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Abstract

Let n be a positive integer, and let Hn denote the affine KLR algebra in type A. Kleshchev,
Mathas and Ram have given a homogeneous presentation for graded column Specht mod-
ules Sλ for Hn. Given two multipartitions λ and µ, we define the notion of a dominated
homomorphism Sλ → Sµ, and use the KMR presentation to prove a generalised column-
removal theorem for graded dominated homomorphisms between Specht modules. In the
process, we prove some useful properties of Hn-homomorphisms between Specht modules
which lead to an immediate corollary that, subject to a few demonstrably necessary condi-
tions, every homomorphism Sλ → Sµ is dominated, and in particular HomHn (Sλ, Sµ) = 0
unless λ dominates µ.

Brundan and Kleshchev show that certain cyclotomic quotients of Hn are isomorphic
to (degenerate) cyclotomic Hecke algebras of type A. Via this isomorphism, our results can
be seen as a broad generalisation of the column-removal results of Fayers and Lyle and of
Lyle and Mathas; generalising both into arbitrary level and into the graded setting.

1 Introduction

The KLR algebras, or quiver Hecke algebras, were constructed independently by Khovanov
and Lauda [KL] and by Rouquier [R2], and have since received an abundance of interest. This
is, in some part, due to the powerful result of Brundan and Kleshchev in [BK] that every
(degenerate) Ariki–Koike algebra is isomorphic to a so-called cyclotomic quotient of a KLR
algebra. The KLR algebras and their cyclotomic quotients are graded, and this allows us to
study the graded representation theory of (degenerate) Ariki–Koike algebras, and in particular
the graded representation theory of the symmetric groups. This motivates the study of KLR
algebras, and in particular the study of their graded Specht modules. These were defined by
Brundan, Kleshchev and Wang [BKW], and developed further by Kleshchev, Mathas and Ram
[KMR], who gave a homogeneous presentation for each Specht module.

In trying to understand the (graded) structure of the Specht modules, the (graded) ho-
momorphism spaces HomHn(Sλ, Sµ) are of particular interest. In the ungraded setting, these
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homomorphism spaces have received a great deal of attention in recent years. We concentrate
in particular here on the row- and column-removal theorems for homomorphisms, proved by
the first author and Lyle [FL] for the symmetric group and generalised to Hecke algebras of
type A by Lyle and Mathas. In this paper, we provide graded versions of these theorems,
while at the same time generalising them to higher levels so that they apply to all (degenerate)
Ariki–Koike algebras.

In fact, our results apply not to all homomorphisms between two given Specht modules
but only to those of a certain type, which we call dominated homomorphisms. However, in
many cases (for example, for the symmetric group in odd characteristic) every homomorphism
between two Specht modules is dominated, so our results apply generally; in particular, via
the Brundan–Kleshchev isomorphism mentioned above, we recover the original row- and
column-removal theorems of Lyle and Mathas.

We now summarise the structure of the paper. In Section 2, we introduce the combinatorics
necessary for our purposes, as well as the set-up of the KLR algebras and their Specht modules.
We proceed in Section 3 by introducing dominated tableaux and the corresponding dominated
homomorphisms. Section 4 gives our main results pertaining to generalised column removal
for homomorphisms. Finally, in Section 5 we provide an index of notation for the reader’s
convenient reference.

Acknowledgements. The second author would like to thank Queen Mary University of Lon-
don, without whose funding this work would not have been possible. The second author
must also thank Professor Andrew Mathas, at the University of Sydney, with whom this work
began. The visit to the University of Sydney was funded by the Eileen Colyer Prize and the
Australian Research Council grant DP110100050 “Graded representations of Hecke algebras”.
We are grateful to several anonymous referees for their extensive and helpful comments.

2 Background

In this section we recall some background and set up some notation. This varies from
[KMR] in only a few details.

2.1 The symmetric group

LetSn denote the symmetric group of degree n. Let s1, . . . , sn−1 denote the standard Coxeter
generators of Sn, i.e. si is the transposition (i, i + 1). Given w ∈ Sn, a reduced expression for w is
an expression w = si1 . . . sil with l as small as possible; we call l = l(w) the length of w.

We will need to use two natural partial orders on Sn. If w, x ∈ Sn, then we say that x is
smaller than w in the left order (and write x 6L w) if l(w) = l(wx−1) + l(x); this is equivalent to
the statement that there is a reduced expression for w which has a reduced expression for x as
a suffix.

More important will be the Bruhat order on Sn: if w, x ∈ Sn, then we say that x is smaller
than w in the Bruhat order (and write x 4 w) if there is a reduced expression for w which has a
(possibly non-reduced) expression for x as a subsequence. In fact [H, Theorem 5.10], if x 4 w,
then every reduced expression has a reduced expression for x as a subsequence.

The following proposition gives an alternative characterisation of the Bruhat order.
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Proposition 2.1 [H, §5.9]. Suppose w, x ∈ Sn. Then w 4 x if and only if there are w = w0,w1, . . . ,wr =
x such that for each 1 6 i 6 r we have wi = (ui, vi)wi−1, where 1 6 ui < vi 6 n and w−1

i−1(ui) < w−1
i−1(vi).

Later we shall need the following lemma; in fact, this is a special case of Deodhar’s ‘property
Z’ [D, Theorem 1.1].

Lemma 2.2. Suppose w, x ∈ Sn with x ≺ w. If l(siw) < l(w) while l(six) > l(x), then six 4 w.

Proof. Since l(siw) < l(w), w has a reduced expression s beginning with si. We can find a
reduced expression for x as a subexpression of s, and this subexpression cannot include the
first term si, since l(six) > l(x). So we can add the initial si to the subexpression to get a reduced
expression for six as a subexpression of s. �

We end this subsection by defining some very natural and useful homomorphisms. Suppose
1 6 m 6 n and 0 6 k 6 n−m, and define the homomorphism shiftk : Sm → Sn by si 7→ si+k for
every i. Note that if k = 0, this is the natural embedding.

2.2 Lie-theoretic notation

Throughout this paper e is a fixed element of the set {2, 3, 4, . . . } ∪ {∞}. If e = ∞ then we set
I := Z, while if e < ∞ then we set I := Z/eZ; we may identify I with the set {0, . . . , e− 1} when
convenient. The Cartan matrix (ai j)i, j∈I is defined by ai j = 2δi j − δi( j+1) − δi( j−1).

Let Γ be the quiver with vertex set I and an arrow from i to i− 1 for each i. (Note that this
convention is the same as that in [KMR], and opposite to that in [BK, BKW].) The quiver Γ is
pictured below for some values of e.

0

1

0

1 2

0

1

2

3 0 1 2 3−1

e = 2 e = 3 e = 4 e = ∞

In the relations we give below, we use arrows with reference to Γ; thus we may write i → j to
mean that e , 2 and j = i− 1, or i� j to mean that e = 2 and j = i− 1.

We adopt standard notation from Kac’s book [K] for the Kac–Moody algebra associated to
the Cartan matrix (ai j)i, j∈I; in particular, we have fundamental dominant weights Λi and simple
roots αi for i ∈ I, and an invariant symmetric bilinear form ( | ) satisfying (Λi |α j) = δi j and
(αi |α j) = ai j for i, j ∈ I. We let Q+ :=

⊕
i∈I Z>0αi be the positive root lattice. For α =

∑
i∈I ciαi ∈ Q+,

we define the height of α to be
∑

i∈I ci. Given α, β ∈ Q+ with α =
∑

i∈I ciαi and β =
∑

i∈I diαi, we
write α > β if ci > di for each i.

Let Il denote the set of all l-tuples of elements of I. We call an element of Il an e-multicharge
of level l. The symmetric group Sl acts on Il on the left by place permutations. Given an e-
multicharge κ = (κ1, . . . , κl), we define a corresponding dominant weight Λκ := Λκ1 + · · ·+ Λκl .
For α ∈ Q+, we then define the defect of α (with respect to κ) to be

def(α) = (Λκ |α)− 1
2 (α |α).
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2.3 Multicompositions and multipartitions

A composition is a sequence λ = (λ1, λ2, . . . ) of non-negative integers such that λi = 0 for
sufficiently large i. We write |λ| for the sum λ1 +λ2 + · · · . When writing compositions, we may
omit trailing zeroes and group equal parts together with a superscript. We write ∅ for the
composition (0, 0, . . . ). A partition is a composition λ for which λ1 > λ2 > · · · .

Now suppose l ∈ N. An l-multicomposition is an l-tuple λ = (λ(1), . . . , λ(l)) of compositions,
which we refer to as the components of λ. We write |λ| = |λ(1)

|+ · · ·+ |λ(l)
|, and say that λ is an

l-multicomposition of |λ|. If the components of λ are all partitions, then we say that λ is an
l-multipartition. We write P l

n for the set of l-multipartitions of n. We abuse notation by using
∅ also for the multipartition (∅, . . . ,∅).

If λ and µ are l-multicompositions of n, then we say that λ dominates µ, and write λ Q µ, if

|λ(1)
|+ · · ·+ |λ(m−1)

|+λ(m)
1 + · · ·+λ(m)

r > |µ(1)
|+ · · ·+ |µ(m−1)

|+µ(m)
1 + · · ·+µ(m)

r

for all 1 6 m 6 l and r > 0.
If λ is an l-multicomposition, the Young diagram [λ] is defined to be the set{

(r, c,m) ∈ N×N× {1, . . . , l}
∣∣∣∣ c 6 λ(m)

r

}
.

We refer to the elements of [λ] as the nodes of λ. We may also refer to (r, c,m) as the (r, c)-node
of λ(m). If λ ∈ P l

n, a node of λ is removable if it can be removed from [λ] to leave the Young
diagram of a smaller l-multipartition, while a node not in [λ] is addable if it can be added to [λ]
to leave the Young diagram of an l-multipartition.

We adopt an unusual (but in our view, extremely helpful) convention for drawing Young
diagrams. We draw the nodes of each component as boxes in the plane, using the English
convention, where the first coordinate increases down the page and the second coordinate
increases from left to right. Then we arrange the diagrams for the components in a diagonal line
from top right to bottom left. For example, if λ =

(
(22), (2, 12), (3, 2)

)
∈ P3

13, then [λ] is drawn as
follows.

We shall use directions such as left and right with reference to this convention; for example, we
shall say that a node (r, c,m) lies to the left of (r′, c′,m′) if either m > m′ or (m = m′ and c < c′).
Similarly, we say that (r, c,m) is above, or higher than, (r′, c′,m′) if either m < m′ or (m = m′ and
r < r′).

If λ is a partition, the conjugate partition λ′ is defined by

λ′i =
∣∣∣∣{ j > 1

∣∣∣ λ j > i
}∣∣∣∣ .

If λ is an l-multipartition, then the conjugate multipartition λ′ is given by

λ′ = (λ(l)′, . . . , λ(1)′).



Generalised column removal for graded homomorphisms 5

Observe that with our convention, the Young diagram [λ′] may be obtained from [λ] by
reflecting in a diagonal line running from top left to bottom right.

2.4 Tableaux

If λ ∈P l
n, a λ-tableau is a bijection T : [λ]→ {1, . . . ,n}. We depict a λ-tableau T by drawing

the Young diagram [λ] and filling each box with its image under T. T is row-strict if its entries
increase from left to right along each row of the diagram, and column-strict if its entries increase
down each column. T is standard if it is both row- and column-strict. We write Std(λ) for the
set of standard λ-tableaux.

If T is a λ-tableau, then we define a λ′-tableau T′ by

T′(r, c,m) = T(c, r, l + 1−m)

for all (r, c,m) ∈ [λ′].
We import and modify some notation from [BKW] and [KMR]: given a tableau T and

1 6 i, j 6 n, we write i →T j to mean that i and j lie in the same row of the same component,
with j to the right of i. We write i↗T j to mean that i and j lie in the same component of T, with
j strictly higher and strictly to the right, and we write i tT j to mean that either i↗T j or j lies
in an earlier component than i. The notations i ↓T j, i↙T j and i wT j are defined similarly.

There are two standard λ-tableaux of particular importance. The tableau Tλ is the standard
tableau obtained by writing 1, . . . ,n in order down successive columns from left to right, while
Tλ is the tableau obtained by writing 1, . . . ,n in order along successive rows from top to bottom.
Note that we then have Tλ = (Tλ′)′.

Example. With λ =
(
(22), (2, 12), (3, 2)

)
we have

Tλ = 1012
1113

6 9
7
8

1 3 5
2 4

, Tλ = 1 2
3 4

5 6
7
8

9 1011
1213

.

The symmetric groupSn acts naturally on the left on the set ofλ-tableaux. Given aλ-tableau
T, we define the permutations wT and wT in Sn by

wTTλ = T = wTTλ.

Later we shall need the following lemma; recall that 6L denotes the left order on Sn.

Lemma 2.3. Suppose λ ∈ P l
n and S, T are λ-tableaux with wS 6L wT. If T is standard, then S is

standard.

Proof. Using induction on l(wT) − l(wS), we may assume l(wT) = l(wS) + 1, which means in
particular that T = siS for some i. Since T is standard, the only way S could fail to be standard
is if i + 1 occupies the node immediately below or immediately to the right of i in T. But either
possibility means that i occurs before i + 1 in the ‘column reading word’ of T, i.e. the word
obtained by reading the entries of T down successive columns from left to right. In other
words, w−1

T (i) < w−1
T (i + 1), but this means that l(wS) > l(wT), a contradiction. �
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Now we introduce a dominance order on tableaux. If S, T are λ-tableaux, then we write
S Q T if and only if wS < wT (recall that < denotes the Bruhat order on Sn). There should be
no ambiguity in using the symbol Q for both the dominance order on multipartitions and the
dominance order on tableaux.

There is an alternative description of the dominance order on tableaux which will be very
useful. If T is a λ-tableau and 0 6 m 6 n, we define T↓m to be the set of nodes of [λ] whose
entries are less than or equal to m. If T is row-strict, then T↓m is the Young diagram of an
l-multicomposition of m, which we call Shape(T↓m). If T is standard, then Shape(T↓m) is an
l-multipartition of m.

Now we have the following proposition. This is proved in the case l = 1 in [M, Theorem
3.8] (where it is attributed to Ehresmann and James); in fact, the proof in [M] carries over to the
case of arbitrary l without any modification.

Proposition 2.4. Suppose λ ∈ P l
n and S, T are row-strict λ-tableaux. Then S P T if and only if

Shape(S↓m) P Shape(T↓m) for m = 1, . . . ,n.

In this paper, we shall briefly consider a natural analogue of this notion for column-strict
tableaux. Suppose λ ∈P l

n and T is a column-strict λ-tableau; define the diagram T↓m as above,
and define T′

↓m to be the ‘conjugate diagram’ to T↓m, that is

T′
↓m =

{
(c, r, l + 1− k)

∣∣∣ (r, c, k) ∈ T↓m
}
.

Then T′
↓m is the Young diagram of an l-multicomposition of m, which we denote Shape(T↓m)′.

Now we have following statement, which can be deduced from Proposition 2.4 by conjugating
tableaux.

Proposition 2.5. Suppose λ ∈ P l
n and S, T are column-strict λ-tableaux. Then S P T if and only if

Shape(S↓m)′ Q Shape(T↓m)′ for m = 1, . . . ,n.

2.5 Residues and degrees

In this section we connect the Lie-theoretic set-up above with multipartitions and tableaux.
We fix an e-multicharge κ = (κ1, . . . , κl). We define the residue res A = resκ A of a node A =
(r, c,m) ∈ N×N× {1, . . . , l} by

res A = κm + (c− r) (mod e).

We say that A is an i-node if it has residue i. Given λ ∈P l
n, we define the content of λ to be the

element
cont(λ) =

∑
A∈[λ]

αres A ∈ Q+.

We then define the defect def(λ) of λ to be def(cont(λ)).
If T is a λ-tableau, we define its residue sequence to be the sequence i(T) = (i1, . . . , in), where

ir is the residue of the node T−1(r), for each r. The residue sequences of the tableaux Tλ and Tλ

will be of particular importance, and we set iλ := i(Tλ) and iλ := i(Tλ).
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Example. Take λ =
(
(22), (2, 12), (3, 2)

)
as in the last example, and suppose e = 4 and κ = (1, 2, 0).

Then the residues of the nodes of λ are given by the following diagram.

1 2
0 1

2 3
1
0

0 1 2
3 0

So we have

iλ = (0, 3, 1, 0, 2, 2, 1, 0, 3, 1, 0, 2, 1), iλ = (1, 2, 0, 1, 2, 3, 1, 0, 0, 1, 2, 3, 0).

Now we recall from [BKW, §3.5] the degree and codegree of a standard tableau. Suppose
λ ∈P l

n and A is an i-node of λ. Set

dA(λ) :=
∣∣∣{addable i-nodes of λ strictly below A}

∣∣∣− ∣∣∣{removable i-nodes of λ strictly below A}
∣∣∣,

and

dA(λ) :=
∣∣∣{addable i-nodes of λ strictly above A}

∣∣∣− ∣∣∣{removable i-nodes of λ strictly above A}
∣∣∣.

For T ∈ Std(λ) we define the degree of T recursively, setting deg(T) := 0 when T is the unique
∅-tableau. If T ∈ Std(λ) with |λ| > 0, let A = T−1(n), let T<n be the tableau obtained by removing
this node and set

deg(T) := dA(λ) + deg(T<n).

Similarly, define the codegree of T by setting codeg(T) := 0 if T is the unique ∅-tableau, and

codeg(T) := dA(λ) + codeg(T<n)

for T ∈ Std(λ) with |λ| > 0. We note that the definitions of degree and codegree depend on the
e-multicharge κ, and therefore we write degκ and codegκ when we wish to emphasise κ.

Example. Suppose e = 3, κ = (1, 1) and T is the ((2), (2, 1))-tableau

3 4

1 5
2

which has residue sequence i(T) = (1, 0, 1, 2, 2). Letting A = T−1(5) = (1, 2, 2), we find that
dA(λ) = 1 and dA(λ) = −1. Recursively one finds that for the tableau

T<5 = 3 4

1
2

we have deg(T<5) = 2 and codeg(T<5) = 1, so that deg(T) = 3 and codeg(T) = 0.

The degree and codegree of a standard λ-tableau are related to the defect of λ by the
following result.

Lemma 2.6 [BKW, Lemma 3.12]. Suppose λ ∈P l
n and T ∈ Std(λ). Then

deg(T) + codeg(T) = def(λ).
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2.6 KLR algebras

We now give the definition of the algebras which will be our main object of study. Through-
out this paper we fix a field F.

Suppose α ∈ Q+ has height n, and set

Iα =
{
i ∈ In

| αi1 + · · ·+αin = α
}
.

Now define Hα to be the unital associative F-algebra with generating set

{e(i) | i ∈ Iα} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}

and relations

e(i)e( j) = δi, je(i);∑
i∈Iα

e(i) = 1;

yre(i) = e(i)yr;
ψre(i) = e(sri)ψr;

yrys = ysyr;
ψrys = ysψr if s , r, r + 1;
ψrψs = ψsψr if |r− s| > 1;

yrψre(i) = (ψryr+1 − δir,ir+1)e(i);
yr+1ψre(i) = (ψryr + δir,ir+1)e(i);

ψ2
r e(i) =



0 if ir = ir+1,

e(i) if ir+1 , ir, ir ± 1,
(yr+1 − yr)e(i) if ir → ir+1,

(yr − yr+1)e(i) if ir ← ir+1,

(yr+1 − yr)(yr − yr+1)e(i) if ir � ir+1;

ψrψr+1ψre(i) =


(ψr+1ψrψr+1 + 1)e(i) if ir+2 = ir → ir+1,

(ψr+1ψrψr+1 − 1)e(i) if ir+2 = ir ← ir+1,

(ψr+1ψrψr+1 + yr − 2yr+1 + yr+2)e(i) if ir+2 = ir � ir+1,

(ψr+1ψrψr+1)e(i) otherwise;

for all admissible r, s, i, j.
The affine Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra Hn is defined to be the

direct sum
⊕

α Hα, where the sum is taken over all α ∈ Q+ of height n.

Remarks.
1. We use the same notation for the generators ψr and ys for different α; when using these

generators, we shall always make it clear which algebra Hα these generators are taken
from.

2. When e < ∞, we can modify the above presentation of Hα to give a presentation for Hn:
we take generating set {e(i) | i ∈ In

} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}, and replace the relation
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∑
i∈Iα e(i) = 1 with

∑
i∈In e(i) = 1. The generator ψr in this presentation is just the sum of

the corresponding generators ψr of the individual algebras Hα in the direct sum
⊕

α Hα,
and similarly for ys. When e = ∞we cannot do this, since the set In is infinite (in fact, Hn
is non-unital in this case).

The following result can easily be checked from the definition of Hα.

Lemma 2.7 [BK, Corollary 1]. There is a Z-grading on the algebra Hα such that for all admissible r
and i,

deg(e(i)) = 0, deg(yr) = 2, deg(ψre(i)) = −airir+1 .

Shift maps

Recall from §2.1 that shiftk : Sm → Sn denotes the homomorphism defined by si 7→ si+k.
We now define the corresponding maps for the algebras Hα.

Definition. Suppose 1 6 m 6 n and 0 6 k 6 n−m, α, β ∈ Q+ with α of height n and β of height
m. Given i ∈ Iβ, define Ji :=

{
j ∈ Iα

∣∣∣ js+k = is for 1 6 s 6 m
}
, and let e(i)+k =

∑
j∈Ji

e( j). Now
define the homomorphism shiftk : Hβ →Hα by

e(i) 7→ e(i)+k, ψre(i) 7→ ψr+ke(i)+k, yre(i) 7→ yr+ke(i)+k.

It is easy to check from the definition of Hα that shiftk is a degree-preserving (non-unital)
homomorphism of algebras. Moreover, the PBW-type basis theorem for Hα in [KL, Theorem
2.5] and [R2, Theorem 3.7] shows that if β 6 α then shiftk is injective (obviously shiftk is the
zero map if β 
 α).

Cyclotomic algebras and the Brundan–Kleshchev isomorphism theorem

Given α ∈ Q+ and an e-multicharge κ = (κ1, . . . , κl) ∈ Il, we define H κ
α to be the quotient of

Hα by the cyclotomic relations

y
(Λκ |αi1 )
1 e(i) = 0 for i ∈ Iα.

The cyclotomic KLR algebra H κ
n is then defined to be the sum

⊕
α H κ

α . Here we sum over all
α ∈ Q+ of height n, though in fact only finitely many of the summands will be non-zero, so
(even when e = ∞) H κ

n is a unital algebra.
Note that the embedding shift0 passes naturally into the cyclotomic quotients.
A stunning result of Brundan and Kleshchev [BK, Main Theorem] is that if e = ∞ or if F

contains a primitive eth root of unity, then H κ
n is isomorphic to an Ariki–Koike algebra of level

l, defined at an eth root of unity. Similarly, if e = char(F), then H κ
n is isomorphic to a degenerate

Ariki–Koike algebra; in particular, when l = 1, H κ
n is isomorphic to the group algebra FSn. As

a consequence, these Hecke algebras are non-trivially Z-graded. This theorem motivates our
choice of notation Hn for the KLR algebra.

2.7 Specht modules

We now recall the universal graded row and column Specht modules introduced by
Kleshchev, Mathas and Ram; we refer the reader to [KMR, §§5,7] for further details.
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Fix an e-multicharge κ. Suppose λ ∈P l
n, and let α = cont(λ). Say that a node A = (r, c,m) ∈

[λ] is a column Garnir node if (r, c + 1,m) ∈ [λ]. The column Garnir belt BA is defined to be the set
of nodes

BA = { (s, c,m) ∈ [λ] | s > r} ∪ { (s, c + 1,m) ∈ [λ] | s 6 r} .

This belt is used to define a column Garnir element gA ∈ Hα. The full definition of gA is quite
complicated, and can be found in [KMR, Definition 7.10]. Here we just give gA explicitly
in a special case which we will use in the proof of Proposition 3.10, and record some useful
properties of gA which apply in general.

For our special case, we suppose that A is a Garnir node of λ of the form (1, c,m). If a is the
entry in node A of Tλ and b is the entry in node (1, c + 1,m), then gA = ψaψa+1 . . . ψb−1.

Now suppose A = (r, c,m) is an arbitrary Garnir node of λ. Then in Tλ the nodes of BA are
occupied by the integers a, a + 1, . . . , b for some a < b. The following facts can be distilled from
[KMR, §7]:

• gA is a linear combination of products of the form ψi1 . . . ψid where a 6 i1, . . . , id < b;

• gA depends only on e, r, a and the length of the column containing A.

(In fact, as defined in [KMR], the column Garnir element gA also involves an idempotent
e(i) which depends on λ and makes gA homogeneous, but this term can be omitted without
affecting the Garnir relation given below.)

Example. For example, let λ = ((3, 3, 2, 2, 1), (2, 1)) and let A = (3, 1, 1). Then A is a column
Garnir node, and Tλ (with the Garnir belt BA shaded) is as follows.

Tλ =

4 9 13
5 1014
6 11
7 12
8

1 3
2

.

The column Garnir element gA is then a linear combination of products of the generators
ψ6, ψ7, ψ8, ψ9, ψ10; the exact expression for gA depends on the choice of e.

Now define the column Specht module Sλ|κ to be the graded Hα-module generated by the
vector zλ of degree codeg(Tλ) subject to the following relations:

1. e(iλ)zλ = zλ;

2. yrzλ = 0 for all r = 1, . . . ,n;

3. ψrzλ = 0 for all r = 1, . . . ,n− 1 such that r ↓Tλ r + 1;

4. gAzλ = 0 for all column Garnir nodes A ∈ λ.

We may relax notation and just write Sλ, if the e-multicharge κ is understood. We shall
mostly consider Sλ as an Hn-module, by setting Hβ Sλ = 0 for β , α. Thus we have Hn-modules
Sλ|κ for all e-multicharges κ and all λ ∈ P l

n. The main purpose of this paper is to study the
space of Hn-homomorphisms Sλ → Sµ, for λ, µ ∈P l

n. The following result is obvious from the
definitions.
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Lemma 2.8. Suppose λ, µ ∈P l
n, and let α = cont(λ). If HomHn(Sλ, Sµ) , 0, then cont(µ) = α (and

in particular def(λ) = def(µ)), and HomHn(Sλ, Sµ) = HomHα(Sλ, Sµ).

We shall also need to consider row Specht modules; for these, the definitions are largely
obtained by ‘conjugating’ the definitions for column Specht modules. Fix κ, λ and α as above.
Say that a node A = (r, c,m) ∈ [λ] is a row Garnir node if (r + 1, c,m) ∈ [λ], and define the row
Garnir belt

BA = { (r, d,m) ∈ [λ] | d > c} ∪ { (r + 1, d,m) ∈ [λ] | d 6 c} .

This belt is used to define a row Garnir element gA. We refer the reader to [KMR, Definition 5.8]
for the definition of this; here we just note the following facts:

• in Tλ the nodes of BA are occupied by the integers a, a + 1, . . . , b for some a < b;

• gA is a linear combination of products of the form ψi1 . . . ψid where a 6 i1, . . . , id < b;

• gA depends only on e, c, a and the length of the row containing A.

Now we can define the row Specht module Sλ, which is the graded Hα-module generated by
the vector zλ of degree deg(Tλ) subject to the relations

1. e(iλ)zλ = zλ;

2. yrzλ = 0 for all r = 1, . . . ,n;

3. ψrzλ = 0 for all r = 1, . . . ,n− 1 such that r→Tλ r + 1;

4. gAzλ = 0 for all row Garnir nodes A ∈ λ.

We define basis elements for the row and column Specht modules as follows. For each
T ∈ Std(λ) we fix a preferred reduced expression sr1 . . . sra for the permutation wT, and define
ψT := ψr1 . . . ψra and vT := ψTzλ. Similarly, we fix a preferred reduced expression st1 . . . stb for
wT, and set ψT := ψt1 . . . ψtb and vT := ψTzλ.

Note that the elements vT and vTmay depend on the choice of preferred reduced expressions,
since the ψr do not satisfy the braid relations. However, the following results are independent
of the choices made.

Lemma 2.9 [KMR, Propositions 5.14 & 7.14]. Suppose λ ∈ P l
n and T ∈ Std(λ). Then deg(vT) =

deg(T) and deg(vT) = codeg(T).

Lemma 2.10 [KMR, Corollaries 6.24 & 7.20]. Suppose λ ∈ P l
n. Then

{
vT | T ∈ Std(λ)

}
is an

F-basis for Sλ, and {vT | T ∈ Std(λ) } is an F-basis for Sλ.

In spite of the dependence of these bases on the choices of preferred reduced expressions,
we refer to the bases

{
vT | T ∈ Std(λ)

}
and {vT | T ∈ Std(λ) } as the standard bases for Sλ and Sλ

respectively.
For the remainder of this section we summarise some basic results about the action of Hα on

Sλ. Many of these results are cited from [BKW], where they are stated for row Specht modules.
In this paper we concentrate as far as possible on column Specht modules, so we translate all
the results to this setting. Throughout we fix λ ∈P l

n, and letψ1, . . . , ψn−1 refer to the generators
of Hα, where α = cont(λ). Recall that if S, T are standard λ-tableaux, then we write S Q T to
mean that wS < wT.
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Lemma 2.11 [BKW, Theorem 4.10(i)]. Suppose T ∈ Std(λ), and s j1 . . . s jr is any reduced expression
for wT. Then ψ j1 . . . ψ jrzλ − vT is a linear combination of basis elements vU for U C T.

Lemma 2.12 [BKW, Lemma 4.9]. Suppose T ∈ Std(λ) and that j− 1→T j or j− 1 ↓T j. Then ψ j−1vT
is a linear combination of basis elements vU for U C T.

Lemma 2.13 [BKW, Lemma 4.8]. Suppose T ∈ Std(λ) and 1 6 i 6 n. Then yivT is a linear
combination of basis elements vU for U C T.

We’ll use Lemmas 2.11 and 2.13 to prove the following similar result, which is suggested
but not proved in the proof of [BKW, Theorem 4.10].

Lemma 2.14. Suppose T ∈ Std(λ) and j−1 wT j. Thenψ j−1vT is a linear combination of basis elements
vU for U P T.

We begin with the following simple observation.

Lemma 2.15. Suppose T ∈ Std(λ). Then j−1 wT j if and only if wT has a reduced expression beginning
with s j−1.

Proof. Both conditions are equivalent to the condition that w−1
T ( j− 1) > w−1

T ( j). �

Proof of Lemma 2.14. By Lemma 2.15, wT has a reduced expression of the form s j−1sk1 . . . skr .
Using Lemma 2.11 we have

vT = ψ j−1ψk1 . . . ψkrzλ +
∑
U∈Std(λ)
UCT

aUvU

for some aU ∈ F. So
ψ j−1vT = ψ2

j−1ψk1 . . . ψkrzλ +
∑

U∈Std(λ),
UCT

aUψ j−1vU. (∗)

Using the KLR relations (and moving the appropriate idempotent e(i) through), the first term on
the right-hand side becomes gψk1 . . . ψkrzλ, where g is a polynomial in y1, . . . , yn. Now sk1 . . . skr

is a reduced expression for the standard tableau S = s j−1T, so by Lemma 2.11 we have

ψk1 . . . ψkrzλ = vS +
∑

V∈Std(λ),
VCS

bVvV

for some bV ∈ F. So (since S C T) the first term on the right-hand side of (∗) is a linear
combination of terms of the form gvV for V ∈ Std(λ) with V C T. By Lemma 2.13 this reduces to
a linear combination of basis elements vV for V C T.

Now consider each of the remaining terms ψ j−1vU in (∗). If j− 1 wU j, then by induction
on the Bruhat order ψ j−1vU is a linear combination of basis elements vV for V P U C T, so we
can ignore any such U. If j− 1 →U j or j− 1 ↓U j, then we apply Lemma 2.12 to get the same
conclusion. If j− 1 tU j, let R be the tableau obtained by swapping j− 1 and j in U; then a
reduced expression for wR may be obtained by adding s j−1 at the start of a reduced expression
for wU, and we have R P T by Lemma 2.2. So by Lemma 2.11 again,

ψ j−1vU = vR +
∑
WCR

cWvW

for some cW ∈ F, and we are done. �
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Lemma 2.16. Suppose λ ∈ P l
n, and T ∈ Std(λ). Suppose j1, . . . , jr ∈ {1, . . . ,n− 1}, and that when

ψ j1 . . . ψ jrzλ is expressed as a linear combination of standard basis elements, vT appears with non-zero
coefficient. Then the expression s j1 . . . s jr has a reduced expression for wT as a subexpression.

Proof. We proceed by induction on r, with the case r = 0 trivial. Let j = j1. Then by assumption
vT appears with non-zero coefficient in ψ jvS, where S ∈ Std(λ) and vS appears with non-zero
coefficient in ψ j2 . . . ψ jrzλ. By induction the expression s j2 . . . s jr has a subexpression which is
a reduced expression for wS, so if wT 6 wS (i.e. if T P S) then we are done. By Lemma 2.12
and Lemma 2.14, this happens if j →S j + 1, j ↓S j + 1 or j wS j + 1. So we can assume that
j tS j + 1. But in this case wT = s jwS, with l(wT) = l(wS) + 1, so wT has a reduced expression
obtained by adding s j at the start of a reduced expression for wS. So again the result follows by
induction. �

2.8 Specht modules for H κ
n and homomorphisms

Throughout this paper we consider the Specht module Sλ as a module for the affine algebra
Hα (where α = cont(λ)) and by extension for the algebra Hn. In fact, it is not hard to show

that Sλ is annihilated by the element y
(Λκ |αi1 )
1 e(i) for every i, so that Sλ is a module for the

cyclotomic algebra H κ
n introduced in §2.6. We shall almost entirely be studying the space of Hn-

homomorphisms between two Specht modules Sλ and Sµ defined for the same e-multicharge κ,
and clearly in this situation Hn-homomorphisms between these two modules are the same as
H κ

n -homomorphisms. In view of the Brundan–Kleshchev isomorphism theorem mentioned
above, our results can therefore be viewed as statements about homomorphisms between
Specht modules for (degenerate) Ariki–Koike algebras, and so they generalise the results of the
first author and Lyle for homomorphisms between Specht modules for the symmetric group
[FL, Theorem 2.1], and of Lyle and Mathas for Hecke algebras of type A [LM, Theorem 1.1].

In this paper, however, we restrict attention entirely to the affine algebra Hn. This is because
we occasionally (in particular, in Theorem 3.16) need to compare Specht modules defined for
different e-multicharges.

3 λ-dominated tableaux and dominated homomorphisms

In this paper we consider the space of homomorphisms between two given Specht modules.
However, our results concerning row and column removal will only apply to homomorphisms
of a certain kind, which we call dominated homomorphisms. But as we shall see in Theorem 3.6,
in many cases all homomorphisms between Specht modules are dominated.

3.1 λ-dominated tableaux

Suppose λ, µ ∈P l
n and T ∈ Std(µ). Given 0 6 j 6 n, we say that T is λ-column-dominated on

1, . . . , j if each i ∈ {1, . . . , j} appears at least as far to the left in T as it does in Tλ. We say simply
that T is λ-column-dominated if it is λ-column-dominated on 1, . . . ,n. We remind the reader of
our unusual convention for drawing Young diagrams, in which a node (r, c,m) lies to the left
of (r′, c′,m′) if either m > m′ or (m = m′ and c 6 c′).

We write Stdλ(µ) for the set of λ-column-dominated standard µ-tableaux. It is easy to see
that Stdλ(µ) is non-empty if and only if λ Q µ, and that Stdµ(µ) = {Tµ}.
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We say T is weakly λ-column-dominated on 1, . . . , j if each i ∈ {1, . . . , j} appears in a component
at least as far to the left in T as it does in Tλ. We say that T is weakly λ-column-dominated if it
is weakly λ-column-dominated on 1, . . . ,n.

We also introduce row-dominance. Say thatT ∈ Std(µ) isλ-row-dominated if each i ∈ {1, . . . ,n}
appears at least as high in T as it does in Tλ. We write Stdλ(µ) for the set of λ-row-dominated
standard µ-tableaux, which is non-empty if and only if λ P µ.

Since we shall primarily be considering column Specht modules, we shall often simply say
‘λ-dominated’ meaning ‘λ-column-dominated’.

We give a helpful alternative characterisation of the λ-dominated and λ-row-dominated
properties.

Lemma 3.1. Suppose λ, µ ∈P l
n, and S ∈ Std(µ).

1. S is λ-column-dominated on 1, . . . , j if and only if Shape((Tλ)↓m) Q Shape(S↓m) for all m =
1, . . . , j.

2. S is λ-row-dominated on 1, . . . , j if and only if Shape((Tλ)↓m) P Shape(S↓m) for all m = 1, . . . , j.

Proof. We prove only (2); the proof of (1) is analogous. Suppose first that S is not λ-row-
dominated on 1, . . . , j. Choose an entry m 6 j which appears strictly lower in S than in Tλ, and
let τ = Shape((Tλ)↓m) and σ = Shape(S↓m). Suppose that m appears in position (r, c, k) in Tλ. The
construction of Tλ means that the entries 1, . . . ,m− 1 all appear at least as high as m in Tλ, and
so

|τ(1)
|+ · · ·+ |τ(k−1)

|+ τ(k)
1 + · · ·+ τ(k)

r = m.

On the other hand, m appears below row r of component k in S, so

|σ(1)
|+ · · ·+ |σ(k−1)

|+ σ(k)
1 + · · ·+ σ(k)

r < m.

Hence τ R σ.
Conversely, suppose Shape(Tλ

↓m) R Shape(S↓m) for some m 6 j; choose such an m, and let
τ = Shape(Tλ

↓m) and σ = Shape(S↓m). Since τ R σ, there are r, k such that

|τ(1)
|+ · · ·+ |τ(k−1)

|+ τ(k)
1 + · · ·+ τ(k)

r > |σ(1)
|+ · · ·+ |σ(k−1)

|+ σ(k)
1 + · · ·+ σ(k)

r .

If we let d = |τ(1)
|+ · · ·+ |τ(k−1)

|+τ(k)
1 + · · ·+τ(k)

r , then d 6 m and the integers 1, . . . , d all appear in

row r of component k or higher in Tλ. Since |σ(1)
|+ · · ·+ |σ(k−1)

|+ σ(k)
1 + · · ·+ σ(k)

r < d, at least one
of the integers 1, . . . , d appears in S below row r of component k. So there is some i 6 j which
appears lower in S than in Tλ, so S is not λ-row-dominated on 1, . . . , j. �

Corollary 3.2. Suppose λ, µ ∈P l
n, and S, T ∈ Std(µ).

1. If S is λ-dominated on 1, . . . , j and S Q T, then T is λ-dominated on 1, . . . , j. In particular, if
S ∈ Stdλ(µ) and S Q T, then T ∈ Stdλ(µ).

2. If S is λ-row-dominated on 1, . . . , j and S P T, then T is λ-row-dominated on 1, . . . , j. In
particular, if S ∈ Stdλ(µ) and S P T, then T ∈ Stdλ(µ).

Lemma 3.3. Suppose λ, µ ∈P l
n, and T, U ∈ Std(µ) with U P T. If T is weakly λ-dominated on 1, . . . , j,

then so is U.

Proof. The proof follows almost identically to that of Corollary 3.2(1). �
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3.2 Dominated homomorphisms

Given λ, µ ∈ P l
n, we want to consider the space of Hn-homomorphisms ϕ : Sλ → Sµ with

the property that ϕ(zλ) lies in the F-span of
{
vS | S ∈ Stdλ(µ)

}
. But we need to show that this

notion is well-defined.

Proposition 3.4. Suppose λ, µ ∈ P l
n. Then the subspace

〈
vS | S ∈ Stdλ(µ)

〉
F of Sµ is independent of

the choice of standard basis elements vS.

Proof. Let V denote the space
〈

vS | S ∈ Stdλ(µ)
〉
F, and take T ∈ Stdλ(µ). Let s j1 . . . s jr be a

new reduced expression for wT, and let v′T = ψ j1 . . . ψ jrzµ (where ψ1, . . . , ψn−1 are taken to lie
in Hcont(λ)). Let V′ be the space obtained from V by replacing vT with v′T in the spanning set{
vS | S ∈ Stdλ(µ)

}
; it suffices to show that V = V′. By Lemma 2.11,

v′T = vT +
∑
UCT

aUvU for some aU ∈ F.

By Corollary 3.2(1), each vU with U P T lies in V, and so v′T ∈ V. Hence V′ ⊆ V; but since the
elements vS are linearly independent, dimF V = dimF V′ = | Stdλ(µ)|. So V′ = V. �

In view of Proposition 3.4 and an analogue for row-dominated tableaux, the following
definition makes sense.

Definition. Suppose λ, µ ∈ P l
n. If ϕ ∈ HomHn(Sλ, Sµ), we say that ϕ is (column-)dominated if

ϕ(zλ) ∈
〈

vS | S ∈ Stdλ(µ)
〉
F. We write DHomHn(Sλ, Sµ) for the space of dominated homomor-

phisms from Sλ to Sµ.
Similarly, if χ ∈ HomHn(Sλ, Sµ), we say that χ is row-dominated if χ(zλ) ∈ 〈vS | S ∈ Stdλ(µ)〉F,

and we write DHomHn(Sλ, Sµ) for the space of row-dominated homomorphisms from Sλ to Sµ.

Proposition 3.5. DHomHn(Sλ, Sµ) and DHomHn(Sλ, Sµ) are graded subspaces of HomHn(Sλ, Sµ)
and HomHn(Sλ, Sµ) respectively. That is, DHomHn(Sλ, Sµ) and DHomHn(Sλ, Sµ) are spanned by
homogeneous homomorphisms.

Proof. The proof proceeds almost identically to the proof of the fact that HomHn(Sλ, Sµ) is
graded, using the fact that

〈
vS | S ∈ Stdλ(µ)

〉
F is a graded subspace of Sµ (with a corresponding

statement for Sµ). �

The rest of this section is devoted to showing that in certain cases every Specht homomor-
phism is dominated. Specifically, we shall prove the following.

Theorem 3.6. Suppose e , 2 and thatκ1, . . . , κl are distinct. Then HomHn(Sλ, Sµ) = DHomHn(Sλ, Sµ).

Remark. The hypotheses that e , 2 and that κ1, . . . , κl are distinct are equivalent to the condition
that H κ

n has exactly 2l isomorphism classes of one-dimensional modules. The following small
examples show that these hypotheses are essential in Theorem 3.6; in fact, they show that Specht
modules labelled by different multipartitions can be isomorphic without these assumptions.

1. Take e = 2, κ = (0), λ = ((12)) and µ = ((2)). Then there is a non-zero homomorphism
Sλ → Sµ defined by zλ 7→ zµ, though the tableau Tµ = 1 2 is not λ-dominated. So
HomHn(Sλ, Sµ) , {0} = DHomHn(Sλ, Sµ).
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2. For any e, take κ = (0, 0), λ = (∅, (1)) and µ = ((1),∅). Then zλ 7→ zµ again defines a
non-zero homomorphism Sλ → Sµ, though Tµ is not λ-dominated.

The proof of Theorem 3.6 requires several preliminary results. We fix λ, µ ∈ P l
n and an e-

multicharge κ of level l throughout. If cont(λ) , cont(µ), then by Lemma 2.8 HomHn(Sλ, Sµ) = 0,
so that Theorem 3.6 is trivially true. So we assume that cont(λ) = cont(µ). In the results below,
ψ1, . . . , ψn−1 are elements of Hcont(λ).

Lemma 3.7. Suppose j ∈ {2, . . . ,n} with j− 1 ↓Tλ j, and T ∈ Std(µ) is λ-dominated on 1, . . . , j. Then
ψ j−1vT is a linear combination of basis elements vU for standard tableaux U which are λ-dominated on
1, . . . , j.

Proof. If j− 1 →T j or j− 1 ↓T j or j− 1 wT j, then the result follows from Corollary 3.2(1)
together with either Lemma 2.12 or Lemma 2.14. The remaining possibility is that j− 1 tT j.
But now if we let S be the standard tableau s j−1T, then by Lemma 2.11 ψ j−1vT = vS +

∑
UCS bUvU

for some bU ∈ F. Clearly since T is λ-dominated on 1, . . . , j and j− 1, j lie in the same column of
Tλ, S is also λ-dominated on 1, . . . , j. Corollary 3.2(1) completes the proof. �

Proposition 3.8. Suppose e , 2, and that ϕ : Sλ → Sµ is a homomorphism, and write

ϕ(zλ) =
∑
T∈Std(µ)

aTvT for some aT ∈ F.

Suppose j ∈ {2, . . . ,n} with j− 1 ↓Tλ j, and that each T for which aT , 0 is λ-dominated on 1, . . . , j− 1.
Then each T for which aT , 0 is λ-dominated on 1, . . . , j.

Proof. The fact that j− 1 ↓Tλ j means that ψ j−1zλ = 0, so we must have
∑
T∈Std(µ) aTψ j−1vT = 0.

Assuming the proposition is false, there is at least one T which is not λ-dominated on 1, . . . , j
such that aT , 0; choose such a Twhich is Q-maximal. Since T is λ-dominated on 1, . . . , j−1, the
entry j lies in a column strictly to the right of j−1 in T. We claim that we cannot have j−1→T j.
If this is the case, then the residue sequence i(T) satisfies i(T) j = i(T) j−1 + 1. However, since f
is a homomorphism and vT appears with non-zero coefficient in ϕ(zλ), we must have i(T) = iλ,
and the fact that j− 1 ↓Tλ j means that (iλ) j = (iλ) j−1 − 1. Since e , 2, this is a contradiction.

Hence j− 1 tT j, so the tableau S := s j−1T is standard, and if we write ψ j−1vT as a linear
combination of standard basis elements, then vS occurs with coefficient 1. We claim that vS
does not occur in any other ψ j−1vT′ when aT′ , 0: if T′ is not λ-dominated on 1, . . . , j, then
(defining S′ analogously to S) we have ψ j−1vT′ = vS′ +

∑
UCS′ cUvU for some cU ∈ F; but the fact

that T R T′ (by our choice of T being Q-maximal) means that S R S′, so vS cannot occur. On the
other hand, if T′ is λ-dominated on 1, . . . , j, then the result follows from Lemma 3.7, since S is
not λ-dominated on 1, . . . , j.

So vS occurs with non-zero coefficient in
∑
T∈Std(µ) aTψ j−1vT, a contradiction. �

We now turn our attention to the case where j is in the top row of its component in Tλ.

Lemma 3.9. Suppose 1 6 a 6 j 6 n, and that j− 1 ↗Tλ j and a ↓Tλ a + i for all i = 1, . . . , j− a− 1.
If T ∈ Std(µ) is weakly λ-dominated on 1, . . . , j then ψaψa+1 . . . ψ j−1vT is a linear combination of basis
elements vU for standard tableaux U which are weakly λ-dominated on 1, . . . , j.
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Proof. We argue by induction on l(sasa+1 . . . s j−1) = j− a. If j− a = 0, the result is trivial. So
suppose a < j, and assume by induction that ψa+1 . . . ψ j−1vT is a linear combination of basis
elements vU which are weakly λ-dominated on 1, . . . , j. We want to show that for each vU,
ψavU is a linear combination of basis elements vU′ for standard tableaux U′ which are weakly
λ-dominated on 1, . . . , j.

If a →U a + 1 or a ↓U a + 1 or a wU a + 1, then the result follows from Lemma 3.3 together
with either Lemma 2.12 or Lemma 2.14. The remaining possibility is that a tU a + 1. Let S be
the standard tableau saU. Then by Lemma 2.11, ψavU = vS +

∑
U′CS aU′vU′ for some aU′ ∈ F.

Recalling that U is weakly λ-dominated on 1, . . . , j and that a, a + 1 are in the same column
(and therefore the same component) of Tλ, S is weakly λ-dominated on 1, . . . , j and Lemma 3.3
completes the proof. �

Proposition 3.10. Suppose ϕ : Sλ → Sµ is a homomorphism with

ϕ(zλ) =
∑
T∈Std(µ)

aTvT for some aT ∈ F.

Suppose j ∈ {2, . . . ,n} with either j− 1 ↗Tλ j or j− 1 →Tλ j, and that each T for which aT , 0 is
λ-dominated on 1, . . . , j− 1. Then each T for which aT , 0 is λ-dominated on 1, . . . , j.

Proof. The proof follows the same lines as Proposition 3.8. The condition that j − 1 ↗Tλ
j or j − 1 →Tλ j means that Sλ satisfies a Garnir relation ψaψa+1 . . . ψ j−1zλ = 0, where a is
the entry immediately to the left of j in Tλ; since f is a homomorphism, we therefore have∑
T∈Std(µ) aTψa . . . ψ j−1vT = 0. Assuming the result is false, there is at least one T which is not

λ-dominated on 1, . . . , j such that aT , 0; choose such a T which is Q-maximal. Since T is
λ-dominated on 1, . . . , j−1 but not 1, . . . , j, we have j−1 tT j. In fact j−1 and j are in different
components of T: if not, what is the entry immediately to the left of j in T? It must be some
k < j, since T is standard, but by assumption k is strictly left of j in Tλ and hasn’t moved to the
right in T.

Let S denote the standard tableau sasa+1 . . . s j−1T. Then l(wS) = l(wT) + j− a, so that when
we write ψaψa+1 . . . ψ j−1vT as a linear combination of standard basis elements, vS occurs with
coefficient 1. We claim that vS does not occur with non-zero coefficient in ψaψa+1 . . . ψ j−1vT′ for
any other T′ with aT′ , 0: if T′ is not λ-dominated on 1, . . . , j, then (defining S′ analogously to
S) we have ψaψa+1 . . . ψ j−1vT′ = vS′ +

∑
UCS′ bUvU for some bU ∈ F; but the fact that T R T′ (by our

choice of T) means that S R S′, so vS cannot occur. On the other hand, if T′ is λ-dominated on
1, . . . , j, then the result follows from Lemma 3.9, since S is not weakly λ-dominated on 1, . . . , j
as j− 1 and j are in different components of T.

So vS occurs with non-zero coefficient in
∑
T∈Std(µ) aTψaψa+1 . . . ψ j−1vT, a contradiction. �

The last thing we need for the proof of Theorem 3.6 is the following.

Lemma 3.11. Suppose κ1, . . . , κl are distinct, and that T ∈ Std(µ) satisfies i(T) = iλ. If T is λ-dominated
on 1, . . . , j− 1 and j appears in the (1, 1)-position of its component in Tλ, then T is λ-dominated on
1, . . . , j.

Proof. Suppose not; then j appears in T strictly to the right of where it appears in Tλ. This
means that j must appear in the (1, 1)-node of some component of T, since otherwise there
would be a smaller entry immediately above or to the left of j, contradicting the assumption
that T is λ-dominated on 1, . . . , j− 1.
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So there are 1 6 r < s 6 l such that Tλ(1, 1, s) = j = T(1, 1, r). Hence κs = (iλ) j = i(T) j = κr,
contrary to assumption. �

Proof of Theorem 3.6. Suppose ϕ : Sλ → Sµ is a homomorphism, and write

ϕ(zλ) =
∑
T∈Std(µ)

aTvT for some aT ∈ F.

We must show that every T for which aT , 0 is λ-dominated. In fact we show by induction on
j that every such T is λ-dominated on 1, . . . , j, with the case j = 0 being vacuous. So suppose
j > 1, and assume by induction that T is λ-dominated on 1, . . . , j− 1. Note that since ϕ is a
homomorphism, we have i(T) = iλ.

If j = 1 or j lies in an earlier component of Tλ than j− 1, then j lies in the (1, 1)-node of its
component in Tλ. So by Lemma 3.11 T is λ-dominated on 1, . . . , j. The remaining possibilities
are that j > 1 and that one of

j− 1 ↓Tλ j, j− 1→Tλ j, j− 1↗Tλ j

occurs; these cases are dealt with in Propositions 3.8 and 3.10. �

We immediately see the following interesting result.

Corollary 3.12. Suppose e , 2 and thatκ1, . . . , κl are distinct. Ifλ, µ ∈P l
n with HomHn(Sλ, Sµ) , {0},

then λ Q µ. Furthermore (since Stdλ(λ) = {Tλ}) HomHn(Sλ, Sλ) is one-dimensional. In particular, Sλ
is indecomposable.

Remarks.
1. The authors thank an anonymous referee for pointing out that in the case where e = ∞

or F contains a primitive eth root of unity, Corollary 3.12 can be deduced from results
of Rouquier. In this case Hn is isomorphic to an Ariki–Koike algebra defined at an eth
root of unity, and [R1, Theorem 6.6] shows that under precisely the same hypotheses as
Corollary 3.12 there is a cyclotomic q-Schur algebra which is a 1-faithful quasi-hereditary
cover of the Ariki–Koike algebra. This means that the Schur functor for these algebras
maps the space of homomorphisms between Weyl modules bijectively to the space of
homomorphisms between the corresponding Specht modules. Since the cyclotomic q-
Schur algebra is quasi-hereditary, the conclusions of Corollary 3.12 hold for Weyl modules,
and hence they hold for Specht modules too.

2. If e = 2 then Sλ may be decomposable. For example, when l = 1 and char(F) , 3, the
Specht module S((5,12)) is decomposable; this was shown in [J, Example 23.10(iii)] in the
case char(F) = 2, and in [S, Theorem 6.8] in odd characteristic. Similarly, when κi = κ j
for some i , j, we can have decomposable Specht modules: take κ = (0, 0), e = 3 and
char(F) , 2; then S((3),(3)) is decomposable.

In exactly the same way, we can prove the corresponding result for row Specht modules.

Theorem 3.13. Suppose e , 2 and thatκ1, . . . , κl are distinct, andλ, µ ∈P l
n. Then DHomHn(Sλ, Sµ) =

HomHn(Sλ, Sµ). Hence HomHn(Sλ, Sµ) , {0} only if λ P µ, HomHn(Sλ, Sλ) is one-dimensional, and
Sλ is indecomposable.



Generalised column removal for graded homomorphisms 19

3.3 Duality for dominated homomorphisms

In this section we consider the relationship between row and column Specht modules,
as well as the relationship between Specht modules labelled by conjugate multipartitions.
These relationships are encapsulated in [KMR, Theorems 7.25 and 8.5], from which it follows
that a (generalised) column-removal theorem for homomorphisms between Specht modules is
equivalent to the corresponding row-removal theorem. The main result of this section, which
requires considerable additional work, is that the same is true for dominated homomorphisms.

Following [KMR, §3.2], let τ : Hα → Hα denote the anti-automorphism which fixes all the
generators e(i), yr, ψs, and define τ : Hn → Hn by combining these maps for all α. If M =⊕

d∈Z Md is a graded Hn-module, let M~ denote the graded module with M~d = HomF(M−d,F)
for each d, with Hn-action given by (h f )m = f (τ(h)m) for m ∈ M, f ∈ M~ and h ∈ Hn. Also,
for k ∈ Z, let M〈k〉 denote the same module with the grading shifted by k, i.e. M〈k〉d = Md−k.
Finally, recall the defect def(λ) of a multipartition from Section 2.5.

Theorem 3.14 [KMR, Theorem 7.25]. Suppose λ ∈P l
n. Then

Sλ � (Sλ)~〈def(λ)〉 and Sλ � (Sλ)~〈def(λ)〉.

Now suppose λ, µ ∈P l
n. Applying Theorem 3.14 to both λ and µ gives an isomorphism of

graded vector spaces

HomHn(Sµ, Sλ) � HomHn(S~µ 〈def(µ)〉, S~λ 〈def(λ)〉);

since by Lemma 2.8 def(λ) = def(µ) for any λ and µ with HomHn(Sµ, Sλ) , {0}, this yields an
isomorphism of graded vector spaces

HomHn(Sµ, Sλ) � HomHn(S~µ , S
~
λ ).

τ is a homogeneous map of degree zero, so HomHn(S~µ , S
~
λ ) is canonically isomorphic as a

graded vector space to HomHn(Sλ, Sµ), and hence we have an isomorphism of graded vector
spaces

Θ : HomHn(Sλ, Sµ) ∼
−→ HomHn(Sµ, Sλ).

Our aim is to prove the following.

Proposition 3.15. Suppose λ, µ ∈P l
n, and let Θ : HomHn(Sλ, Sµ)→ HomHn(Sµ, Sλ) be the bijection

above. Then Θ(DHomHn(Sλ, Sµ)) = DHomHn(Sµ, Sλ).

We shall prove Proposition 3.15 below. First we examine the consequences for row and
column removal. In order to be able to compare row and column removal, we combine
Proposition 3.15 with a result which relates to an analogue of the sign representation of the
symmetric group. Following [KMR, §3.3], let sgn : Hα →Hα denote the automorphism which
maps e(i) 7→ e(−i), yr 7→ −yr andψs 7→ −ψs for all i, r, s, and define sgn : Hn →Hn by combining
these maps for all α. Given a graded Hn-module M, let Msgn denote the same graded vector
space with the action of Hn twisted by sgn.

Recall that if λ is a multipartition, then λ′ denotes the conjugate multipartition to λ, and
that if S ∈ Std(λ), then S′ ∈ Std(λ′) denotes the conjugate tableau to S. Also define the conjugate
e-multicharge κ′ := (−κl, . . . ,−κ1). Now the following is immediate from the construction of
row and column Specht modules.
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Theorem 3.16 [KMR, Theorem 8.5]. Suppose λ ∈ P l
n. Then there is an isomorphism (Sλ|κ)sgn �

Sλ′|κ′ of Hn-modules, given by vS 7→ vS′ .

Remark. Theorem 3.16 is one place where it is essential that we consider Specht modules as
modules for Hn, rather than its cyclotomic quotients, since the two modules involved are
defined relative to different e-multicharges.

Now suppose λ, µ ∈ P l
n. Since sgn is a homogeneous automorphism of Hn, we have an

equality of graded vector spaces

HomHn((Sµ|κ)sgn, (Sλ|κ)sgn) = HomHn(Sµ|κ, Sλ|κ), (∗)

Combining this with Theorem 3.16, we have an isomorphism of graded vector spaces

HomHn(Sµ′|κ′ , Sλ′|κ′) � HomHn(Sµ|κ, Sλ|κ). (†)

Applying Theorem 3.14 yields an isomorphism of graded vector spaces

HomHn(Sµ′|κ′ , Sλ′|κ′) � HomHn(Sλ|κ, Sµ|κ). (‡)

We want to show that the same holds for dominated homomorphisms; this is immediate when
e > 2 and κ1, . . . , κl are distinct, by Theorem 3.6. In general, we observe that (∗) remains true
with Hom replaced by DHom, and the explicit form of the isomorphism in Theorem 3.16 shows
that (†) does too, since S ∈ Stdµ′(λ′) if and only if S′ ∈ Stdµ(λ). Finally, Proposition 3.15 shows
that (‡) remains true for DHom too. So we have the following theorem.

Theorem 3.17. Suppose λ, µ ∈P l
n. Then there is an isomorphism of graded vector spaces

DHomHn(Sλ|κ, Sµ|κ) � DHomHn(Sµ′|κ′ , Sλ′|κ′).

It remains to prove Proposition 3.15; for the remainder of this section, all Specht modules
are defined for the e-multicharge κ.

We begin by recalling how the isomorphism Sλ � S~λ 〈def(λ)〉 in Theorem 3.14 is constructed.
Given the standard basis {vT | T ∈ Std(λ)} for Sλ, let { f T | T ∈ Std(λ)} be the dual basis for S~λ ;
although the elements f T in general depend on the choice of the elements vT (i.e. on the choice
of preferred reduced expressions), it is an easy exercise to show that the element f T

λ
does not.

The isomorphism Sλ → S~λ 〈def(λ)〉 is defined by zλ 7→ f T
λ
.

Lemma 3.18. Suppose λ ∈P l
n, and let θλ : Sλ → S~λ 〈def(λ)〉 be the isomorphism constructed above.

1. For any S ∈ Std(λ) we have θλ(vS) ∈ 〈 f T | T ∈ Std(λ), T Q S〉F.

2. θλ maps the space 〈vS | S ∈ Stdµ(λ)〉F bijectively to the space 〈 f S | S ∈ Stdµ(λ)〉F.

Proof.
1. For eachT ∈ Std(λ), writeτ(ψS)vT =

∑
U∈Std(λ) aTUvU. Then one can check that the definitions

give θλ(vS) =
∑
T∈Std(λ) aTTλ f T. So it suffices to show that aTTλ = 0 when T S S. Clearly to

prove this it is sufficient to show this in the case where F = C, and so (as in the proof of
[KMR, Theorem 7.25]) we can invoke the proof of [HM, Proposition 6.19]; here θλ is given
in the form x 7→ {x,−}, for a bilinear form { , } : Sλ × Sλ〈def(λ)〉 → C satisfying {vS, vT} = 0
unless T Q S, which is exactly what we want.
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2. From (1) and Corollary 3.2(2) we have θλ(vS) ∈ 〈 f T | T ∈ Stdµ(λ)〉F whenever S ∈ Stdµ(λ),
so θλ

(
〈vS | S ∈ Stdµ(λ)〉

)
⊆ 〈 f S | S ∈ Stdµ(λ)〉. But θλ is an isomorphism of vector spaces

and
dimF〈vS | S ∈ Stdµ(λ)〉F =

∣∣∣Stdµ(λ)
∣∣∣ = dimF〈 f S | S ∈ Stdµ(λ)〉F,

so in fact θλ
(
〈vS | S ∈ Stdµ(λ)〉F

)
= 〈 f S | S ∈ Stdµ(λ)〉F. �

Lemma 3.19. Suppose λ, µ ∈ P l
n. Suppose S ∈ Std(λ) and U is a λ-tableau such that wS < wU and

that for every 1 6 i 6 n the number i appears in U weakly to the right of where it appears in Tµ. Then
S ∈ Stdµ(λ).

Proof. Using Lemma 3.1(2) we just need to show that Shape(S↓m) Q Shape(Tµ
↓m) for all m.

Let Uc be the column-strict tableau which is column-equivalent to U. Then by Proposition 2.1
wU < wUc . By Proposition 2.5, we have that Shape((Uc)↓m)′ Q Shape(S↓m)′ for all m. Furthermore,
the condition that every entry in Uc lies weakly to the right of where it lies in Tµ is equivalent
to every entry in (Uc)′ lying weakly below where it lies in (Tµ)′, so we necessarily have that
Shape((Uc)↓m)′ P Shape(Tµ

↓m)′ for all m. Reapplying Proposition 2.5, we have wUc < wTµ . �

Lemma 3.20. Suppose λ, µ ∈P l
n, S ∈ Std(λ)\Stdµ(λ) and T ∈ Stdλ(µ). Then whenψSvT is expressed

in terms of the standard basis
{
vU | U ∈ Std(µ)

}
, the coefficient of vTµ is zero.

Proof. Suppose to the contrary that vTµ does appear with non-zero coefficient inψSvT = ψSψTzµ.
Let si1 . . . sia and s j1 . . . s jb be the preferred reduced expressions for wS and wT respectively.
Then by Lemma 2.16 there is a reduced expression for wTµ occurring as a subexpression of
si1 . . . sias j1 . . . s jb . If we separate this reduced expression into two parts, which occur as subex-
pressions of si1 . . . sia and s j1 . . . s jb respectively, and let w, x denote the corresponding elements
of Sn, then we have

w 4 wS, x 4 wT, wx = wTµ , l(w) + l(x) = l(wTµ).

Putting V = xTµ, we have V ∈ Std(µ) by Lemma 2.3, and in fact V ∈ Stdλ(µ) (using Corol-
lary 3.2(1), because wV 4 wT and T ∈ Stdλ(µ)). If we let U = wTλ then, as functions [µ]→ [λ],

U−1Tµ = T−1
λ xTµ = T−1

λ V.

The fact that V is λ-dominated can be expressed as saying that the map T−1
λ V : [µ] → [λ] maps

any node of µ to a node weakly to the right. So each entry of U appears weakly to the right
of where it appears in Tµ, i.e. U satisfies the hypotheses of Lemma 3.19. Hence by Lemma 3.19
S ∈ Stdµ(λ), contrary to hypothesis. �

Proof of Proposition 3.15. We shall prove that Θ(DHomHn(Sλ, Sµ)) ⊆ DHomHn(Sµ, Sλ); the
same argument with λ and µ interchanged and with row and column Specht modules inter-
changed proves the opposite containment.

Suppose ϕ ∈ DHomHn(Sλ, Sµ), and write ϕ(zλ) =
∑
T∈Stdλ(µ) aTvT for some aT ∈ F. Let

ϕ~ : S~µ → S~λ denote the dual map. We want to show that the homomorphism Θ(ϕ) which
corresponds to ϕ~ via Theorem 3.14 is row-dominated, i.e. Θ(ϕ)(zµ) ∈ 〈vS | S ∈ Stdµ(λ)〉F. By
the construction of the isomorphism Sµ → S~µ and by Lemma 3.18, this is the same as saying
that ϕ~( f T

µ
) ∈ 〈 f S | S ∈ Stdµ(λ)〉F; in other words, ϕ~( f T

µ
)(vS) = 0 when S ∈ Std(λ) \ Stdµ(λ).

ϕ~ is given by f 7→ f ◦ϕ. In particular, ϕ~( f T
µ
) = f T

µ
◦ϕ, which maps vS to the coefficient

of vTµ in ϕ(vS) =
∑
T∈Stdλ(µ) aTψSvT. By Lemma 3.20 this coefficient is zero when S < Stdµ(λ), and

the result follows. �
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4 Column removal for homomorphisms

Now we come to the main results of the paper, which give row- and column-removal
theorems for dominated homomorphisms between Specht modules.

4.1 Generalised column removal for multipartitions

Definition. Suppose λ = (λ(1), . . . , λ(l)) ∈ P l
n. For any 1 6 m 6 l and any c > 0, define λ(m),c

L

to be the partition consisting of all nodes in the first c columns of λ(m), and λ(m),c
R the partition

consisting of all nodes after the first c columns of λ(m). That is,

(λ(m),c
L )i = min

{
λ(m)

i , c
}
, (λ(m),c

R )i = max
{
λ(m)

i − c, 0
}

for all i > 1.

Now define

λR = λR(c,m) = (λ(1), . . . , λ(m−1), λ(m),c
R ),

λL = λL(c,m) = (λ(m),c
L , λ(m+1), . . . , λ(l)).

Here is an enlightening pictorial representation of this construction, with l = 3, m = 2 and c = 3.

λ(1)

λ(2)

λ(2),3
L λ(2),3

R

λ(3)

third column of component 2

λL λR

Now we consider tableaux. Suppose λL, λR are as above, and let nL = |λL| and nR = |λR|.
Given TL ∈ Std(λL) and TR ∈ Std(λR), define TL#TR to be the λ-tableau obtained by filling in
the entries 1, . . . ,nL as they appear in TL, and then filling in the entries nL + 1, . . . ,n as 1, . . . ,nR,
respectively, appear in TR. Observe that if T ∈ Std(λ) and the integers 1, . . . ,nL all appear in T in
column c of component m or further to the left, then T has the form TL#TR for some TL ∈ Std(λL)
and TR ∈ Std(λR). We write StdLR(λ) for the set of T ∈ Std(λ) with this property.

Example. Take l = 3 and λ =
(
(3), (22), (2, 1)

)
. Taking m = 2 and c = 1, we get

λL =
(
(12), (2, 1)

)
, λR =

(
(3), (12)

)
.
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If we choose
TL = 1

3

2 4
5

, TR = 2 3 5

1
4

,

then we obtain
TL#TR = 7 8 10

1 6
3 9

2 4
5

.

4.2 Simple row and column removal

Theorem 4.1 (Graded Column Removal). Suppose λ, µ ∈ P l
n and 1 6 m 6 l. Suppose that

λ(m+1) = · · · = λ(l) = µ(m+1) = · · · = µ(l) = ∅, and k := (λ(m)′)1 = (µ(m)′)1. Let λR = λR(1,m),
µR = µR(1,m) and κR = (κ1, . . . , κm−1, κm + 1). Then

DHomHn(Sλ|κ, Sµ|κ) � DHomHn−k(SλR|κR , SµR|κR)

as graded vector spaces over F.

Remark. Recalling Theorem 3.6, this result in fact implies that HomHn(Sλ|κ, Sµ|κ) � HomHn−k(SλR|κR , SµR|κR)
when e , 2 and κ1, . . . , κl are distinct.

Proof. We construct the isomorphism explicitly in the KLR setting. First note that we may
assume λ Q µ, since otherwise StdλR(µR) = Stdλ(µ) = ∅ and the result is immediate. We
also observe that cont(λ) = cont(µ) if and only if cont(λR) = cont(µR); if these conditions do
not hold then the result is trivial since both homomorphism spaces are zero, so we assume
cont(λ) = cont(µ), and set α := cont(λ), β := cont(λR).

For this proof we make an assumption about the choice of preferred reduced expressions
defining the standard bases for SµR|κR and Sµ|κ. Given T ∈ StdλR(µR), we define T+ := TµL#T,
where

µL = µL(1,m) =
(
(1k),∅, . . . ,∅

)
∈P l−m+1

k .

In other words, T+ is obtained from T by increasing each entry by k, adding the column 1

k

at

the left of component m, and then adding l−m empty components at the end. Now recall the
maps (both denoted shiftk) fromSn−k toSn and from Hβ to Hα. Observe that for T ∈ StdλR(µR)
we have wT+ = shiftk(wT). By choosing compatible reduced expressions for wT+ and wT, we
may assume that ψT+ = shiftk(ψT) as well.

Now let c = (λ(m)
R )′1. Then the entries 1, . . . , c all appear in the first column of component m

in TλR , and hence if T ∈ StdλR(µR) these entries all appear in the first column of component m of
T. In particular, wT fixes 1, . . . , c, so ψT only involves terms ψ j for j > c; hence ψT+ only involves
terms ψ j for j > k + c.
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Now suppose ϕR ∈ DHomHn−k(SλR|κR , SµR|κR). Then

ϕR(zλR) =
∑

T∈StdλR (µR)

aTvT for some aT ∈ F.

We define ϕ : Sλ|κ → Sµ|κ by

ϕ(zλ) =
∑

T∈StdλR (µR)

aTvT+ .

We must verify that this does indeed define a homomorphism, i.e. that hϕ(zλ) = 0 whenever
h ∈ Ann(zλ). (Here and henceforth we write Ann(zλ) for the annihilator of zλ.) Firstly, note that
if T ∈ StdλR(µR) with aT , 0, then T has residue sequence iλR ; this implies that T+ has residue
sequence iλ, so that e(iλ)ϕ(zλ) = ϕ(zλ), as required. For the other relations, observe from the
defining relations for the column Specht module that shiftk(Ann(zλR)) ⊆ Ann(zλ) (and similarly
for µR and µ). Now for k < j 6 n we have y j−k ∈ Ann(zλR), so (since ϕR is a homomorphism)
y j−k

∑
T aTψT ∈ Ann(zµR). Hence

Ann(zµ) 3 shiftk

y j−k

∑
T

aTψT

 = y j

∑
T

aTψT+ ,

so that y jϕ(zλ) = 0. A similar statement applies to ψ j whenever k < j < n with j ↓Tλ j + 1, and
to any Garnir element gA where A does not lie in the first column of component m.

It remains to check the generators of Ann(zλ) which do not lie in shiftk(Ann(zλR)), i.e. the
elements y1, . . . , yk, ψ1, . . . , ψk−1 and gA for A of the form ( j, 1,m) with 1 6 j 6 c. Let h denote
any of these elements, and observe that since each ψT+ is a product of terms ψi with i > k + c, h
commutes with ψT+ (note that if h = g( j,1,m), then h only involves terms ψi for i < k + c). Hence

hϕ(zλ) = h
∑
T

aTψT+zµ =
∑
T

aTψT+hzµ = 0,

since h ∈ Ann(zµ).
So Ann(zλ)ϕ(zλ) = 0, and ϕ is a well-defined homomorphism. So we have a map Φ :

DHomHn−k(SλR|κR , SµR|κR)→ DHomHn(Sλ|κ, Sµ|κ) given by ϕR 7→ ϕ, and Φ is obviously linear. To
show that Φ is bijective, we construct its inverse. Any S ∈ Stdλ(µ) must have entries 1, . . . , k in
order down the first column of its mth component; that is, S = T+ for some T ∈ StdλR(µR). So
given θ ∈ DHomHn(Sλ|κ, Sµ|κ), we can write

θ(zλ) =
∑

T∈StdλR (µR)

aTvT+ for some aT ∈ F.

Applying (a simpler version of) the above argument in reverse, we see that we have a homo-
morphism θR : SλR → SµR given by

θR(zλR) =
∑

T∈StdλR (µR)

aTvT.

So we get a linear map DHomHn(Sλ|κ, Sµ|κ) → DHomHn−k(SλR|κR , SµR|κR) which is a two-sided
inverse to Φ, and hence Φ is a bijection.
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Finally, to show that we have an isomorphism of graded vector spaces, we show that Φ is
homogeneous of degree 0. That is, if 0 , ϕR ∈ DHomHn−k(SλR|κR , SµR|κR) is homogeneous, then
ϕ is also homogeneous with deg(ϕ) = deg(ϕR). To see this, we write

ϕR(zλR) =
∑

T∈StdλR (µR)

aTvT for some aT ∈ F.

Then

ϕ(zλ) =
∑

T∈StdλR (µR)

aTvT+ ,

and for each Twith aT , 0 we have

codegκ(T+)− codegκ(Tλ) = codegκR(T)− codegκR(TλR) = deg(ϕR).

Hence ϕ is homogeneous of degree deg(ϕR). �

Now we make corresponding definitions for row removal.

Definition. Suppose λ ∈P l
n. For any 1 6 m 6 l and any r > 0, define

λ(m),r
T = (λ(m)

1 , . . . , λ(m)
r , 0, 0, . . . ), λ(m),r

B = (λ(m)
r+1, λ

(m)
r+2, . . . ).

Now let

λT = λT(r,m) = (λ(1), . . . , λ(m−1), λ(m),r
T ),

λB = λB(r,m) = (λ(m),r
B , λ(m+1), . . . , λ(l)),

and set nT = |λT| and nB = |λB|.

Corollary 4.2 (Graded Row Removal). Suppose λ, µ ∈ P l
n and 1 6 m 6 l. Suppose that λ(1) =

· · · = λ(m−1) = µ(1) = · · · = µ(m−1) = ∅, and k := λ(m)
1 = µ(m)

1 . Let λB = λB(1,m), µB = µB(1,m) and
κB = (κm − 1, κm+1, . . . , κl). Then

DHomHn(Sλ|κ, Sµ|κ) � DHomHn−k(SλB|κB , SµB|κB)

as graded vector spaces over F.

Proof. DHomHn(Sλ|κ, Sµ|κ) � DHomHn(Sµ′|κ′ , Sλ′|κ′) by Theorem 3.17,

� DHomHn−k(S(µB)′|(κB)′ , S(λB)′|(κB)′) by Theorem 4.1,

� DHomHn−k(SλB|κB , SµB|κB) by Theorem 3.17 again. �

Now we prove a ‘final-column removal’ theorem, where we assume that the rightmost
non-empty columns of λ and µ are in the same place and of the same length.

Theorem 4.3 (Final Column Removal). Suppose λ, µ ∈ P l
n and 1 6 m 6 l. Suppose λ(1) = · · · =

λ(m−1) = µ(1) = · · · = µ(m−1) = ∅, d := λ(m)
1 = µ(m)

1 and k := (λ(m))′d = (µ(m))′d. Let λL = λL(d− 1,m),
µL = µL(d− 1,m) and κL = (κm, . . . , κl). Then

DHomHn(Sλ|κ, Sµ|κ) � DHomHn−k(SλL|κL , SµL|κL)

as graded vector spaces over F.
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Proof. We first use Corollary 4.2 to remove the first k rows of length d from both λ(m) and µ(m).
We obtain

DHomHn(Sλ|κ, Sµ|κ) � DHomHn−dk(SλB|κB , SµB|κB)

where λB = λB(k,m), µB = µB(k,m) and κB = (κm− k, κ2, . . . , κl). We then use Corollary 4.2 again
to add k rows of length d− 1 to the top of both λ(m)

B and µ(m)
B . We obtain

DHomHn−dk(SλB|κB , SµB|κB) � DHomHn−k(SλL|κL , SµL|κL)

which gives the result. �

It will be helpful below to be able to give a direct construction for final-column removal,
as done in the proof of Theorem 4.1 for first-column removal. We assume the hypotheses
and notation of Theorem 4.3, and for ease of notation we assume that Sλ and Sµ are defined
using the e-multicharge κ, while SλL and SµL are defined using κL. We can also assume that
cont(λ) = cont(µ) =: α, and hence cont(λL) = cont(µL) =: β.

We identifySn−k with its image under the map shift0 : Sn−k → Sn, and similarly for Hβ and
Hα. As in the proof of Theorem 4.1 we make an assumption on preferred reduced expressions:
given a standard µL-tableau T, we define T+ to be the standard µ-tableau obtained by adding a
column with entries n− k + 1, . . . ,n at the right of component m; then we have wT+ = wT, and we
assume that our preferred reduced expressions have been chosen in such a way that ψT+ = ψT.

Lemma 4.4. With the above notation, we have Ann(zλL) = Ann(zλ)∩Hβ.

Proof. It follows directly from the presentation for column Specht modules that Ann(zλL) ⊆
Ann(zλ)∩Hβ, so we must show the opposite containment. Consider the Hβ-submodule Hβzλ
of Sλ generated by zλ. For any T ∈ Std(λL) we have vT+ = ψT+zλ = ψTzλ ∈Hβzλ, and the vT+ are
linearly independent, so dimFHβzλ > | Std(λL)| = dimF SλL . So we have

dimFHβzλ > dimFHβzλL ,

i.e.

dimF
Hβ

Ann(zλ)∩Hβ
> dimF

Hβ

Ann(zλL)
,

and so Ann(zλL) ⊇ Ann(zλ)∩Hβ. �

Now we consider dominated homomorphisms. Observe that since λ and µ have the same
last column, Stdλ(µ) =

{
T+

∣∣∣ T ∈ StdλL(µL)
}
. So if ϕ ∈ DHomHn(Sλ, Sµ), then we can write

ϕ(zλ) =
∑

T∈StdλL (µL)

aTvT+ with aT ∈ F.

Then we can define a homomorphism

ϕ− : SλL|κL −→ SµL|κL

zλL 7−→

∑
T∈StdλL (µL)

aTvT.
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To see that this definition yields a well-defined homomorphism, we must show that h
∑
T aTvT =

0 whenever h ∈ Ann(zλL). By Lemma 4.4 we have h ∈ Ann(zλ), and hence (since ϕ is a homo-
morphism) h

∑
T aTvT+ = 0; in other words, h

∑
T aTψT ∈ Ann(zµ). We also have h

∑
T aTψT ∈ Hβ,

so by Lemma 4.4 again (with λ replaced by µ) h
∑
T aTψT ∈ Ann(zµL), as required.

So we have a map ϕ 7→ ϕ− : DHomHn(Sλ|κ, Sµ|κ) → DHomHn−k(SλL|κL , SµL|κL). This is
obviously an injective map of degree 0, and hence (by Theorem 4.3) a graded isomorphism.

4.3 Generalised column removal

Armed with first-column removal and final-column removal, we can now consider gener-
alised column removal. In what follows, we fix c > 0 and 1 6 m 6 l, and for any ν ∈ P l

n we
write νL = νL(c,m) and νR = νR(c,m). We suppose λ, µ ∈P l

n, and assume that |λL| = |µL| =: nL,
so that |λR| = |µR| = n− nL =: nR. We also assume that λ Q µ. This assumption implies that
λL Q µL and λR Q µR, which in particular gives

(λ(m))′c > (µ(m))′c > (µ(m))′c+1

so that it is possible to define a multipartition λL#µR ∈P l
n with (λL#µR)L = λL and (λL#µR)R =

µR.
We write κL = (κm, . . . , κl), κR = (κ1, . . . , κm + c), HL = HnL and HR = HnR . For ease of

notation, we will assume throughout the following that the Specht modules Sλ, Sµ and SλL#µR

are defined using the e-multicharge κ, while SλL and SµL are defined using κL and SλR and SµR

are defined using κR.
Suppose ϕL ∈ DHomHL(SλL , SµL) and ϕR ∈ DHomHR(SλR , SµR), and write

ϕL(zλL) =
∑

S∈StdλL (µL)

aSvS, ϕR(zλR) =
∑

T∈StdλR (µR)

bTvT

with coefficients aS, bT ∈ F. If there is a homomorphism ϕ : Sλ → Sµ satisfying

ϕ(zλ) =
∑

S∈StdλL (µL)
T∈StdλR (µR)

aSbTvS#T,

then we write ϕ = ϕL#ϕR, and say that ϕ is a product homomorphism.

Lemma 4.5. Every product homomorphism Sλ → Sµ factors through SλL#µR .

Proof. Suppose that ϕ = ϕL#ϕR is a product homomorphism, and as above write

ϕL(zλL) =
∑

S∈StdλL (µL)

aSvS, ϕR(zλR) =
∑

T∈StdλR (µR)

bTvT.

Now define

ϕL# id : SλL#µR −→ Sµ id #ϕR : Sλ −→ SλL#µR

zλL#µR 7−→

∑
S∈StdλL (µL)

aSvS#TµR
zλ 7−→

∑
T∈StdλR (µR)

bTvTλL #T.

ThenϕL# id and id #ϕR are both Hn-homomorphisms; this follows from the direct constructions
of column-removal homomorphisms in the proof of Theorem 4.1 and following the proof of
Theorem 4.3. Clearly (ϕL# id) ◦ (id #ϕR) = ϕ, so ϕ factors through SλL#µR . �
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Proposition 4.6. Assume the hypotheses and notation above. Then every ϕ ∈ DHomHn(Sλ, Sµ) is a
sum of product homomorphisms.

Proof. We may assume that cont(λ) = cont(µ) (since otherwise there are no non-zero homo-
morphisms Sλ → Sµ). So for this proof we write α := cont(λ) and define shift0 to be the
map from HL to Hα obtained by combining the maps shift0 : Hβ → Hα for all β ∈ Q+ of
height nL; similarly, shiftnL denotes the map from HR to Hα obtained by combining the maps
shiftnL : Hβ →Hα for all β ∈ Q+ of height nR.

For this proof we make an assumption about the choice of preferred reduced expressions
similar to that in the proof of Theorem 4.3. Specifically, we assume that these expressions have
been chosen in such a way that if S ∈ StdλL(µL) and T ∈ StdλR(µR), then the preferred expression
for wS#T is just the concatenation of the preferred expression for wSwith the expression obtained
by applying shiftnL to every term in the preferred expression for wT. HenceψS#T = ψS shiftnL(ψT).

Now we show that every dominated homomorphism Sλ → Sµ is a sum of product homo-
morphisms. To do this, we first discuss dominated tableaux. Note that the conditions on λ
and µ imply that Stdλ(µ) =

{
TL#TR

∣∣∣ TL ∈ StdλL(µL), TR ∈ StdλR(µR)
}
. Choose a total orderI on

Stdλ(µ) with the property that if R, S ∈ StdλL(µL) and T, U ∈ StdλR(µR), then

R#T I R#U⇐⇒ S#T I S#U and R#T I S#T⇐⇒ R#U I S#U.

(For example, we could do this by choosing total orders IL,IR on StdλL(µL), StdλR(µR) and
setting V I W if and only if VL IL WL or (VL = WL and VR IR WR).)

Now suppose ϕ : Sλ → Sµ is a non-zero dominated homomorphism, and write ϕ(zλ) =∑
T∈Stdλ(µ) aTvT with each aT ∈ F. Let U be the largest tableau (with respect toI) such that aU , 0,

and proceed by induction on U.

Claim. LetU denote the set of tableaux T ∈ Stdλ(µ) such that TR = UR. Then there is an
HL-homomorphism

ϕUL : SλL −→ SµL

zλL 7−→

∑
T∈U

aTvTL .

Proof. First we make an observation, which follows from the construction of Specht
modules and our assumptions on preferred reduced expressions. If W ∈ Stdλ(µ) and
h ∈ HL, and we write hvWL =

∑
T∈Std(µL) bTvT, then shift0(h)vW =

∑
T∈Std(µL) bTvT#WR . In

particular, shift0(h)vW is a linear combination of basis elements vS for S ∈ StdLR(µ) with
SR = WR.

Now take h ∈ Ann(zλL). Then shift0(h) ∈ Ann(zλ), so shift0(h)
∑
T∈Stdλ(µ) aTvT = 0 (be-

cause ϕ is a homomorphism). If we look just at shift0(h)
∑
T∈U aTvT, then by the previ-

ous paragraph this lies in
〈

vT | T ∈ StdLR(µ), TR = UR
〉
F, while shift0(h)

∑
T<U aTvT lies in〈

vT | T ∈ StdLR(µ), TR , UR
〉
F. The vT are linearly independent, and hence〈

vT | T ∈ StdLR(µ), TR = UR
〉
F ∩

〈
vT | T ∈ StdLR(µ), TR , UR

〉
F = 0.

Hence shift0(h)
∑
T∈U aTvT = 0.

Define a linear map #UR : SµL → Sµ by vT 7→ vT#UR for T ∈ Std(µL). Then, from above, we
have

(hm)#UR = h(m#UR)
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for any h ∈HL and any m ∈ SµL . So for each h ∈ Ann(zλL), we have h
∑
T∈U aTvTL = 0.

We can do essentially the same thing left and right interchanged; that is, if we let U′ ={
T ∈ Stdλ(µ)

∣∣∣ TL = UL

}
, then we have an HR-homomorphism

ϕUR : SλR −→ SµR

zλR 7−→

∑
T∈U′

aTvTR .

As in the proof of Lemma 4.5, we construct homomorphisms

ϕUL# id : SλL#µR −→ Sµ id #ϕUR : Sλ −→ SλL#µR ,

whose composition is the product homomorphism ϕUL#ϕUR : Sλ → Sµ. vU appears with non-zero
coefficient (namely a2

U) in ϕUL#ϕUR, and U is maximal (with respect to the order I) with this

property. So if we consider the homomorphism ξ := ϕ−
1
aU
ϕL#ϕR, then (if ξ , 0) the most

dominant tableau occurring with non-zero coefficient in ξ is smaller than U. By induction ξ is
a sum of product homomorphisms, and hence so is ϕ. �

Now we can prove our main result.

Theorem 4.7 (Generalised graded column removal). Suppose λ, µ ∈ P l
n, c > 0 and 1 6 m 6 l

and define λL, λR, µL, µR as in Section 4.1. Assume |λL(c,m)| = |µL(c,m)| =: nL and |λR(c,m)| =
|µR(c,m)| =: nR for some fixed c > 0 and 1 6 m 6 l and define HL = HnL and HR = HnR .

1. For any ϕL ∈ DHomHL(SλL , SµL) and ϕR ∈ DHomHR(SλR , SµR), there is a product homomor-
phism ϕL#ϕR ∈ DHomHn(Sλ, Sµ).

2. The map ϕL ⊗ϕR 7→ ϕL#ϕR defines an isomorphism of graded F-vector spaces

DHomHL(SλL , SµL)⊗DHomHR(SλR , SµR) � DHomHn(Sλ, Sµ).

Proof. First suppose λ S µ. Then Stdλ(µ) = ∅, so DHomHn(Sλ, Sµ) = 0. Furthermore, we have
either λL S µL or λR S µR, so that either DHomHL(SλL , SµL) = 0 or DHomHR(SλR , SµR) = 0. So
the result follows.

So we can assume that λ Q µ, which allows us to define the multipartition λL#µR as above.
Applying Theorem 4.1 repeatedly, we have

DHomHn(Sλ, SλL#µR) � DHomHR(SλR , SµR).

Similarly, by Theorem 4.3 applied repeatedly we have

DHomHn(SλL#µR , Sµ) � DHomHL(SλL , SµL).

Combining these isomorphisms, and using the explicit constructions given above, we have an
isomorphism of graded vector spaces

DHomHL(SλL , SµL)⊗DHomHR(SλR , SµR) ∼
−→ DHomHn(SλL#µR , Sµ)⊗DHomHn(Sλ, SλL#µR)

ϕL ⊗ϕR 7−→ (ϕL# id)⊗ (id #ϕR).
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Composition of homomorphisms yields a map

ω : DHomHn(SλL#µR , Sµ)⊗DHomHn(Sλ, SλL#µR) −→ DHomHn(Sλ, Sµ)

which is homogeneous of degree zero, and by Lemma 4.5 and Proposition 4.6 ω is surjective.
So we have a surjective map

DHomHL(SλL , SµL)⊗DHomHR(SλR , SµR) −→ DHomHn(Sλ, Sµ)
ϕL ⊗ϕR 7−→ ϕL#ϕR.

This map is easily seen to be injective, and the result follows. �

Remark. Analogous results for graded decomposition numbers have recently been obtained
by the second author and Bowman [BS], in the more general setting of the ‘diagrammatic
Cherednik algebras’ of Webster.

4.4 Generalised row removal

Now we consider generalised row removal for homomorphisms between column Specht
modules. Fix 1 6 m 6 l and r > 0, and for any ν ∈ P l

n write νT = νT(r,m), νB = νB(r,m).
Suppose λ, µ ∈P l

n with |λT| = |µT| =: nT, so that |λB| = |µB| = n− nT =: nB. Set κT = (κ1, . . . , κm)
and κB = (κm − r, κm+1, . . . , κl), and write HT = HnT and HB = HnB . In what follows we shall
take Sλ and Sµ to be defined with respect to the e-multicharge κ, SλT and SµT with respect to κT,
and SλB and SµB with respect to κB.

With this notation in place, we can state a generalised row-removal theorem for homomor-
phisms. This follows from Theorem 4.7 using Theorem 3.17 in the same way that Corollary 4.2
is deduced from Theorem 4.1.

Theorem 4.8 (Generalised graded row removal). Suppose λ, µ ∈ P l
n, r > 0 and 1 6 m 6 l and

define λT, λB, µT, µB,nT,nB,HT,HB as above. Then there is an isomorphism of graded F-vector spaces

DHomHT(SλT , SµT)⊗DHomHB(SλB , SµB) � DHomHn(Sλ, Sµ).

Our proof of Theorem 4.7 gives a direct construction of the column-removal isomorphism,
but a direct construction for row removal seems to be hard to obtain, especially using the
standard bases for column Specht modules.

Example. Take e = 2 and κ = (0, 1, 0). Let λ =
(
(12), (2, 13), (1)

)
and µ =

(
(1), (3, 1), (3)

)
, and take

(m, r) = (2, 1), so that λT =
(
(12), (2)

)
, λB =

(
(13), (1)

)
and µT = µB =

(
(1), (3)

)
. Set κT = (0, 1) and

κB = (0, 0). Then (regardless of the field F) the graded dimensions of DHomH4(SλT|κT , SµT|κT)
and DHomH4(SλB|κB , SµB|κB) are v and 1 respectively. So by Theorem 4.8 the graded dimension
of DHomH8(Sλ|κ, Sµ|κ) is v. The unique (up to scaling) homomorphisms

SλT −→ SµT , SλB −→ SµB , Sλ −→ Sµ

are given by

zλT 7−→ vS, zλB 7−→ vT, zλ 7−→ vU + 2vV,
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where

S = 3

1 2 4

, T = 2

1 3 4

, U = 7

2 6 8
3

1 4 5

, V = 7

4 6 8
5

1 2 3

.

It seems hard to reconcile these homomorphisms when expressed in this form, except perhaps
in characteristic 2. (Note that the incompatibility of these expressions is not an artefact of
the choice of preferred reduced expressions – the standard basis elements appearing in this
example are independent of the choice of reduced expressions.)

In order to obtain an explicit row-removal construction, it seems to be necessary to use
a different basis for the Specht module. Suppose we have λB, λT, µB and µT as above, with
|µT| = nT = |λT|. Partition the set {1, . . . ,n} into two sets SB and ST, by defining SB to be the set
of integers in the bottom part of Tλ and ST the set of integers in the top part; that is,

SB = {Tλ(s, c, k) | (s, c, k) ∈ [λ] and either k > m or k = m and s > r} ,
ST = {Tλ(s, c, k) | (s, c, k) ∈ [λ] and either k < m or k = m and s 6 r} .

Let labB : {1, . . . ,nB} → SB and labT : {1, . . . ,nT} → ST be the unique order-preserving bijections.
Now given a µB-tableau T and a µT-tableau S, define a µ-tableau T#̄S by composing labB

with T and labT with S and ‘gluing’ in the natural way.

Lemma 4.9. Suppose λ and µ satisfy the conditions above. If T ∈ StdλB(µB) and S ∈ StdλT(µT), then
T#̄S ∈ Stdλ(µ).

Proof. First we show that T#̄S is standard. Suppose A and B are nodes in the same component
of [µ], with B either immediately to the right of A or immediately below A; then we require
T#̄S(B) > T#̄S(A). This is clear from the fact that S and T are standard and the functions labT and
labB are order-preserving, except in the case where A = (r, b,m) and B = (r + 1, b,m) for some
1 6 b 6 µ(m)

r+1. So assume we are in this situation.
Let k = λ(m)

r+1. Then the first k columns of λ(m)
T all have length r. Since StdλT(µT) is non-empty

we have λT Q µT, and hence the first k columns of µ(m)
T all have length r also. Hence (since S is

λT-dominated) S agrees with TλT on these columns. So we have T#̄S(A) = labT(TλT(A)) = Tλ(A).
We also have λB Q µB since StdλB(µB) , ∅, so that k > µ(m)

r+1 > b (and in particular B ∈ [λ]).
Since T is λB-dominated, we have T(1, b, 1) > TλB(1, b, 1), so that

T#̄S(B) = labB(T(1, b, 1)) > labB(TλB(1, b, 1)) = Tλ(B).

So T#̄S(A) = Tλ(A) < Tλ(B) 6 T#̄S(B), as required.
To see that T#̄S is λ-dominated, it suffices to note that since S ∈ StdλT(µT), every element of

ST appears in labT(S) at least as far to the left as it appears in Tλ, and likewise for T ∈ StdλB(µB)
and elements of SB. �

Now we can give a conjectured explicit construction for the generalised row-removal iso-
morphism for homomorphisms. Recall from Section 3.3 the basis

{
fT

∣∣∣ T ∈ Std(µ)
}

for (Sµ)~;

using Theorem 3.14 and shifting the degree of each fT by def(µ), we can regard
{

fT
∣∣∣ T ∈ Std(µ)

}
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as a basis for Sµ. Note that by the analogue of Lemma 3.18(2) for column Specht modules, any
ϕ ∈ DHomHn(Sλ, Sµ) can be written as

ϕ(zλ) =
∑

T∈Stdλ(µ)

aT fT for some aT ∈ F.

Conjecture 4.10. Suppose λ, µ ∈ P l
n, r > 0 and 1 6 m 6 n. Define λT, λB, µT, µB,nT,nB,HT,HB

as above, and assume |µT| = nT. Suppose ϕT ∈ DHomHT(SλT , SµT) and ϕB ∈ DHomHB(SλB , SµB), and
write

ϕB(zλB) =
∑

T∈StdλB (µB)

aT fT, ϕT(zλT) =
∑

S∈StdλT (µT)

bS fS

with aT, bS ∈ F. Then there is an Hn-homomorphism ϕB#̄ϕT : Sλ → Sµ satisfying

ϕB#̄ϕT(zλ) =
∑

T∈StdλB (µB)
S∈StdλT (µT)

aTbS fT#̄S.

Example. Retaining the notation from the last example, we have

Tλ = 7
8

2 6
3
4
5

1

,

so that ST = {2, 6, 7, 8} and SB = {1, 3, 4, 5}. Taking S, T and U as in the last example, we get
T#̄S = U. It is easy to check that

fS = vS, fT = vT, fU = vU + 2vV,

so the conjecture holds in this case.

Remark. If Conjecture 4.10 is true, then we have a map of graded F-vector spaces

DHomHB(SλB , SµB)⊗DHomHT(SλT , SµT) −→ DHomHn(Sλ, Sµ)
ϕB ⊗ϕT 7−→ ϕB#̄ϕT.

This map is obviously linear, and (since the fT are linearly independent) injective. Hence by
Theorem 4.8 it is a bijection. So we have an explicit construction for the generalised row-removal
isomorphism.

5 Index of notation

For the reader’s convenience we conclude with an index of the notation we use in this
paper. We provide references to the relevant subsections.
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F a field
N the set of positive integers
Sn the symmetric group of degree n 2.1
s1, . . . , sn−1 the Coxeter generators of Sn 2.1
l the Coxeter length function on Sn 2.1
6L the left order on Sn 2.1
4 the Bruhat order on Sn 2.1
shiftk the shift homomorphism Sm → Sn 2.1
I the set Z/eZ (or Z, if e = ∞) 2.2
Γ a quiver with vertex set I 2.2
i→ j there is an arrow from i to j (but no arrow from j to i) in Γ 2.2
i� j there are arrows from i to j and from j to i in Γ 2.2
αi simple root labelled by i ∈ I 2.2
Λi fundamental dominant weight labelled by i ∈ I 2.2
( | ) invariant bilinear form 2.2
Q+ the positive root lattice 2.2
Λκ the dominant weight Λκ1 + · · ·+ Λκl 2.2
def(α) (Λk |α)− 1

2 (α |α) 2.2
|λ| the number of nodes of a (multi)partition λ 2.3
P l

n the set of l-multipartitions of n 2.3
∅ the unique partition or l-multipartition of 0 2.3
Q the dominance order on multipartitions or tableaux 2.3
[λ] the Young diagram of a multipartition λ 2.3
λ′ the conjugate (multi)partition to λ 2.3
Std(λ) the set of standard λ-tableaux 2.4
T′ the conjugate tableau to T 2.4
i ↓T j i and j lie in the same column of T, with j lower than i 2.4
i↙T j i and j lie in the same component of T, with j strictly lower and to the

left of i
2.4

i wT j i↙T j or i lies in an earlier component of T than j 2.4
Tλ the λ-tableau obtained by writing 1, . . . ,n in order down successive

columns
2.4

Tλ theλ-tableau obtained by writing 1, . . . ,n in order along successive rows 2.4
wT the permutation for which wTTλ = T 2.4
wT the permutation for which wTTλ = T 2.4
Shape(T↓m) the l-multicomposition formed from the nodes of T whose entries are

less than or equal to m
2.4

res A the residue of a node A 2.5
cont(λ) the content of a multipartition λ 2.5
def(λ) the defect of a multipartition λ 2.5
i(T) the residue sequence of a tableau T 2.5
iλ i(Tλ) 2.5
iλ i(Tλ) 2.5
deg(T) the degree of a tableau T 2.5
codeg(T) the codegree of a tableau T 2.5
Hn the KLR algebra of degree n 2.6
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shiftk the shift homomorphism Hβ →Hα 2.6
H κ

n the cyclotomic KLR algebra determined by κ 2.6
BA the Garnir belt corresponding to a Garnir node A 2.7
gA the Garnir element corresponding to a Garnir node A 2.7
Sλ the column Specht module corresponding to a multipartition λ 2.7
Sλ the row Specht module corresponding to a multipartition λ 2.7
zλ the standard generator of Sλ 2.7
ψT ψt1 . . . ψtb , where st1 . . . stb is the preferred reduced expression for wT 2.7
vT ψTzλ 2.7
Stdλ(µ) the set of λ-dominated standard µ-tableaux 3.1
Stdλ(µ) the set of λ-row-dominated standard µ-tableaux 3.1
DHomHn(Sλ, Sµ) the space of dominated homomorphisms from Sλ to Sµ 3.2
DHomHn(Sλ, Sµ) the space of dominated homomorphisms from Sλ to Sµ 3.2
M~ the graded dual of a graded module M 3.3
M〈k〉 the graded module M with the grading shifted by k 3.3
StdLR(λ) the set of λ-tableaux in which the entries 1, . . . ,nL appear strictly to the

left of the entries nL + 1, . . . ,n
4

λL#λR the multipartition obtained by joining the left and right parts λL, λR
together

4.3

TL#TR the tableau obtained by joining the left and right parts TL, TR together 4.3
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