.

Definition 5.5. Define T; to be the <-minimal tableau in Std()_L)Jr. That is, the tableau
T; with an outer ladder of size k adjoined to it, with entriesn —k + 1, ..., n up the outer

ladder.

Proposition 5.6. Sj, is generated by zi" = U as an 7, _-module. Furthermore,

WT;’ = Yn-kVn—k—1-- - Vn—tx_\¥Yn—k+1---VYn—tx_s - - ¥Yn—n
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where t; is the ith triangle number. w_+ is fully commutative, and therefore this does not depend
A

on any choice of preferred reduced expression.

Proof. W+ is fully commutative by Lemma 1.9. It is clear that the above is a reduced
A

expression for WT;. |
Example. 1. LetA =(3,2,1). Thenk =3,T; =|1|3 6]and w'r;{ = Ys.
25
2. LetA = (4,3,2,1). Thenk =4, T; = é 4]6]10/ and wT; = YeUsYary.
s8]
7]

Definition 5.7. If A - n, we call A a 2-coreif A = (m,m —1,m—2,...,1).

Remark. One may define an e-core for arbitrary e, but since the only place we will call

on e-cores is in Lemma 5.8, we give the restricted (but equivalent) definition above.

It is a well known result that if A is a 2-core, then S; = D,.

Lemma 5.8. Let A 2 n and pu = n and suppose ¢ € Hom y, (S;,S,,) is non-zero. Then

(p(zl-:r) # 0. In particular, p(S34) # 0.

Proof. The lowest node in the outer ladder of [A] is (k,Ax). Letv = (A1 —Ag + 1, A2 —
Ax +1,...,1). This partition can be thought of as the first k rows of A, from column
Ak to the right. v |-t is a 2-core, and therefore S, is an irreducible .7, -module, and
thus any non-zero element of S, generates it. In particular, z, = hz]-jL = th‘g}r z, for
some h € 4, . Since the first Ay — 1 columns of T, and T; agree, expressions for the
basis of S, can be chosen in such a way that wT; = shift,_, (wT;r). It is now clear
that shift,_;, (h)z/{r = shift, s, (/’le‘J{)Z 2 = z;, and so z; generates S;. The result

follows. O

Example. If k = 3,

z) = shift, 4 (-%W%)ZiF = shift, s, (—V3Va¥s)Vn-321 = —Vn—-3Vn—2Vn—1V¥n-32,.
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Definition 5.9. If A - n, we define the i-signature of A to be the sequence of + and — signs
obtained by examining the addable and removable i-nodes of [A] from top to bottom,
writing a + for each addable i-node and a — for each removable i-node, and define the
reduced i-signature of A to be the subsequence of the i -signature obtained by successively
deleting adjacent pairs +—. We call the removable i-nodes of [1] corresponding to the

— signs in the reduced i-signature the normal i-nodes of A.

It is a well known fact (see [28, Theorem 7.4] for example) that if A |-, n has x normal

i-nodes then e D) # 0.

Example. Lete = 2and A = (6,5, 3, 1). Consider the addable and removable nodes of
[A]:

1]0.
1/0

1]0

0
So A has 0-signature + + — + +, reduced 0-signature + + + and therefore no normal
0-nodes. A has 1-signature — — +— and reduced 1-signature ——, corresponding to the
nodes at the ends of the first two rows. Thus, these two nodes are normal 1-nodes. In

particular, e? D, # 0.

Lemma 5.10. If A I, n has x normal i-nodes and p = n with Hom s, (S,,Sy) # 0 then

has at least x removable i-nodes.

Proof. Since Hom s, (S5,S,) # 0, [Sy : Da] # 0. Thus, by the above comment we have
that e D, # 0, so e} S, # 0. Recalling standard facts about the functors e; from the

proof of Theorem 3.2, we see that ;- must have at least x removable i-nodes. O

Remark. All i-nodes in the outer ladder of [A] are normal nodes, and therefore we may

assume that u has at least k removable i-nodes.

From this point on we have many conjectures and few proofs. We will assume
throughout that Hom s, (54,S,) # 0, as otherwise our intended result holds trivially.

The following conjecture is almost a refinement of Lemma 5.10, except that we only
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consider the normal i-nodes in the outer ladder of [A]. We provide a counterexample

to a corresponding statement for all normal i -nodes.

Conjecture 5.11. Let A > n and p = n, and suppose the outer ladder of [A] has residue i.
Suppose ¢ € Hom s, (S5, S,,) with ¢(z,) = ZTes,[d(M) atvy. Whenever at # 0and j is in

the outer ladder of T, j is in a removable i-node of T.

Remarks.

1. It it certainly not the case that the following stronger statement holds: suppose
@ € Hom, (S, Spu) with 9(z3) = Y regiau) a1vr- Whenever ar # 0 and j isin a
normal i-node of T, j is in a removable node of T. For an easy counterexample

to this, let A = (4,1) and u = (2,13%). For any p, there is a homomorphism

¢ z; — vy where Ty, =[1]|3]4][5|and T = 3]. 2is in a normal 1-node of T,

w[so]—

but not a removable node of T. Note however that the outer ladder of T consists

only of the node containing the entry 5, which is in a removable node of T.

2. If k = 1or2, the conjecture is easily seen to be true by examining residues of

standard tableaux.

We will be interested in the filtrations of e¥ S; and X S,. For the former, we are in
fact interested in the bottom factor, which is a submodule. From now on, we shall thus
let E1 < E> < --- denote the equivalence classes of standard p-tableaux as in the proof
of Theorem 5.2. Analogously to the equivalence classes E j, we may define equivalence
classes E }, where we replace each n —m in the definition of E; with n —t,. These
equivalence classes involve tableaux with n —#x_y,n —fx_5,...,n —1,n in removable
nodes. Although we have a natural correspondence E; < E, E;j and E’; do not
necessarily contain the same number of tableaux. Note that this definition relies on

Conjecture 5.11.
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Conjecture 5.12. Let ¢ € Hom 4, (S;,S,,) with

p(zy) = Z arvr + Z asvs for some ar,as € F
TEE] SEE}
j<r

and some r. Then foreach T € E| withar # 0andeachm = 1,2,... . k—1,n—ty, /1 d for
alld > n—ty,.

In particular, this conjecture says that in some sense the order of entries in the outer

ladder is preserved — this property is desirable for our approach.

Example. Let p =0,A = (7,6) and n = (4,4,2,2,1). Then Hom 4, (55, S,,) is spanned

by ¢ : z) = 3vr, + 6vr, + 3vr; + 3vr, — 6VT, — 3T, + V1, Where

T, = 113|911, T, =1(1]3]|9]11], T3 =|1]3|9]11], T4=1[1|3]|9]11],
21510113 2(15(10113 2(5]10/12 24110113
417 416 417 517
68 7112 6|13 6112
12 8] 8] 8]
Ts =113 |8]11], Te =1(1]3]5]|7], T, = |[1]3]|5]|7.|
2510113 2191113 21416|9
417 4110 811
6|12 6|12 10/13
9] 8] 12

It is easy to see that T7 is in the (<-)highest equivalence class out of all 7 tableaux
above, and is the only tableau from this class which occurs here. Since k = 2, the

conjecture predicts only that 12 r, 13, which is seen to hold.

Remarks.

1. The conclusion of Conjecture 5.12 is certainly false if we don’t include the condi-

tion that T € E; — in the above example, 13 /1, 12!
2. If k = 1, the conjecture is holds trivially.

Conjecture 5.13. Assume ¢ € Hom y;, (S;,Sy) is as in the statement of Conjecture 5.12.

Then for each S € E} with j < rand as # 0O, there exists T € E; such that at # 0and T > S.
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Remark. Examples suggest that perhaps only one tableau from E, occurs, and with
coefficient 1; if this were true, then in fact there is a unique maximal tableau T such that
ar # 0 and T dominates all other tableaux S for which ags # 0. This can be seen to be
the case in the previous example. Here, T; dominates all 6 other tableaux, which are

pairwise incomparable in the dominance order.

Example. Let p = 0,1 = (7,6,5) and i = (7,4,22,13). Now k = 3 so perhaps we have
amore interesting example. There isa homomorphism ¢ : z, — 8vr, —4vr, +2vr; + V1,

where

T, = [1]4]9]1213]16]18], T, = [1]4][7]12]13]16]18],
2151417 2151417
3[10 3[8
615 615
7] 19
18] 10
11 11
T = [1]4]7]1013]16]18], T4 = [1[4]7]1013]16]18].
2151417 2[5[8]11
3[8 314
611 617
19 19
12 12
15 15

This time, the tableaux are totally ordered (T; < T, < Tz < T4) and we see that the
predictions of Conjectures 5.12 and 5.13 hold. Again, we see that the most dominant

tableau occurs with coefficient 1.

Take a filtration of elk S, as in Theorem 5.2. For ¢ € Hom 4, (S5,S,.), there exists
some r such that go(ziF ) C V, but go(ziF ) € Vr—1. Composing with the natural surjection
Vi > V;/Vy—1 yields a homomorphism S;, — Sj(c) where i1 and ¢ are given in
Theorem 5.2. Let S it denote the copy of S;;(c) seen in V. / V,_1 — by this we mean that

Sﬂ+ has a basis of u-tableaux in the equivalence class E,.

Conjecture 5.14. Suppose e = 2, A - n and p = n. Then we have Hom x, (S;.S,) =
DHom s, (S3.Su)-
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Proof assuming Conjectures 5.11-5.13. We prove by induction on n. If n = 1, the result is
trivial. So suppose n > 1 and let ¢ € Hom y, (S,,S,). By the paragraph above, there

is a homogeneous /7, _r-homomorphism ¢ : S; — Si. By induction, ¢ is dominated.

Suppose
o(zy) = Z arvr + Z asvs for some art,as € F.
TEE] SEE}
j<r

Then by Proposition 5.6 and Conjectures 5.11-5.13,

w(Z;) = (P(WT;-Z)L) = Z aTwT;‘UT‘F Z aslﬂT;vs

TEE; SEE’;
j<r

= E arvi+ +E byvy

TEE, uat
TEE]
aT7éO

where TT = wT;T has the entries n —k + 1,n —k +2,...,n up the nodes of i\ i in

order. It follows that

@(Zi) = Z aTUS_Tv

SteE,
where St = w +T (= TT from above). Since ¢ is dominated, it follows that for each
A
St € E, such that ar # 0, St is dominated, so T* is dominated. Since T < T the result

follows by Corollary 2.2(1). O

Example. We build on our previous example, where p = 0, A = (7,6,5) and pu =

(7,4,22,1%). Here, ¢(z;) = vy, + > sar, AsUs.

(/’(Z;:) = @(V¥1521) = Vs 514 T+ Z asVsyss-

STy

Noticing that 16, 17 and 18 are in nodes (4, 2), (2,4) and (1, 7) of s15T4 respectively, we
have a homomorphism ¢ : SZ — S; where A= (6,5,4) and & = (6,4,2, 13) given by
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taking a quotient of tableaux from less dominant classes. That is,

10[13]15]
11

[e BN

4
5
14

‘5‘\0‘0\ [N [—

is the tableau obtained from s15T4 by removing the nodes containing 16, 17 and 18.

We end with one final conjecture, which generalises the previous one to higher
levels, as well as generalising Theorem 2.7 to include the case where the x; may not
be distinct. First, we note that the level 1 notion of e-regular may be extended to the
higher level notion of regular multipartitions; we will not discuss the definition here. It

will suffice to note the following:
1. the definition depends on e and «;
2. these multipartitions are often called conjugate Kleshchev in the literature;

3. the set of regular multipartitions indexes a family of Specht modules with non-
isomorphic simple heads — these simple heads form a complete set of simple

J6,F-modules.

Conjecture 5.15. Suppose A € ;@,11 is regular. Then Hom ;, (S;,S,;,) = DHom , (S;,S,.).
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For the reader’s convenience we conclude with an index of the notation we use in this

thesis. We provide references to the relevant sections.

F

Sn

S1,-++5,8n—1

A

shifty

/H]F,q(gn)
Hr,q,0(Z]12:2S,)

o
Aj
(1)
Q+

a field

the set of positive integers

the symmetric group of degree n

the Coxeter generators of S,

the Coxeter length function on &,

the left order on S,

the Bruhat order on &,

the shift homomorphism &,, — S,

the Iwahori-Hecke algebra of type 4

the Ariki-Koike algebra

theset Z/eZ (or Z, if e = o0)

a quiver with vertex set /

there is an arrow from i to j (but no arrow from j to i) in
r

there are arrows from i to j and from j toi in I
simple root labelled by i € /

fundamental dominant weight labelled by i € /
invariant bilinear form

the positive root lattice
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1.1
1.1
1.1
1.1
1.1
1.1
1.2
1.3
1.4
1.4
1.4

1.4
1.4
1.4
1.4
1.4
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Ay the dominant weight Ay, +--- 4+ Ay, 14
def(x) (Ag o) —2(a|a) 14
[A] the number of nodes of a (multi)partition A 1.5
i the set of /-multipartitions of n 1.5
> the dominance order on multipartitions or tableaux 1.5
[A] the Young diagram of a multipartition A 1.5
% the unique partition or /-multipartition of 0 1.5
N the conjugate (multi)partition to A 1.5
Std(4) the set of standard A-tableaux 1.6
T the conjugate tableau to T 1.6
idrj i and j lie in the same column of T, with j lower than i 1.6
iJ1] i and j lie in the same component of T, with j strictly lower 1.6
and to the left of i
i /1] i /1 joriliesin an earlier component of T than j 1.6
T) the A-tableau obtained by writing 1,...,n in order down 1.6

successive columns
T the A-tableau obtained by writing 1,...,n in order along 1.6

successive rows

W the permutation for which wTy =T 1.6
w? the permutation for which wTT* = T 1.6
Shape(T,) the /-multicomposition formed from the nodes of T whose 1.6

entries are less than or equal to m

res A the residue of a node A 1.7
cont(X) the content of a multipartition A 1.7
def(1) the defect of a multipartition A 1.7
i(T) the residue sequence of a tableau T 1.7
i i(Ty) 1.7

i* i(T4) 1.7
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deg(T) the degree of a tableau T 1.7
codeg(T) the codegree of a tableau T 1.7
M the module obtained from M by forgetting the grading 1.8
M (k) the graded module M with the grading shifted by k 1.8
E the KLR algebra of degree n 1.9
shifty the shift homomorphism 73 — 7, 1.9
JF the cyclotomic KLR algebra determined by « 1.9
B4 the column Garnir belt corresponding to a Garnir node 4 1.10
G4 the Garnir tableau corresponding to a Garnir node A 1.10
94 the (column) Garnir element corresponding to a Garnir 1.10
node A
Si the column Specht module corresponding to a multiparti- 1.10
tion A
B4 the row Garnir belt corresponding to a Garnir node A 1.10
g4 the (row) Garnir element corresponding to a Garnir node 1.10
A
st the row Specht module corresponding to a multipartition 1.10
A
Z) the standard generator of S 1.10
74 the standard generator of st 1.10
Yr Vi, ... Yy, where sy, ... 5y, is the preferred reduced expres- 1.10
sion for wr
UT Vrzp 1.10
Dy the head of S, 1.11
dju the composition multiplicity [S; : D, ] 1.12
De-P the decomposition matrix of Hp4(S,) with ¢¢ = 1 and 1.12
char(F) = p
Ap the adjustment matrix satisfying D¢? = D¢04,, 1.12
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dju(v) the graded composition multiplicity [Sy : D]y 1.12

D¢ P (v) the graded decomposition matrix of Hr 4(S,) withg® =1 1.12
and char(FF) = p

Ap(v) the graded adjustment matrix satisfying the equality 1.12
D®P(v) = D*°(v)Ap(v)

Std (u) the set of A-dominated standard u-tableaux 2.1

std* () the set of A-row-dominated standard u-tableaux 2.1

DHom #,(S,,S,)  the space of dominated homomorphisms from Sy to S, 22

DHom », (5*,8*)  the space of dominated homomorphisms from S* to S~ 2.2

M® the graded dual of a graded module M 2.3

Stdi (1) the set of A-tableaux in which the entries 1,...,n; appear 2.4
strictly to the left of the entriesn; +1,....n

M#HA, the multipartition obtained by joining the left and right 2.6
parts Ay, A, together

T\#T; the tableau obtained by joining the left and right parts T), T, 2.6
together

2 {ur| TeStd(A)}Ne(iy)Sy = {vr | it =iy} 3.2

Dom(A) the set of domino tableaux 3.2

v U, . W, 3.4

wt Wy, 0, 3.4

T;,; the tableau with dominoes {[2,3],[4,5],...,[b,b + 1],[j — 3.5
L jI}\{li — 1.i]} in the leg

D3? the submatrix of the D¢ ?(v) for H = Hp 4(S,) which cor- 4
responds to two-part partitions

I (0) Hu and Mathas’s O-deformed cyclotomic KLR algebra 5.1

Ly the kth ladder of [A] 52
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