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SUSUMU ARIKI!, EUTYONG PARK?, AND LIRON SPEYER?

ABSTRACT. We construct and investigate Specht modules S* for cyclotomic quiver Hecke
algebras in type C[ED and Co, which are labelled by multipartitions A. It is shown that
in type Coo, the Specht module S* has a homogeneous basis indexed by standard tableaux
of shape A, which yields a graded character formula and good properties with the exact

functors EX and F*. For type Cél), we propose a conjecture.

INTRODUCTION

Representations of Hecke algebras and the symmetric group have been studied for over a
century and Specht modules play important roles in the representation theory. Nowadays, we
realise that on the one hand the Hecke algebras generalise to cyclotomic quiver Hecke alge-
bras (or Khovanov-Lauda—Rouquier algebras) in the direction of categorification of quantum
groups Uy(g) [17, 18, 25], and on the other hand that the Hecke algebras are cellular algebras
and Specht modules are their cell modules.

In the affine type Aél) case, cellular algebras and Specht modules for cyclotomic quiver
Hecke algebras were studied via the isomorphism to cyclotomic Hecke algebras given in [6]. It

was shown that the cyclotomic quiver Hecke algebras of affine type Agl) have graded cellular

structure [12]. Graded Specht modules in type Aél) were constructed and studied using the

combinatorics of multipartitions [8, 21]. But so far little is known about Specht modules for
cyclotomic quiver Hecke algebras of other types. We remark that it was proved in [20] that
quiver Hecke algebras of finite type are graded affine cellular algebras.

The first and second authors [3] studied cyclotomic quiver Hecke algebras R (n) for the
)

fundamental weight Ag in type Cél , in which a graded dimension formula for R0 (n) is given

by using the C-type Fock space F [15, 19, 24]. This Fock space F is constructed by folding
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the usual A-type Fock space, so the dimension formula is described in terms of combinatorics
of Young diagrams. In affine type Agl), graded Specht modules are deeply related to the
A-type Fock space. It was shown in [7] that the graded decomposition numbers of graded
Specht modules can be described in terms of combinatorics of Young diagrams via the Fock
space which is the g-version of the first author’s result [1]. One can expect that cyclotomic
quiver Hecke algebras of type C and the Fock space F of type C exhibit similar properties
to those of type A — thus it is worth considering Specht modules for cyclotomic quiver Hecke
algebras of type C.

In this paper, we construct Specht modules S* for cyclotomic quiver Hecke algebras of
affine type C’él) and type Cy which are labelled by multipartitions A. This is inspired
by [21]. Let A be the Cartan matrix of type Cél) or Cs, and Uy(A) the quantum group
associated with A. We set R() to be the quiver Hecke algebra associated with A and denote
by EZA and Fl-A the functors categorifying Chevalley generators e; and f; of U,(A) on the
highest weight irreducible module V,(A). Let 2. be the set of [-multipartitions of n with
a multicharge xk = (k1,...,#) € Z!. For A € 2!

., we first construct a permutation module

M? which has a basis indexed by row-strict tableaux of A. These permutation modules
are built from more fundamental building blocks, namely they are convolution products
of the one-dimensional R(f)-modules L(k;¥) defined by (3.1). The modules L(k;{) take
a role as the segment modules, which are given in [21], corresponding to segments in type

Ao and A, We also define a module Mﬁ 4 for each Garnir node A € [A] and construct
A

~, which give an interpretation of Garnir elements

homomorphisms between Mé 4 and M
in terms of quiver Hecke algebras. We then define a Specht module S* using the cokernel
of homomorphisms between /\/lé 4 and Mﬁ, see Definition 3.8. The Specht module S* is
spanned by homogeneous elements indexed by standard tableaux of shape A (Corollary 3.13).
We prove in Corollary 3.21 that, in type Caso, this spanning set of S* is in fact a basis. Thus
we have a graded character formula for S* in terms of standard tableaux and a description of
[EAS?] in terms of [S*™]. Here, A /b is the Young diagram obtained from X by deleting a
removable node b. We remark that S* is not necessarily simple, even in the case of level 1 and
type Cs. We also investigate a connection between Specht modules S* and the Fock space
F(r) of type C, which provides a description of [FS?*] in terms of [S™?], where \ /b is the
Young diagram obtained from A by adding an addable node b, see Corollary 3.23. Recently,
the third author provided semisimplicity criteria for the cyclotomic quiver Hecke algebras of
type Cs and ) using the Specht modules [26].

The paper is organised as follows. In Section 1, we review the combinatorics of tableaux
and the Fock space of type C', and prove lemmas on Garnir nodes. In Section 2, we recall
the notion of quiver Hecke algebras, and prove several lemmas on computations of products
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of 1; and convolution products of modules for proving our main theorem. In Section 3, we
construct and investigate Specht modules S* and provide the main theorems with examples.
Section 4 is devoted to proving Theorem 3.19. We may carry out the computation in a
manner knot theorists do, but we have found an algebraic proof, which is easier to access for
representation theorists. In Section 5, we propose a conjecture for type Cél).

1. COMBINATORICS OF TABLEAUX

1.1. Lie theory notation.
Let £€{2,3,...} U{oc}and I =Z>g if { =00 or I ={0,1,2,...,¢} otherwise.
For ¢ = oo, the corresponding Cartan matrix A = (a;;)i jer of type Cu is given by
2 ifi=j
—2 if (4,§) = (1,0),
aij =
-1 ifi=j+1and (,j) # (1,0),

0 otherwise.

Otherwise, the affine Cartan matrix of type C’él) is given by

2 -1 0 -+ 0 0 0
2 2 -1 .- 0 0 0
0 -1 2 - 0 0 0
A=(aiy)iger=1 1 + S
0O 0 0 - 2 -1 0
O 0 0 - -1 2 -2
0 0 o --- 0 -1 2

We adopt standard notation from [13] for the root datum; in particular we have simple
roots {a; | i € I} and fundamental weights {A; | i € I} in the weight lattice P, and simple
coroots {a | i € I} in the dual weight lattice PV. There is an invariant symmetric bilinear
form (—,—) on P satisfying (A;, ;) = d;0;; and (o4, o) = d;a;; where d = (2,1,1,...) if
l=o0cord=(2,1...,1,2) if £ < co. Let

PP ={Ae€P|(a),A) >0forallicl}

be the set of dominant integral weights, where ( , ) is the natural pairing. We denote by
Q := P,c; Loy the root lattice and QT = @, Zzow is the positive cone of the root lattice.
Note that the null root in type C’él) is given by d = a9 + 201 + -+ - + 2041 + .
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1.2. The symmetric group and multipartitions.
Denote by &,, the symmetric group on n letters, with Coxeter generators sy, ..., Sp—1. For
a permutation w € &, a reduced expression for w is an expression w = s;; ... s;, of minimal
length; r = ¢(w) is the length of w.
We denote by &,,47,/S,, xS, the set of distinguished left coset representatives of &,, xS,
in Gpypn, ie. l(ws;) =Ll(w) + 1 for w € Spyyn /G X6, and i # m.
For a,b € Z=o with a + b < n, we define wla,b] € &,, by
r+b ifl<z<a,
wla,b)(z) =¢ z—a ifa<z<a+b,
x fa+b<x<n.
In two-line notation, wla, b] is
(PR S SO P
Throughout the paper, w € &,, permutes letters of a tableau, but permutes places of v =

(V1,5 vn) €1 as wv = (Vy-1(1), - - s Vyy-1(ny)- In particular,
wla, bl = Va1, -y Vatbs V1s -« - s Vas Vatbily - -+ s Vn)-
Lemma 1.1. Let a,b > 1.
(1) wla,b] = (sp-.-Satb-1)---(S1...8a) = (Sp...51) .. (Satb-1---5a)-
(2) spri1w[2,b] = w[2,b]s1.
Proof. Tt is easy to see (1). Using the braid relations, we have
Sb+1W[2, 0] = Spr1(SpSp—1 - - - 51)(Sp 4156 - - - S2)
= (spSp11)8b(Sp-15p—2 - - - 51)(865p-1 - - - 52)
= (5b5b+1)(S6-156)S6-1(Sp—2 - - - 51)(Sp—1 - - - S2)

= (5p5p+1)(Sp—15p) - - - (5253)52(51)(52)

= (SpSp+1)(Sp—18p) - - - (8283)(5152)81 = w[2, b]sq,

which complete the proof of (2). Here, the underlines indicate generators to which we can

apply the braid relation. O

The following easy lemma will be useful to us later. Note that the equality sp;qw[2,0] =
w2, b]s; in Lemma 1.1(2) is a special case of this, but the importance of Lemma 1.1(2) lies
in the ‘long-hand derivation’ of this equality, which we will utilise later in Lemma 2.14.

Lemma 1.2. Letw € &, and 1 <i<n—1. Ifw(i+1) =w(i)+ 1, then s,;w = ws;.
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For a reduced expression w = s;, ...s;, and k € Zxo with i; <n —k for 1 < j <r, we set

T

shk(w) = Si1+k - Sip+k- (1.1)

Note that shi(w) does not depend on the choice of reduced expressions. For a,b, ¢ € Z=g, we
define the block permutation Sa(c, a,b) to be sh.(wla, b]).

Definition 1.3. For v,w € G,,, we write v = w if there is a reduced expression for v which
has an expression for w as a subsequence. We write v > w if v > w and v # w. This partial
order is called the Bruhat order.

The left order (sometimes called the weak Bruhat order) is given by v >y w if there
is a reduced expression for v which has a reduced expression for w as a suffix — that is,
v =8 ...s;,w for some iy,...,7 with r = £(v) — {(w).

We fix an integer [ > 1 throughout, which we refer to as the level.

Definition 1.4. For n > 0, a partition of n is a weakly decreasing sequence of non-negative
integers A = (A1, Ag,...) such that the sum |A| = A\; + A2+ -+ is equal to n. If X is a partition
of n we write A - n. We write @ for the unique partition of 0. Note that we will in general
omit trailing zeros for partitions.
An [-multipartition of n is an I-tuple of partitions A = ()\(1), een )\(l)) such that the total size
2221 IA®D| = n. We denote the set of l-multipartitions of n by 2! and set 2! := U,5q. 2.
Similarly, a composition is a sequence p = (p1, pi1,...) of non-negative integers, and an

[-multicomposition is an [-tuple of compositions.

If A and p are I-multicompositions of n, we say that A dominates u, and write A & p if

k k
IAD] 4 AED) +Z)\§f) > W] 4 - D) +Z“§'t)
j=1 j=1

foralll <t<land k > 0.
For any \ € Z., we define its Young diagram [\] to be the set
{(r,e,t) € Zsy x Zsy x {1,...,1} | e < ADY

We will depict a Young diagram for a partition using the English convention, and for a
multipartition \ as a column vector of Young diagrams for the components A, ... O If
[ =1, then we write simply (r,c) for (r,¢,t).

Example 1.5. Let A\ = ((4,3,1,1),2,(3,2,1)) € &j. Then we write
(Al = |
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16}

With this convention, we say that for nodes A = (r,c,t), A" = (v',,t') € [\], A is below
A'ift >t orift =t with r >/, and A is above A’ if A" is below A.
We define fy: Z — I by k — |k| if £ = oo and, if £ # oo, fy: Z/20Z — I by
fe(O+20Z) =0, fo(0+207)=1¢,
fo(k+202) = fo(20 —k+20Z) =k for 1 <k</{—1.
Let p be the natural projection Z — Z/20Z if ¢ # oo and p = id if £ = oco. Then we define
7= foop:Z — I. We denote m(k) by k, for k € Z, if there is no confusion.

Now we fix a multicharge k = (k1,...,k;) € Z' and define A € P* by A = 22:1 Az Let A
be an [-multipartition. Then, to any node A = (r,¢,t) € [A\] we may associate its residue by
res(A) =kt +c—r.

If res(A) = i, we call A an i-node. Thus, [-multipartitions may be coloured by I. We define
the content of A to be

cont(A) = Z Qtres(A) € QT.
A€[)]

Example 1.6. For A = ((4,3,1,1),2,(3,2,1)) as above, and k = (2,0, —1), the residues of
[A] are given as follows.

3[4]5]

Q ‘r—l‘c:»aw

0[1]

‘oowr—n
[—

We also have cont(\) = 2ap + bag + 3ag + 3as + aq + as.

We say that a node A is removable (resp. addable) if [\] \ A (resp. [\ U A) is a valid
Young diagram for a multipartition of n — 1 (resp. n 4+ 1). We write A /7 A (resp. A / A)
as shorthand for the multipartition whose Young diagram is [A] \ A (resp. [\] U A). For an
i-node A € [)], we set

d;(\) = #{addable i-nodes of [A]} — #{removable i-nodes of [A]},
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da(N\) = d;(#{addable i-nodes of [A\] below A} — #{removable i-nodes of [\] below A}),
d*(\) = d;(#{addable i-nodes of [\] above A} — #{removable i-nodes of [A] above A}).

We define F (k) to be a Q(gq)-vector space with basis consisting of the coloured [-multipartitions.
Then F(x) has a Uy(g(A))-module structure defined by

A= N ed =g 1A A=Y a4 (12
A A

where A runs over all removable i-nodes and all addable i-nodes respectively. The above

description of F(x) matches with that of the type A Fock space given in [7, Section 3.6],
which is slightly different from [19, 24]. We call F (k) the level | Fock space with multicharge
Note that the weight of a coloured l-multipartition A is A — cont()\), and there is a
Uq(g(A))-module isomorphism

F(k) ~ F(k1) ® - @ F(Kq).

Here, the U,(g(A))-module structure of the tensor product comes from the comultiplication
of Uy(g(A)) given by, for i € I,

A:Ki— K@K, e¢r—e@K +10e, fir— iol+K o f,

(e e)
where K; =q 2 M. (cf. [7, Section 3.1])

Let A = Zfﬁ:l Az; and V;(A) the irreducible highest weight U, (g(A))-module with highest
weight A. As @ is a highest weight vector of F(x) with highest weight A, we have a canonical

U,(g(A))-module epimorphism
Pt F(k) — V4(A), O —> vy, (1.3)

where vy is a highest weight vector of V,(A).

1.3. Tableaux.

We will mostly adopt the notation of [8, 21] for tableaux.

Let A € #.. A Mtableau is a bijection T : [\] = {1,...,n}. We depict T by filling each
node (r,c,t) € [A\] with T(r,¢,t). We say that a tableau T is row-strict if the entries increase
along the rows of each component of T, and column-strict if the entries increase down the
columns of each component of T. If T is both row- and column-strict, we call it standard. We
denote the set of standard tableaux by Std()\), the set of row-strict tableaux by RowStd(\)
and the set of row-strict tableaux which are not standard by Row(A) = RowStd(\) \ Std(\).
Note that the symmetric group &,, acts naturally on the left on the set of tableaux.

For each A-tableau T, we have the associated residue sequence

res(T) = (res(T1(1)), res(T~1(2)),...,res(T~1(n))).
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Let T* be the initial tableau, which is the distinguished tableau where we fill the nodes with
1,...,n first along successive rows in A then A® | and so on. Then for each A-tableau,
T, we may define the permutation w’' € &, by w'T* = T and the length ¢(T) € Zs( by
{T) = L(wh).

Example 1.7. Continuing our previous example,

T =

10[11]12].
13]14

We define the dominance order on A-tableaux by setting T > S if and only if wT < wS. The
matchup of terminology and notation with the dominance order on partitions is justified by
Lemma 1.8. Note in particular that T* > T for all A-tableaux T.

First, we introduce one more concept. Let T be a A-tableau and 0 < m < n. We denote
by T, the set of nodes of [A\] whose entries are less than or equal to m. If T € Std(\), then
T, is a tableau for some multipartition, which we call Shp(T|,,). If T € Row(\), then T, is
a tableau for some multicomposition, which we also call Shp(T|,,).

Lemma 1.8. [23, Theorem 3.8] Suppose A € 2. and T,S € RowStd(\). Then T &= S if and
only if Shp(T ) & Shp(Sym) for all 1 <m < n.

For any A\ € &) and T € Std(\) we define the degree degT of T as follows. If n = 0 then T
is the unique @-tableau and we set deg T := 0. Otherwise, let A = T~!(n) € [\] and suppose
A is an i-node. We set inductively

deg T :=deg T 1 + da(N). (1.4)

Example 1.9. Let { = 0o, k = (2,—1) and A = ((2,2,1),(3,2)). Then the residue pattern
of A is

DN | ‘OH[\'}
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and if T is the tableau

7]10]

QoW ‘OA[\DH

we have
degT=0+14+0404+14+24+40+0+0—-1=3.

The nodes contributing to the degree are those containing the entries 2 (a 1-node), 5 (a
2-node), 6 (a 0-node) and 10 (a 1-node).

1.4. Garnir tableaux.

Definition 1.10. Let A € 2! and A = (r,¢,t) € [\]. We call A a Garnir node if (r+1,c,t) €
[A]. For a Garnir node A € [\], the Garnir belt B4 is the set of nodes

{(ra,t) e N e<a< \PYu{(r+1,a,t)e[N|1<a<c}

Finally, for a Garnir node A € [\], the Garnir tableau G* is the M-tableau which agrees
with the initial tableau T* outside of B4 and has the entries u,u + 1,...,v from the bottom
left to the top right of B4, where u = T*(r,¢,t) and v = T)(r + 1,¢,t). Then

w® = Sy(a, A\ —c+1,¢), (1.5)

where a = Y121 MO 4 Z;;i )\E-t) + ¢ — 1. Note that Sa(a, AD e, ¢) is 321-avoiding so

that w®”" is fully commutative. See [4, Lemma 2.1] for example.

Example 1.11. Let A = ((4,3,1,1),2,(3,2,1)) and A = (1,3,1). Then the Garnir tableau
G4, with the Garnir belt B4 shaded, is as follows.

¢ =

10[11]12]
13]14
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The following lemma is an easy generalisation of [23, Lemma 3.14] but we include a proof
for the reader’s convenience. This lemma and Lemma 1.13 will be used in the proof of
Theorem 3.19 in Section 4.

Lemma 1.12. Let A € &% and T € Row(\). If A= (r,c,t) € [\ with T(r,c,t) > T(r+1,¢,t),
then there is an element w € &, such that T = wGA and £(T) = £(w) + £(GA). That is,
w' > w' . Conversely, if T = wGA with ((T) = £(w) + £(GA) then T € Row()\).

Proof. Let u := TN(r,c,t), v:= T r +1,¢,t), a :=T(r,c,t) and b := T(r + 1,¢,t). If T = G4,
the result is clear. So we suppose that T # G4, and we will choose a basic transposition s;
such that s;T € Row(A) and s;T > T, from which the result follows by (reverse) induction on
the dominance order >.

If T coincides with T* outside of B#, there is a gap in the reading word of T in either the
first or the second row of B4 — otherwise u,u+ 1,...,v are split into two sets of consecutive
numbers and as T(r, ¢, t) > T(r + 1,¢,t) the only way to fill in the numbers is T = G*. Thus,
we may choose ¢+ 1 in the first row and ¢ in the second row for some i with (i,7+ 1) # (b, a),
so that s;T(r,c,t) > s;T(r 4+ 1,¢,t).

Otherwise, we may choose s; so that s;T(r,c,t) > s;T(r + 1,¢,t) as follows. First suppose
that the reading word of T begins 1,2,...,m,m’ for some m’ > m + 1 and m < u. Then
setting 7 = m/ — 1 suffices. Next suppose that the reading word of T ends m/,m,m+1,...,n
for some v < m’ < m — 1. Then, setting i = m’ suffices.

For the converse statement, we argue by induction on £(T). Suppose T = wG* with ¢(T) =
{(w) + £(GY) and s;T < T. Then if s,T is standard, so is T, by [9, Lemma 1.5]. But this
contradicts the induction hypothesis. O

Lemma 1.13. Let A € &' and T € Row()).
(1) If T(r,e,t) = T(r + 1,¢,t) + 1, then there is an element w € &, such that, for
A= (r,ct) € [N,
(i) T = wG4,
(ii) spw = wsy, where p=T(r + 1,¢,t) and ¢ = GA(r +1,¢,1).
(2) If T(r,c+ 1,t) = T(r,c,t) + 1, then there is a Garnir node A € [A] and w € &,, such

that
(i) G (ryc+1,t) = G4 (r e, t) + 1,
(i) T = wG4,

(111) spw = wsq, where p=T(r,c,t) and ¢ = GA(r, ¢, t).

Proof. (1) Part (i) follows from Lemma 1.12. For part (ii), note that G4(r,c,t) = ¢ + 1
by definition, so that

1=T(r,c,t) —T(r+1,¢,t) = w(@(r,e,t)) — w(@(r +1,¢,t))
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=w(g+1) —w(q).
It follows from Lemma 1.2 that ws; = s,,(qw = spw.
(2) We begin by choosing a node A = (r/, ¢/, t') € [A] such that T(+',c/,t') > T(r'+1,¢,t)

and GA(r,c + 1,t) = GA(r,c,t) + 1 as follows.

If T(r,c+1,¢t) > T(r +1,c+ 1,t) then we know that T(r,c,t) > T(r+ 1,¢,t), so we
may choose A = (r,c,t).

Next, suppose T(r—1,¢,t) > T(r, ¢, t). Then we have T(r—1,c¢+1,t) > T(r,c+1,1),
and we may choose A = (r — 1,¢+ 1,¢).

Otherwise, if T(r,c+ 1,t) < T(r + 1,¢+ 1,t) and T(r — 1,¢,t) < T(r, ¢, t), then, as
T € Row(\), there is some node A = (1, ¢, ¢') such that T(r',c,t') > T(r' + 1, ,t')
and (r',c,t) # (r — 1,¢,t), (r,c + 1,t). Since GA(z,y + 1,2) = G*(x,y, 2) + 1 holds
unless (x,y,2) = (', —1,t'), (' +1,,t), (r,e,t) # (', —1,t), (r'+1,, ') implies
GA(r,c+1,t) = GA(r, ¢, t) + 1. Hence (i) is proved.

Now, by Lemma 1.12 and the fact that T(+',,¢') > T(r' + 1,,t’), there is some
w € &, such that T = wG* and /(T) = £(w) + £(G*). We have proved (ii). Moreover,

1=T(r,c+1,t) = T(r,c,t) = w(GA(r,c + 1,t)) — w(GA(r, ¢, 1))
=w(q+1) —w(q).

Thus, (iii) follows from Lemma 1.2. O

Lemma 1.14. Let A and B be distinct Garnir nodes of A\ € 2. Then there is a unique
tableau GB € Row(\) such that

(1) 648 >1 ¢4 and ¢A4B > 6B,

(2) T =1 GYB for any T € RowStd(\) with T >1 G4 and T >, GB.

Proof. Tt is known that RowStd()\) is a lattice with respect to the left order. See for example
[5, Theorem 7.1] (with some slight modification to generalise to RowStd(\)). Thus G475 =
¢4 v GPB. O

We redefine G5 in Definition 1.15 below in a more concrete manner and show in Lemma 1.17

GAB

that it coincides with in Lemma 1.14.

Definition 1.15. Suppose A, B € [)\] are distinct Garnir nodes. We define the sets B4(2)
and BZ(1) to be the second row of B4 and the first row of B?, respectively.
We define the generalised Garnir belt BAP of [\] to be the following set of nodes.
(1) f BANB?Z =), then BAP := BAUBP5.
(2) If A= (r,¢,t) and B = (r,c,t) for some ¢ > ¢, then

B4 = {(ra,t) [a>cU{(r+1,a,t) |a <}
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=BAUB?®
= (B4 \B?(1)) U (BP \ B4(2)).

In this case, we set BAB(1) = B4\ Bf(1) and BA#(2) = BB\ B4(2).
(3) If A= (r,¢,t) and B = (r — 1, ,t) for some ¢ > ¢, then

BAE = {(r—1,a,t) |a >} U{(r,a,t) |c<a<d}U{(r+1,a,t)]a<c}

Finally, we define the generalised Garnir tableau in the first two cases above to be the
A-tableau G4# which agrees with T* outside of B4Z and has the entries of B4# as follows:

(1) If BANBP5 = (), then we fill each of B4 and B as in G4 and G, respectively.

(2) If A= (r,¢,t) and B = (r, ¢, t) for some ¢’ > ¢, then we first fill the entries of B4Z(1),
from bottom left to top right, and then we fill the entries of B4 (2), from bottom
left to top right.

In the third case above, G4 is defined as follows.

(3) f A= (r,c,t) and B = (r—1,¢,t) for some ¢ > ¢, GNP is defined to be the A-tableau

which agrees with T} outside of the three rows of [A] which contain elements of B45,

and we fill the entries of these three rows first in order along rows above B45, then
from bottom left to top right in B45, and finally in order along rows below B45.

Example 1.16. Let A = ((1),(10,9,6,2)) and A = (2,3,2) € [A]. Then we have the following
tableaux G4 in cases corresponding to Definition 1.15, where we have shaded the generalised

Garnir belts BAZ in each case.

(1) Let B = (1,1,2). Then

GAB —

3[4[5]6]7[8]9]10[11]12]
2 |13/17]18]19[20/21]22/23
14]15[16|24/25/26
2728

(2) Let B = (2,6,2). Then

GAB —

2[3]4|5[6]7/8[9]10[11
12/13]17/18[19(23/24]25[26
14/15/1620121]22
2728
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(3) Let B = (1,6,2). Then

GAB —

2[3]4]5]6[16[17]18]19]20]
7| 8 [12[13]14]15/21]22]23
9 [10[11]24]25[26
2728

Lemma 1.17. The construction of GYB in Definition 1.15 satisfies GYB = G4V 6P and thus
coincides with the tableau G defined in Lemma 1.14.

Proof. 1t is easy to see that ¢AB >, ¢4 and GAE > GB, so that we have ¢4B >, ¢4 v B,

If the inequality were strict, then there exists a basic transposition s such that
¢8> 568 > et vl

However, the explicit construction of G4® shows that either sG45 %, G4 or sG4B %, 6B

occurs for any basic transposition s with G5 > sG45. Hence, we must have equality. [

Lemma 1.18. Let A = (r,c,t) and B = (', , ') be Garnir nodes of A € 2.,
(1) If BANBE = () then ws? s fully commutative.
(2) If r =1" and t =t' then w&? is fully commutative.
(3) If GYB = wAeA = wBGeB, then w? and w® are fully commutative.

Proof. Take w?, w? € W such that ¢4 = w464 = wPGcB. We consider the three cases (1),
(2) and (3) in Definition 1.15.

e In the first case, G485 = w¥' 6B = w¢”GA and it is clear that each of w®" and wS”
are of the form Ss(c,a,b) = sh.w[a,b] for some a, b, c. Further, w¢"” has a unique

descent pattern of 2143. Thus, w? = w®, wB = w® and w"" are 321-avoiding.
This implies that (1) holds, and (3) holds when B4 N B = {.

e In the second case, w* is a shift of w[/\gt) —c+1,d —¢] and w? is a shift of w[¢' —c,c].
Thus w? and w? are 321-avoiding. Further, the two-line notation for ws s

( 1 2 o dec d—ctl - o A0 PYONE IR YONIEN QNS I AEfH—c’)
cHlet2 - ¢ 2d—ctl - AP pd—etrl 1 e dH1 e 2d—c

up to shift. Hence, w®""” is 321-avoiding, which yields that (2) holds, and (3) holds
when r =7’ and t = t'.

e In the third case, w* and w? are w[)\gl —d+1,c+] and w[)\ff_)l A e 42, q]
up to shift, respectively. Thus, they are also 321-avoiding, which completes the proof
of (3).

g
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2. QUIVER HECKE ALGEBRAS

2.1. Affine and cyclotomic quiver Hecke algebras.

In this subsection, A is an arbitrary symmetrisable Cartan matrix.

Let O be a unital commutative ring and we fix a system of polynomials @Q; j(u,v) € Olu, v]
for 4,5 € I of the form

Qi.j(u,v) = Zp(%oci)Jrq(aj,aj)+2(ai,aj)=0 tigpquPv? ifi#J,
1,7 Uy =
ifi =,

where t; j., o € O are such that t; j.—o,, 0 € O and Q; (u,v) = Q;:(v, u).
For v € I" and v/ € I", we denote the concatenation of v and v/ by v * v/ € I"t". Here,
we understand that I := {}} and D« v = v * ) = v.

Definition 2.1. The cyclotomic quiver Hecke algebra RA(n) associated with polynomials
(Qi,j(u,v))ijer and A € P is the Z-graded unital O-algebra generated by

{e(v) |v=(vi,...,vn) € I"}U{x1,...,2n} U{tV1, ..., ¥n_1}

subject to the following relations.
€(V)6(I//) = 61/,1/’6(7/);

Z e(v) =1;

veln
rre(v) = ()
drelv) = elss)i
TyTs = Ty
Urxs = TPy if s£r,r+1;
Yrtbe = ats £ s > 1
Trpre(v) = (Urxr1 = Ouy vy, Je(V);
Trp1pre(V) = (Yrr + 0u, 0,4, )e(V)
Vre(V) = Quy i (Tr, Tri1 )e(V);

Ql/r,l/r+1 (xT7xT+1)_QV7-,VT+1 (xr+27xr+l) G(V)

(¢T+1¢T¢T+1 - wrwr+1¢r)6(y) = Tr—Tr42

0 otherwise;

)

if v, = vy yo,

(CHRLY

for all admissible r, s, v,/, and x, e(v)=0forvel.
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The algebra R™(n) is given a Z-grading by setting

deg(e(v)) =0,  deg(zre(v)) = (au,,n,),  deg(vse(v)) = —(u,, au,,,)
for all admissible r, s and v.
For B € Qt with ht(8) = n, we set
IP={vel"|a,+ -+, =3}

Then e(B) := 3,6 e(v) is a central idempotent. We define R(3) := R™(n)e(8), which
is also an O-algebra. It is clear that R*(3) may be defined by the same set of relations if
we replace I™ with I®. We have the following decomposition of R*(n) into a direct sum of

QO-algebras.
RYn)= P R (B
BeQ™
ht(8)=n
aY A
When we drop the relation a:i v >€(l/) = 0 for v € I?, we obtain the quiver Hecke algebra
R(B).

For each element w € &,,, we fix a preferred reduced expression w = s;, ...s;, and define

1/Jw = 1/%1 .. .wit S R(ﬁ)

Note that 1, depends on the choice of reduced expressions of w unless w is fully commutative.
The following comes from the defining relations.

Proposition 2.2 ([8, Proof of Proposition 2.5|). For two reduced expressions s;, ...Ss;, =
8j, ...s5, for an element w € Gy, (Vi ... Yy, — Yy, ..., )e(v) can be written as a linear
combination of elements of the form vy, f(x)e(v), where u < w with {(u) < {(w)—3, and f(x)
1 a polynomaial in the generators xi,...,Ty.

Theorem 2.3 ([17, 18, 25]). Let B € QT with ht(8) = n. Then the set
{uall . alre() |w € G, t1,. .. ty € Lo, v € TP}
is an O-basis of R(B).

Proposition 2.4. Suppose that Q;;(u,v) have integral coefficients. We denote the cyclotomic
quiver Hecke algebra defined over Z by Ry (n). Then R/Z\(n) is free of finite rank over 7.
Further, R*(n) ~ R} (n) ®z O as O-algebras.

Proof. We prove by induction on n that R(n) is a projective O-module. It is clear that
RM0) = O is a projective O-module. Suppose that R*(n — 1) is a projective O-module.
By [14, Thm 4.5] , RM(n) is a projective R*(n — 1)-module. Thus, the induction hypothesis
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implies that R*(n) is a projective @-module. Applying the argument to @ = Z and noting
that Z is a principal ideal domain, we deduce that R} (n) is a free Z-module of finite rank.
As the defining relations of R} (n) hold in R*(n), the Z-algebra homomorphism

R} (n) — R™(n)

given by mapping the generators 1;, z;, e(v) to the corresponding generators is well-defined.
Hence we have a surjective O-algebra homomorphism

R} (n) @7 © — R (n).

On the other hand, as the defining relations of R*(n) hold in R%(n)®z0O, we have a surjective
Q-algebra homomorphism

RMn) — RA(n) @7 0.
Thus, R (n) ~ R3(n) ®z O. O

Note that our choices (2.1) and (2.2) of Q;;(u,v) being integral coefficients allow us to
define the cyclotomic Hecke algebra over Z.

2.2. The C4 case. In this subsection, we carry out some computations in type Co,. We
choose the following system of polynomials @Q; j(u,v) as our preferred choice: if the Cartan

matrix A is of type C’él) then, for ¢ < j,

wt? it (i,5) = (0,1),
ut+v ifi£0,j=i+1,5#,
Qij(u,v) =1 o (2.1)
u” +v lf(l,j):(f—l,f),
1 otherwise,

and if the Cartan matrix A is of type C then, for i < j,

u+0? if (4,7) = (0,1),
Qij(u,v) =S u+v ifi#0,j=i+1, (2.2)
1 otherwise.
Note that if we assume that O is a field and that any element of O has a square root, then

other choices of the polynomials @Q; ;(u,v) yield isomorphic algebras [2, Lemma 3.2]. Further
we have the following graded dimension formulas. For v € I, let

K\, v) = Z qles™ K,(\) := Z o8

TeStd(\) TeStd(\)
res(T)=v
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Theorem 2.5. For v,/ € I?, we have

rankg e(v) R (B)e(v)) = Y Kq(A v)EKy(\ V),
reZ},
wt(A\)=A—_

rank, R (8) = Z K,(\)?,
N
wt(A)=A—p

rankg R*(n) = ) K (\)?,
AP

where ranky M := ", ., ranko(My)g* for a free graded O-module M = @y My
Proof. By virtue of Proposition 2.4, it suffices to prove the result when O is a field. The
irreducible highest weight U,(g(A))-module with highest weight 22:1 Az € PT is realised

as the submodule U,(g(A))@ C F(r). Thus, the proof is entirely similar to [3]. The only
difference is that we use the tensor product Fock space F(k). O

Now we assume that the Cartan matrix A is of type C'w, and prepare some technical results.
We consider fully commutative elements Sa(c, a,b) = sh.w[a, b]. Then v, for w = Sa(c, a,b)
does not depend on the choice of a preferred reduced expression. We denote it by Wa(c, a, b).
If ¢ = 0 we denote it by ¥[a, b] instead. We have

a a+b
deg(¥[a,ble(v)) = — (Z Qy, s Z auk> .
k=1 k=a+1
For 1 < z <y, we define
7!) Tg: ¢x¢x+l cee Q;Z)y and Q;Z) ig: ¢y¢y71 .. ¢x

Then Lemma 1.1(1) implies
Uy(c,a,b) =1 018 . qp Jopatttm g qetothol gy qote

In particular, i-generators that appear in Wa(c,a,b) are ¥ei1, ..., Yerarp—1- We also have

the following formulae.
Uy(e,a,b) = Wa(c,1,b)¥a(c+1,1,b)... Ua(c+a—1,1,b)

=Us(c+b—-1,a,1)...Uy(c+ 1,a,1)Vs(c,a,l).

Uy(e,a,b) = Ya(c,z,b)Va(c+ x,a — x,b) for 0

=Us(c+y,a,b—y)Vs(c,a,y) for 0
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Remark 2.6. The algebra R(f) admits an anti-involution which fixes the generators. Then it
sends Va(c,a,b) to Ua(c, b, a) because

Ua(c,a,b) = Y 1Y o Jeda P e g 1T g 15 = Wa(e b, a).

Definition 2.7. For ay,...,a; € Z>¢, we define a block transposition S;(a1,...,a;) by
i1
Si(ar, ... ar) = S2()  ak, ai, aita).
k=1
Then it is fully commutative and we may define ¥;(aq,...,as) by
i—1
Uiar, ... a0) = WD ak, ai, aipr).
k=1

More generally, we define block permutations S, ...S;,(a1,...,at) by
Sil ce Sip(al, cee ,at) = Sil cee Sip—l(asip(1)7 ey asl.p(t))Sip(al, ey at),
and the corresponding ¥;, ... V; (a1,...,a¢) by
\I’il e \Ilip(al, ey at) = \I’il e \Pip—l(aSip(l)7 . ,asip(t))\liip(al, e ,at).
Observing that s;,, ..., s;, permute places, the following is clear.

Lemma 2.8. Let w = s; ...8;, € & and ay,...,a; € Zzo. If we define

Awfl(l) = {1, 2, oo ,aw71(1)},
Aw*1(2) = {awq(l) +1,... s Oyy=1(1) T+ aw71(2)},

A1) ={ap-100) + o+ ay1g—1) + 1o @1y o a1 )
then the two-line notation of Si, ... S;,(a1,...,at) is given as follows.
Ay A
Ay . Ay
Corollary 2.9. Suppose that each S; is given by the reduced expressions in Lemma 1.1(1).
Then S;, ... S, (a1,...,at) is a reduced expression if and only if S ... S;,(1,...,1) is.

The two-line notation may be used to represent ¥;, ... ¥; (a1,...,a;)e(v) by diagrams.
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Example 2.10. Let v! € 1%, 12 € I’ 13 € I¢, for a,b,c > 1, and v = v' * v? % 3. Then
Ula + b, cle(v) is represented by

and it follows that Wla + b, cle(v) = ¥1¥s(a, b, c)e(v).
Corollary 2.11. Let a = (a1,...,a¢). If j #i+1 then ¥;¥;(a) = ¥;V,(a).

Lemma 2.12. Suppose that the Cartan matriz A is of type Coo. Let v = (vq,v0,...,vy) € I"
and a,b € Z~o with a <n and a+b <

(1) If Vi — Vat1| = 2, for 1 < i < a, then V[1,a]¥[a,lle(v) = e(v).
(2) If lv1 —vi| =2 2, for 2 <i<a+1, then ¥[a,1]¥[1,ale(v) = e(v)
(WL, a]z 1+‘I’[1 a—1)e(v).

(3) If v1 = vgy1 # V2, ..., Va, then xq41 V[, a]e&u =
(4) If v = vgq1 # Vo, .. Va, then x1V]a, lle(v) = (V]a, l]zqr1 — Yo(l,a — 1,1))e(v).
(5) If lvi —vj| = 2, forl <a,a+1<j<a+b, then ¥b,a]¥[a,ble(v) =e(v).

Proof. (1) As ¥[1,a] =, ...¢; and ¥[a, 1] = 11 .. .14, we have

U[1,a]¥a, ]e(v) = (Ya. .. ¥2)vie(n') (P2 .. o)
= (¢a .. ¢2)(¢2 .. ~¢a)€(V)7

1_
where p' = (v1,Vaq1,V2y -+, Vay Vat2, - - -, Vn), then

V[, a]¥[a, e(v) = (Ya- . ¢3)¥3e(u?) (Y3 . . . %a)
= (Ya- - ¥3)(¥3.. . Ya)e(v),

where p? = (v1, V2, Va41, V3, - - s Va, Vai2, - - -, Un ), and so on. We continue the computation in
this way and we reach ¥[1,a]¥[a, 1l]e(v) = e(v).

(2) The proof is similar to (1) and left to the reader.

(3) By the assumption, we have

Tat1¥[L, ale(v) = zap1¢a .- P1e(V) = (YaZaa—1 - P2th1 + a1 ... Y1)e(v)
= (Y[1,alz; + ¥Y[1,a — 1))e(v).
(4) By a similar computation to (3), we have
x1¥[a, 1]e(v) = 2191 ... Yge(v) = (V1xata .. . 1hg — o ... s )e(V)
= (V[a, 1)zqr1 — Pao(l,a — 1,1))e(v).
(5) We recall the formulas
Ulb,al = ¥a(a—1,b,1)...Ws(1,b,1)T[b, 1],
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Ula,b] = U[1,b]¥a(1,1,b) ... Us(a —1,1,b).
Then repeated use of (2) proves the result. O

Lemma 2.13. Suppose that the Cartan matriz A is of type Coo. Then

¢r+1¢r1/1r+16(’/) = wrwr—i-lwre(’/) + E(Tv V)@(l/)

where €(r,v) is given as follows.

Ty + Tr42 if(VmVr-i-ler—i-Q) = (15051)7
e(r,v) =<1 if (Wry Vpg1,Vry2) = (4,0 £ 1,4) and vpy1 # 0,
0 otherwise.

Lemma 2.14. Let v = (pjpevy ... 1) € I"2 for b > 1. Then

b
1 V[2,ble(v) = V[2,b]Yre(v) + Z Uo(k,2,b — k)ep¥[2, k — 1]e(v),
k=1

where ci, is given by
T+ oo if (g, pe,ve) = (1,0,1),
=191 if (p1, p2, vi) = (4,4 £ 1,i) and pa # 0,

0 otherwise.

Proof. We follow Lemma 1.1(2). Then,

Yo1P[2,0le(v) = Vo1 (YotPo—1 - - 1) (Yo41¢0 - - - P2)e(v)
= Yy Upprre(ve - . vp—1papiavp) (Yp—1 ... 1) (Vp - . . 1b2)
= (Vp¥py1)Vp(Vo—1¥p—2 - - 1) (Yothp—1 - - - P2)e(v)
+ co(Yo-1¥p—2 - Y1) (Vo1 - . 2 )e(v)

= U[2,bene(v) + Y Wa(k,2,b— k)ep U[2, k — 1]e(v),
k=1

where the error terms are computed by using Lemma 2.13. Here, the underlines indicate
generators to which we can apply the braid-type relation. O

Lemma 2.15. Leta,b>1 and1 <t <a—1. Then

YirpVa,ble(v) — ¥la, blyie(v)
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b
Ui — 1,0)Ws(i — 1+ k,2,b— k)epWa(i — 1,2,k — 1)Ws(i + 1,a — i — 1, b)e(v)
k=

—_

b
= WU Ws(i — 1, k,2,b — k)epUaWuWs(i — 1,2,a — i — 1,k — 1,b— k + 1)e(v),
k=1
where ¢, = Tgyi-1+Tryiv1 if Vi, Vig1, Vark) = (1,0,1), ek = 1 if (4, Vi1, Vark) = (5,5 £1, )
for some j = 0 such that v;y1 # 0, and ¢ = 0 otherwise.
Proof. As the 1)-generators that appear in ¥o(c, a,b) are Pey1, ..., Yeratrb—1, We have

Vitp¥la, ble(v) = Wli — 1,0t Wa(i — 1,2,0)¥a(i + 1,a — i — 1,b)e(v)
= W[i — L0)¢ipWa(i — 1,2,b)e(u)Va(i+1,a — i — 1,b)

where p = (V1...Vig1Vat1 -+ - VatbVit2 - - - ValVatbil - - - Vn). We apply Lemma 2.14 to substi-

tute
¢i+b\1’2(i - 17 27 b)e(iu) = \IJQ(Z - 17 27 b)d’ze(ﬂ)
b
+ ) Wo(i — 14k, 2,0 — k)orWali — 1,2,k — 1)e(p).
k=1
Then we have the desired formula. O

We may also compute (¢pii; .- Upri. Y][a,b] — ¥[a, bl ... ;. )e(v) by applying Lemma
2.15 to (Y14, ¥]a, b] — V[a, by, Je(si,., - - - 8i,v) in the expression

Z Yty - - - wb“l‘ik—l (wb-i-ikqj[av b] - \Il[a7 b]wik)e(silﬁtl s siry)wik+1 SRUIA

In particular, we obtain the following.

Lemma 2.16. Let a,b,c>1 and 1 < m < b. Then,
Uy(c+m —1,a,1)¥[a+b,cle(v) — ¥la + b, c]¥a(m — 1,a,1)e(v)
a &
:ZZ\Pg(c—i—m—1,5—1,1)\If[m+s—2,c]\112(m+s+t—2,2,c—t)
s=1t=1

X cstWa(m+s—2,2,t—1)VUa(m+s,a+b—m—s,c)VUs(m+s—1,a—s,1)e(v),

where Cst = Tmystt—2+Tmyste if (Vm+sfla Vm+a, Va+b+t) = (17 0, 1); cst = 1 if (Vm+sfla Vm+a,
Varbit) = (4,7 £1,4) for some j such that Vpiq # 0, cse = 0 otherwise.
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Proof. As Ua(c+m —1,a,1) = Yeym - - Yetmta—1, the left-hand side is

Z 7!} Tiiz“ 2 Q;Z)chn"LJrsfllll[a + b, C] - ‘1}[@ + ba C]T/Jm+sf1)6(ﬂs)1/) Tmigilv

—

where 1° = Spmts.--Smya—1V = (V1. . Umts—1Vm+aVm+s - - - Vm+a ---Vn). Thus, we apply
Lemma 2.15 with ¢ = m + s — 1. O

Remark 2.17. We have prepared Lemma 2.16 for computing

\112\111\112(61, b, C)@(V) — \111\112\111(0,, b, C)G(V)
= \112(07 a, b)\I/l(CL, ) b)\IIZ(a7 b? C)B(V) - \Ill(b7 ) a)\IJQ(b7 a, C)\Ill(aa b7 C)@(V)

in later sections. If a = 0 or b = 0 or ¢ = 0 then it is zero. Thus we assume a, b,c > 1. First

we observe that
\Ill(aﬂ c, b)\II2(a7 ba C) = \1]2(07 a, C)\IIZ(O + a, (a + b) —a, C) = \If[(l + b7 C]a
Uq(b,c,a)Va(b,a,c) = Wy(0,b,¢)Wa(0+ b, (a+b) —b,c) =V[a+b,c|.

Hence we compute ¥a(c,a,b)¥[a + b, cle(v) — ¥[a + b, ]V (a, b, c)e(r), which is equal to

b
Z Uy(c+m,a,b—m)(Ya(c+m—1,a,1)¥[a+b,c]—¥[a+b,]¥s(m—1,a,1))¥[a,m—1]e(v)

m=1

since WUo(c,a,b) = Ua(c+b—1,a,1)...¥s(c,a,1). Then
Ula,m — 1le(v) = e(w[a, m — 1jv)¥[a, m — 1],
where wla,m — 1Jv = (Vaq1 - - - Vatrm—1V1 - - - VaVatm - - - V). TO compute
(Pa(c+m —1,a,1)¥[a+b,c] — V[a+b,c]Vs(m —1,a,1))e(wla,m — 1]v)

using Lemma 2.16, we check whether (vs, Vgtm, Vatb+e) is (1,0,1) or (4,5 +1,7) for j > 0, or
(j,j—1,j)for j > 2 forany 1< s<aand 1 <t<ec

2.3. Module categories.

In the subsequent Subsections 2.3 to 2.5, we keep the assumption that A is an arbitrary
symmetrisable Cartan matrix but assume that O is a field.

We denote by R(/)-proj and R(S)-gmod the full subcategories in the category R(3)-Mod
of graded R(f)-modules which consist of finitely generated projective graded R(f)-modules
or finite dimensional graded R(3)-modules, respectively. We set

R-proj := @ R(B)-proj and R-gmod := @ R(3)-gmod.
BeQt BeQT
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Similarly, R*(8)-proj and R*(3)-gmod are the full subcategories in the category R™(3)-Mod
of graded R*(f)-modules which consist of finitely generated projective graded R*(3)-modules
or finite dimensional graded R® (B)-modules, respectively. We set

A_proj @ RY(B)-proj and R™gmod := @ R™(B)-gmod.
BeQT BeEQT

Let us denote by ¢ the grading shift functor, i.e. (¢M), = My_q for a graded module
M = @,z M. For M € R(f)-gmod, the g-character of M is defined by

M) = Z dimgy(e(v)M)v
velB

where dim, V := 3", ., dim(V})¢* for a graded vector space V = @y, Vi-

For graded R(f)-modules M and N, we denote by Hompgg) (M, N) the space of degree
preserving module homomorphisms. If f € Hompgg, (¢"M, N), we set deg(f) := k. Then we
define the following graded vector space:

HOMps) = @D Hompg)(¢" M, N).
keZ

We write Hom(M, N) and HOM(M, N) if there is no confusion. For 3,3 € QT, we set
e(B,B) = Z e(v* V).
VEIB7V/EIB/

Definition 2.18. Let M be a graded R(S)-module, N a graded R(3’)-module. Then the
convolution product M o N is the graded R(S + ')-module defined by

Mo N :=R(B+ B)e(B,8) @rpyarp) (M @ N).

Let A = Z[q,q"']. We denote by [R-proj] and [R-gmod] the Grothendieck groups of
R-proj and R-gmod respectively. The convolution product makes [R-proj] and [R-gmod] into
A-algebras, and we have the following theorem.

Theorem 2.19 ([17, 18, 25]). There ezist isomorphisms of A-algebras
[Reproj] ~ Uy (s) and [R-gmod] ~ U (g)"-

Now we explain the cyclotomic categorification theorem proved by Kang and Kashiwara.
For this, we introduce the induction and restriction functors FZ-A and Ei.’\, for i € I, as follows.

e The induction functors F* : RA(8)-Mod — R*(B + a;)-Mod are defined by
Ff = RMB+ ci)e(, i) ®pagg) —

e The restriction functors E} : RA(8)-Mod — R*(B — a;)-Mod are defined by
E} =e(B — ai,ai) RMN(B) ®pags) —
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The following theorem is proved by showing that Fl-A and EZA are biadjoint functors. The
action of the Chevalley generators on the left-hand side of each of the isomorphisms in the

theorem is given by the linear operators induced by the functors: for 8 € QT,

5
R™(3)-proj RM(B + )-proj
g = (e A=B)(as09)/2 pA
§ 1 (2.3)
gy 7A*B>)(%»a¢)/2FiA
R(B)-gmod RMB + ay)-gmod
EA

3

Theorem 2.20 ([14, Theorem 6.2]). For A € PT, there exist Uy (g)-module isomorphisms
[RA-proj] ~ V4 (A), [R™-gmod] ~ V4 (A)Y.

2.4. Convolution product for cyclotomic quiver Hecke algebras.
The aim of this subsection is to prove the following.

Proposition 2.21. If M € R*(8)-gmod for A € P* and N € RN (8')-gmod for A’ € P,
then M o N € RMA (3 + /)-gmod.

Proof. Let m = ht(f8) and n = ht(f’). We may assume that M and N are non-zero
modules and m,n > 0, so that we may take non-zero elements a € e(v;...vpy)M and
b € e(Vmi1 - Vmin)N, for some v = (v1,v9,...,Umin) € I™T". As e(vy...vm) # 0 and
e(Vm+1 - - - Vm4n) # 0, the defining relations

(of) 5 A)

l/17 A/>
Ty

(o
e(Vm+1 -+ Vman) =0

e(vy...vm) =0 and x, ™
imply (o, A) >0 and (o, ., A') > 0. We take w € Gppin/Sy, xS, Note that
w(l) <---<w(m) and wim+1) <--- <w(m+n),

so that w is fully commutative and

w (1) =1or m+1,

e(Vw-1(1), Vw-1(2)s - - - s Vw1 (mn) ) Pw (@ @ b) = Py (a @ D).
To prove the assertion, it suffices to show that

2 (a @ b) =0,

where [ = <a’\//w—1(1)’A> and I' = <al\,/w_1(1),A’).

If w=i(1) = 1, then 211y, = ¥yx1. Thus, we have

2 (0@ b) = rtt (4 @ b) = (25 a) @ b) = 0.
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Suppose that w‘l(l) =m+ 1. We set © = WS Sm_1 -..S1, whose two-line notation is

1 2 - m+1 m+4+2 - m+n
(1 w(l) - w(m) w(m+2) - w(ern))?

so that u(1) = 1 and l(usis2...Sm) = L(u) + €(s152...8m) = L(u) + m. As w is fully
commutative, 1, = Yy, 19 ... Yp,. It follows from

m

Y12 . Upe(v) = P12 . PmTmp1e(v) — Z Ovmir i1 - - Vi—1Vi41 - - Ume(v)

t=1

and s1...81(V1...vm) = (W1 ... V... V) that
2 (@ ®b) = 2 T v - Y (a @ D)

= $l1+ll_1¢wxm+l(a X b)
- Z TS, a1 - (@ ® b)
=1

= $l1+l,_l¢w33m+1(a ®b)
m

- Z 5l/m+1,l/twuwt+l cee ¢m(($11+l/_1¢1 e wt—la) ® b)
t=1

=2 Yz 1 (a @ D).
Continuing this process, we have
A G0 ®b) = 2hpual, (@ ©b) = 2hu(a (1) =0,
which completes the proof. O

2.5. Dual space for the convolution product.

Let 7 : R(3) — R(f) be the graded anti-involution which is the identity on generators. For
M € R(B)-gmod, we define M® := HOMo (M, O) to be the dual of M whose R(3)-action is
given by (zf)(v) = f(7(z)v) for x € R(B), f € M® and v € M.

We take self-dual simple modules M € R(f)-gmod and N € R(v)-gmod with m = ht(5)
and n = ht(v). Let by; and by be bases of M and N over O respectively. Then

brroN = {Q/)w RrRyY | w e 6m+n/6m><6n, x € by,y € bN}
is a basis of M o N. We define
b5ron = {657 | 0 € Gpin/GmxGp, € byr,y € by} C (Mo N)®

to be the dual basis of bason, i.e. &u¥ (Yu @ ' @Y') = (wwy),(w o' y)- It is known that there
is an R((3 + v)-module isomorphism
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which sends 1 ® y @ = to £ | for y € N and x € M. See [22, Theorem 2.2(2)].

w[m,n

Lemma 2.22. The isomorphism N o M ~ ¢~ #Y) (M o N)® sends ¢, @ y @z € N o M to

, 2 : "y —(8, ®
E’l{f}glw[myn] + a/wllevy/g’l:f)/y E q (ﬁ ’Y) (M © N)
w'=w ™ wim,n]
z’eMy’'eN

for some ayy oz € O, and €Y € ¢ BN(MoN)® to

—lw[m,n]

Yo ®YRT+ Y buw ythw ®Y ®2 € No M (2.4)

w' <w,
r’'eM,y'eN

for some byy 41 € O.

Proof. The first assertion is clear because zpwgfufjn n] has the desired form. The second asser-
tion follows from the first. O

3. SPECHT MODULES IN AFFINE AND INFINITE TYPE C

In this section, we introduce Specht modules for cyclotomic quiver Hecke algebras in type
C’él) or Uy and provide a basis theorem for Specht modules in type Cs. From now until
Definition 3.11, we assume that O is a field.

3.1. The modules L(k;?).
For k € Z and { € Z~q, let

k+0—-1
6(;{:;5) = Z o and V() = (E,]{? + 1, .. ,k+£ — 1) S I’B(k3z).
t=k

Then L(k; £) = Ol is the one-dimensional graded R(S,¢))-module defined by deg(l(.)) =
0 and

Tilike) = Vil = 0, W)ty = v likse) (3.1)

for 1 <i<? 1<j<l—1,veIPko. If there is no confusion, we write I for [(x;¢) and we
sometimes write £(k,k + 1,...,k + £ — 1) instead of L(k; /).
Let k € Z and 01,0y € Z>p. As

L(k; 1) @ L(k + l1;02) 2= e(Br;ey)s Birttr:02)) L (ks €1 + £2)

as an R(B(x;e,)) ® R(B(k+s1:0,))-module by construction, we have

Hom g L(k;01) o L(k+ l1;02), L(k; 01+ £2)) #0

Bkseq +25)) (
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by Frobenius reciprocity so that there exists a surjective R(B(k;gﬁg?))—module homomorphism
p: L(k;l) o L(k+ ly;00) — L(k; 01+ £2) (3.2)
sending [ ® [ to [. Taking the dual of p, we have the graded monomorphism
L L(k; 0y + o) — qBuser) Blrersen) £(k + 04 ) o L(k; £y).
Then, noting that p(¢, ® [® [) = 1, [ implies ¢(I) = fi’& (2.4) from Lemma 2.22 shows that

[’([(k;fl-i-fz)) - ww[fz,h]([ ® [) + Z aw¢w([® [> for some a,, € O?
weSy, yo,
w=<w(l2,01]

with 9, (1@ 1) € e(V(p,420)) L(k + £1;€2) 0 L(K; £1) and deg(, ([® [)) = 0 whenever a,, # 0.
Here, deg(I® ) = (B(k;e1)s B(k+£1;05)) because of the shift. The following lemma is easy to see

by construction.
Lemma 3.1. Define
ri=1op: L(k;lr) o L(k + £1; 62) — ¢ Pt st £(k 4 01;05) o L(k; 1)
(1) Let i = lgup,y and Iy = lypy:0,)- Then

r(l ® l2) = Yuyjr,0(l2 @ 1) + Zawww(lg ® ) for some a, € O,
weSy, 0,
w<w[lz,l1]

with Yy, (e @11) € e(Vkye, +2)) LK+ L1 L2) 0 L(K; £1) and deg(vy(l2®11)) = 0 whenever

ay # 0.
(2) im(r) is isomorphic to L(k; 1 + {2).

Corollary 3.2. If the Cartan matriz is of type C, then
(@ I2) = Yyfg,0) (2 @ ).

Proof. In type Co, we know by examining residues that e(v)L(k+¢1;02) o L(k; ¢1) # 0 if and
only if v is a shuffle of v(;1¢,.s,) and v(,e,). Thus it is straightforward to check that

e(V(ksty 4+02)) Lk + L1 ) 0 L(k; 41) = Spanp {0, (l2 @ 1)},
which completes the proof by Lemma 3.1. U

Remark 3.3. Tt is easy to show that L£(k;¢) admits an affinization for any k and ¢. If A is
of type Coo, then L(k; /) is real and r in Lemma 3.1 is the R-matrix [16]. Note that, if A is
affine, L(k; /) is not real in general.
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Proposition 3.4. Let k € Z and a,b,c € Z=y with b = ¢ > 0. Then, there is a non-zero
R(Bka) + Bk—1:0+6+1) + Blkt+ase—1))-module homomorphism
g:L(k;a)oL(k—1;a+b+1)oL(k+a;c—1)
— ¢Vt Bitan) £(k;a 4+ b) o L(k — 1;a + ¢)
such that

glIxl) =Vs(a,ba+1)([1) + Z Py (I@1)  for some a, € O.
w=<S2(a,b,a+1)

If the Cartan matriz A is of type Co then ay, = 0 for all w < Sa(a,b,a + 1).

Proof. Combining Lemma 3.1 with the surjectivity of p, we have a non-zero homomorphism

L(k;a)o L(k—1;a+1)o L(k+a;b)o L(k+ajc—1)
dorgid Pttt Bitan) £(Es a) o L(k + a;b) o L(k — ;a4 1) o L(k +ajc— 1)
PR g Be—vatn Botan) £(k; a0+ b) o L(k — 1;a + ¢).
Lemma 3.1 (2) tells us that the image of the first homomorphism is isomorphic to

L(k;a)o L(k—1;a+b+1)o L(k+a;c—1),

which is generated by

(@ | Th,a+1](I@0)+> awpu(e]) | @1
w=<w(b,a+1]

= Uy(a,ba+ (IR IR+ aptu(IR IR
w=S2(a,b,a+1)

by Lemma 3.1 (1). Thus it gives a non-zero homomorphism
g:L(k;a)oL(k—1;a+b+1)oL(k+a;c—1)
— q(ﬁ(kfl;aﬁ»l)7B(k+a;b))£(k; a + b) 0o £(k _ 1’ a + C)

such that g(I® [ ® [) has the desired form. O

3.2. The modules S*.
Let A = (A1, A2,...,\) € P} with a charge k € Z. Note that the level of A is 1. Let
B := cont(\) and define

M= L(k; M) o L(k—1; M) 0---0 L(k —t+1; \) € R(B)-gmod.
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For a Garnir node A = (r,¢) € [A], let

pé A= (B(n—r'c) B(H—r—&-c?\r—c—&—l))
MHA = Mo L(k—r+Lic—1DoL(k—rA+1)oL(k—7+c Mg1 —c)o/\/l’\ir+1

K—r—1>

where Ae,, = (A1,..., A1) and As,i1 = (Ary2,..., ). We denote by m; (resp. mé’A) the
distinguished generator [ ® --- ® [ of M. (resp. Mé,A') By Proposition 3.4, we have the

non-zero homomorphism
q_pé’f‘ﬁ(n—r—l—l;c— DoL(k—r;MA+1)0L(k—7+¢; Ay1 —C)
— L(k—r+1;N) 0 L(k—7;N\p1).
which gives the induced homomorphism
Hhata "M A — M
Definition 3.5. Let A € &2} with a charge x € Z. Then we define, for a Garnir node A,
gna = Hp a(mp p).
By Proposition 3.4 and (1.5), we have

gé\,A cAm Z auwumA for some a, € O. (3.3)

u=wsd

Remark 3.6. If the Cartan matrix A is of type Cw, then gé‘ A= Y ea mé This is reminiscent
of the Garnir element defined in [21] for type A

Lemma 3.7. We have

(i) gy 4 =0, for 1 <i<m,
(ii) wjgl)i\,A = 0 unless 5;G* € Row(\).

Proof. For 1 < i < n, we have
zige 4 = TiHp a(mp 4) = H a(zimis 4) = 0.
Let A= (r,c) € Aand [, = >-F_, \,. Considering the definition of G, we know that
5,6 € Row(\) if and only if 5 =1Iy,...,Lr—1,lr—1 +c— Ll + ¢ loyt, oo, b
Thus, by the construction of mﬁ A
bigaa =wiHp a(mp 4) = Haa(ymp 4) =0

unless s;G* € Row()\). O
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We define H : @Aq_pévAMﬁ’A — M as the sum of ’H’\A over Garnir nodes A of X\ and

K
set

Gr=imH) C M}, S)= q%°&™) coker H).
If there is no possibility of confusion, we will drop the subscript x from our notation, i.e. we
will simply write M*, m?, g;\‘, S?, etc.

Definition 3.8. For A= (A, ... XDy e 2! and k = (k1,..., k) € Z!, we define
M= M) = Mﬁil) 0---0 Mﬁl(l).
SM=8) = q%&™) coker ’H,éil) o--- o coker ’Hél(l).
We write S*(O) when we need to emphasise the field.
Remark 3.9. By Theorem 2.3, the set
{prm™ | T € RowStd(\)} (3.4)
is an O-basis of M*.
Note that deg),,m* = degp,re(res(T)) by definition. Then we have the following result.
Proposition 3.10. If T € Std()\), then degi,rm” = degT — deg T.
Proof. We closely follow the proof of [8, Proposition 3.13]. If T = T*, then we have
deg ), 1 m* = degm® = 0 = deg T* — deg T*.

Thus, it suffices to prove our statement in the case that S,T € Std(\) are such that 4(S) =
/T)+ 1 and S = s, T. Let res(T) = (v1,12,...,v,). We may assume that r = n — 1. We
want to show that degT — degS = (ay,_,,qu,). Let A =T '(n) and B = T~'(n — 1). By
assumption, B is above A in [A\]. Now,

degT=da(A\) +dp(\ 7 A) + deg(T n—2),
degS = dp(A) +da(A /" B) + deg(Syn—2).

Note that Tj,_2 = S|,—2, and since B is above A, d4(\) = da(A  B). So we must show
that dg(A " A) —d(\) = (aw,, 4, 0u,)-

If res(A) = res(B) = i, then removing A leads to the disappearance of a removable i-node
and the appearance of a new addable i-node below B, so that dg(A / A) —dp(\) = 4 if
1 =0, or 2 otherwise.

If res(A) = 0 and res(B) = 1, removing A leaves either one fewer addable 1-node and one

extra removable 1-node, or two extra removable 1-nodes, or two fewer addable 1-nodes, so
that dB(A Ve A) — ClB()\) = —2.
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If res(A) = 1 and res(B) = 0, removing A leaves either one extra removable 0-node or one
fewer addable 0-node, so that dg(A ' A) —dp(\) = —2.

If res(A) = £ — 1 and res(B) = ¢ or res(A) = ¢ and res(B) = ¢ — 1 in type C’él), similar
arguments show that dg(A ' A) — dp(\) = —2.

If res(A) = i+1 and res(B) = ¢, with neither residue equal to 0 or ¢, then removing A leaves
either one extra removable i-node or one fewer addable i-node, so dgp(\ * A) —dp(\) = —1.

In all other cases, removing A does not change the degree, so dg(A /' A) —dp(\) =0. O

We denote by m* the image of m* under the projection qdeg(TA)/\/lA — S,

Definition 3.11. Let O be an integral domain. Then for A € WTZZ and k € Z!, we define
SN O) over O to be the lattice Rp(cont(\))m* generated by m” in S2(F), where F = Frac(O)
and Rp(cont(A)) is the quiver Hecke algebra over O.

From now on, let O denote an arbitrary integral domain.

Theorem 3.12. Let A\ € P! with a charge k € Z, and let 3 = cont(\).
(1) S* is generated by {tom* | T € Std(\)} as an O-module.
(2) S is a graded R (B)-module.
Proof. (1) For £ =0,1,..., we define
Ay = {0 | T € RowStd(\), £(T) < £} C S,
By = {¢pam | T € Std(N\), £(T) < £} C Ay
Then (3.4) implies that S* is generated by Upso A¢ as an O-module, so it suffices to show
that
Spanp Ay = Spanp By
for all £ > 0 by induction on ¢. If £ = 0, there is nothing to prove. Suppose that ¢ > 0 and

take T € RowStd(\) with £ = £(T). We will show that ¢, € Spany,By. Since it is trivial
when T € Std()\), we assume that T € Row(\) and prove v,,7in* € SpanyBy_1. We set

M3 | == Spanp{th,rm* | T € RowStd(\), /(T) < ¢ —1} C M?,
Sg\,l := SpanpAs_1 C SM.

By Lemma 1.12, there are a Garnir node A € [\] and an element w € &, such that T = wG*
and £(T) = £(w) + £(G4). Tt follows from Proposition 2.2 and (3.4) that

Pyrm® — Y, ca m*=0 (mod Mz\_l).

By (3.3), we have
Yuwth gam® —ugh =0 (mod Mj_,),



32 SUSUMU ARIKI, EUIYONG PARK, AND LIRON SPEYER

which implies that
Y =0 (mod S}_l),
proving ¥, »m”* € SpanyBy_1 by the induction hypothesis Span,Ay_; = SpanyBy_1.

. <al\//1 7AE> A
w - % N
(2) It follows from (1) that it suffices to prove x; e(V)p,rm”™ = 0, for T € Std(A). But

if T € Std(\) then w™(1) = 1, so that 1, is a product of s, ..., 9,1 and X1, = Y21
holds. Then, since e(v),,mm* # 0 implies v| = R,

av ,AE
mi " >e(u)z/1wrm)‘ = z1e(V)Prm® = e(V)Pyrzim® = 0. O

Corollary 3.13. Let | € 7o, A € P, k= (k1,...,k1) € ZL, and let B = cont(]).

n’

(1) S* is generated by {0 | T € Std(\)} as an O-module.
(2) Let A = A + - - - + As;. Then S* is a graded R™(B)-module.

Proof. This follows from Theorem 3.12 and Proposition 2.21. 0

Definition 3.14. Let [ € Zwg, k = (k1,...,/) € Z' and A = A + - + Az;. Then we call
the graded R™(B)-modules S*, for A € 2., Specht modules.

Remark 3.15. One can easily construct a ‘column version’ of the Specht modules by the same
argument. (cf. [21, Section 7]).

Example 3.16. Let x € Z and A = (n), N = (1") € £.. Tt is straightforward to prove that
S} ~ L(k;n) ~ SV
In particular, S@ ~ SO,.

Example 3.17. Suppose that A is of type C or C}” with ¢ > 2. Let k = —1 and
A= (4),p=(3,1) € £}. As X has no Garnir nodes, we have
S* = £(1012).

o
(1,1)

H" : 2L(2101) — MF = L£(101) 0 L(2), [ 19hopgmH.

Since p has only one Garnir node (1,1), we have pf’ .\ = (2,1 + ap + a1) = —2 and
Thus, we have G* ~ ¢2£(2101) and
ch,S* = (1012) + ¢(1021) + ¢(1201).
The epimorphism £(101) o £(2) — £(1012) gives the epimorphism
St —» 8,

which tells us that S* is not simple and the head of S* is isomorphic to S*.
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Example 3.18. Suppose that A is of type Cy or Cél) with £ > 2. Let Kk = 0 and \ =
(3,2,1) € #¢. Then deg(T") = 1, M* = £(012) 0 £(10) 0 £(2) and the Garnir nodes of \ are
Ay :=(1,1), Ay :=(1,2) and A3z := (2,1). Since

Ph, = (@1, a0 + a1 +as) = —1,
pi‘b = (a1 + ap, 01 + ag) = —1,
pﬁ3 = (ag, 1 + ag) = —1,
we have
MY, :qL(1012) 0 £(0) 0 £(2) — M, m), —> trbatm?,
MY, :qL(0) 0 £(1012) 0 £(2) — M, m)y, —> wathathatizm?,
1), :¢L(012) 0 £(210) — M, m, — Yapsm’.
Thus, G* = (1patpsm?, Ysharharhgm?, Papsm*) C M* and
S* = gM* /G

3.3. Basis theorem for type C.
Suppose that the Cartan matrix is of type Co. Then we have the following basis theorem
for Specht modules, whose proof is postponed to Section 4.

Theorem 3.19. Let A\ € P} with a charge k € Z. Then the set {1,»m* | T € Std(A\)} is an
O-basis of S*. Moreover, we have the following graded character formula.

ch,S* = Z q38Mres(T).
TeStd(N)

Corollary 3.20. In the Grothendieck group of R**(n — 1)-gmod, we have
[E’LAESA] _ Z qdb()\) [S)\/‘b]’
b

where b runs over all removable i-nodes.

Proof. We rewrite the graded character formula from Theorem 3.19 as follows.
ch,S* = Z Z q1eeMFd N res(T) * res(b),
b TeStd(\b)
where b runs over all removable nodes. Thus,
chg(E78*) =Y " q®Meh,y(8M?),
b

where b runs over all removable i-nodes. O
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Let | € Zsg, & = (K1,...,/1) € Z' and A = Az, + -~ + As,. One can easily prove
Corollary 3.21 from Theorem 3.19 and Corollary 3.20.

Corollary 3.21. Let A\ € 2.
(1) The set {tp o™ | T € Std(N\)} is an O-basis of S*. Moreover,

ch, S = Z s res(T
TEStd(N)

(2) In the Grothendieck group of R™(n — 1)-gmod, we have
[EASY = q® V[,

where b runs over all removable i-nodes.

We revisit the Fock space F(k). As V4(A) ~ V,(A)Y, by Theorem 2.20, we can identify
Vy(A) =~ V,(A)Y =~ Q(q) ®a [R*-gmod]. Thus, from (1.3), we have the U,(g(A))-module
epimorphism

pr 2 F(k) — Q(q) @4 [R*-gmod].
Proposition 3.22. For A\ € &, we have
pn()‘> = [S)\]

Proof. Tt is obvious that p,(@) = [S?] and wt(&) = wt([S?]) = A. Since both of F(x) and
Q(q) ®a [R*-gmod] are integrable U,(g(A))-modules and Q(q) ®4 [R*-gmod] is simple, it
suffices to show that e;(p.(A\) —[S*]) = 0 for all \. By (1.2), Corollary 3.21 and the induction
hypothesis, we have

eipn(k) = pn(ez)\)

=Dy (Z g\ A)
= qu“ kA A) =) VS = [BRSY,
A

which completes the proof. O
Corollary 3.23 follows from (1.2), (2.3) and Proposition 3.22.

Corollary 3.23. Let 8 = cont(\). In the Grothendieck group of R*(n + 1)-gmod, we have
I EEDY g PN+l A=B) 1) () [2[GALY),
b

where b runs over all addable i-nodes.
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Example 3.24. We use the same notation as in Example 3.18. Let u = (2,2), u1 = (3,2)
and pg = (2,2,1). By Theorem 3.19, we have

chyS* = [2],(012102) + [2],(012120) + [2]2(011202) + [2]2(011220) + [2]2(011022),
ch,S" = [2],(0110),

ch,S*t = q(01210) + ¢[2],(01120) + ¢[2],(01102),

ch,S*2 = (01210) + [2],(01120) + [2],(01102),

where |n|, 1= nf,ln or n € Z>p. Let b1 = (1,3) an 2 = (3,1). en
h q 49 _ f Z=o. Let B 1,3 d B 3,1). Th

q9—q
dp, (A =-1, dp, (A) =0, d" (1) =0, " (1) =1, <Oé\2/,A0 — 209 — 201) = 2.

By Corollary 3.20 and Corollary 3.23, we have
chyE30S* = chyS™ + ¢~ 'chySH? = [2]4(01210) + [2]2(01120) + [2]2(01102),
chy Fy 08" = qchyS* + chy S*2 = ¢[2],(01210) + ¢[2)2(01120) + ¢[2]2(01102).
Remark 3.25. It looks like we need a modified version of the upper global basis in the Fock

space to describe the simple modules. It is an interesting problem to characterise the elements
in the Fock space which correspond to the simple modules.

4. PROOF OF THEOREM 3.19

We assume that the Cartan matrix A is of type Cs and take the parameters (2.2) for the
quiver Hecke algebra R(3). Let us fix A € £} k € Z and B = cont()).

Definition 4.1. For ¢ € Z~(, we define
G2, := O-submodule of G generated by 1,93 for all Garnir nodes A € [\] and
all w € &,, such that wG* € Row()\) and £(wG) = £(w) 4 £(G*) < t.

Remark 4.2. Note that we require wG4 € Row()) in the definition of G2,. In Theorem 4.15
below, we will eliminate the possibility that G* is strictly larger than Zt€Z>O gét.

Lemmas 4.3 and 4.4 are needed for proving Lemma 4.5.

Lemma 4.3. Let T € RowStd()\).
(1) If
(i) A= (/\1,)\2) with Ao > 0,
(ii) res(T~1(n)) =k + A\ — 1 and res(T"H(n — 1)) = k + A1 — 2,
then T(1,\1) = n.
(2) If
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(Z) A= ()\1,)\2,/\3) with Ag > 0,
(ii) res(T"1(n)) = k + A\ — 1, res(T"H(n — 1)) = K+ A1 — 2 and res(T~ 1 (n — 2)) =
K+ A =3,
(i) res(3, Az) # res(1, \a),
then T(1, A1) = n.

Proof. (1) As T € RowStd(A\), T71(n) = (1,\1) or (2,A2). If K+ A — 1 < 0 then (1,)) is
the only node of residue x + A; — 1, so that T(1, A\;) = n. Suppose that xk + \; —1 > 0 and
T-!(n) = (2, \2). Then the assumption (ii) implies that

K+Xd—2=—(k+M—1)<0

and T~'(n — 1) = (1, A1) or (2, A2 — 1). Thus, res(T~!(n — 1)) is either x + A; — 1 or k + Ay,
which are not equal to Kk + \{ —2 =k + A\ — 2.

(2) As T € RowStd()\), we know that T~1(n) = (1, A1), (2,A2) or (3,)3). Further, by the
same reasoning as in (1), Kk +A; —1 > 0 and T~!(n — 1) # (1, A1) hold if T"}(n) = (2, A2) or
(3, A3).

Suppose that T~!(n) = (2, A\2). Then

kK+X—2=—(k+A1 —1)<0

and T~'(n — 1) = (2,A2 — 1) or (3,A3). Thus, res(T~*(n — 1)) > x + Ay, which is not equal
tok+A\ —2=K+ A1 —2.
Now suppose that T~!(n) = (3, A3). Then

K+A3—3=—(k+A1—-1)<0

and T-1(n — 1) = (2,\2) or (3,A3 —1). Then res(T"1(n — 1)) = k + A1 — 2 < res(T"}(n))
implies that T"*(n—1) = (2, A2). In particular, T"}(n—2) = (1, A1), (2, A2 — 1) or (3, A3 —1).
If K+ A1 —1 =1, then res(T~*(n — 1)) = 0 by condition (ii). It follows that kK + Ay —2 =0
and K + A3 —3 = —1, so that \; = A2 = A3. But this contradicts condition (iii).
If K+ A1 — 1 > 2, then, since res(T"!(n — 1)) = k + A1 — 2, we have one of the following.
(a) K+Ae—2=K+ A —2>0and A\; = Aa.
(b) k+X2—2=—(k+ A1 —2) <0 and A3 = Ag.

Suppose that we are in case (a). Then
res(1,Xo) =res(2,Xo) + 1 =res(T t(n—1))+1=r+ A — 1 =res(T"(n)) = res(3, \3),

which contradicts condition (iii). Suppose that we are in case (b). Then none of (1,)\;),
(2,A2 — 1) or (3, A3 — 1) have residue x + A\; — 3. O
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Lemma 4.4. Let A = (r,c) be a Garnir node of [\]. Then there is no tableau T € RowStd(\)
such that

TG4 and res(T) = res(G?).
Proof. We take T € RowStd(\) such that
TG4 and res(T) = res(G?).
Note that Lemma 1.8 implies that
T(L,k) =k fork=1,2,...,c—1. (4.1)

Thus, we may assume that A = (A, ¢) and 7 = 1. As res(T) = res(G?), we have T(1,\;) = n
by Lemma 4.3(1).

If \; = ¢, then we have T = G4 by (4.1).

If Ay > ¢, then we have

Tip—1 = an,1 and res(T|,—1) = res(anfl),
which, by induction on A1 — ¢, implies that T}, = anil. Therefore, we have T=G4. O

Lemma 4.5. Let A = (r,¢) and B = (',) be Garnir nodes of [\ with ¢ < /. Suppose
that either (r # 1"+ 1) or (r =’ +1 and res(B) # res(r + 1,¢)). Then there is no tableau
T € RowStd(\) such that

TGP and res(T) = res(G4P).
Proof. Let T € RowStd(\) such that
T 6P and res(T) = res(¢P),

and B4 and B? the Garnir belts corresponding to A and B respectively. If BA N BZ = 0,
then we may argue as in the proof of Lemma 4.4 to see that T = G45. So we assume that
B4 NBPB £ (). Then, we have two cases — either r =1/, or r = 1/ 4 1.

First suppose that » = r/. By Lemma 1.8, we may assume that A\ = (A\,), ¢ # ¢ and
r =1’ = 1. Since res(T) = res(G*#), we have T(1,\;) = n by Lemma 4.3(1).

Suppose that \; = ¢’ and consider the condition
AB A,B
Tin—p 2 G|,~, and res(Tj,_p) =res(G);~ ),

where p = ¢ —c+ 1. As Gf;fp is a Garnir tableau with Garnir node A, we conclude that
Tinp= Gf/fp by Lemma 4.4. Since T € RowStd()\) and T~1(n) = (1, A1), it follows that the
entries n —p+ 1,...,n — 1 must appear in the nodes (2,c+ 1),...,(2, ) respectively, and
thus T = G5,
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If )\1 > C/, then
AB A.B
Tin1 26,7, and res(T|,—1) = reS(G¢rZ—1)v

which, by induction on A\; — ¢, implies that T}, = Gf;fl. Thus we have T = G45.

Next, suppose that r =  + 1. By Lemma 1.8, we may assume that A\ = (A1, A2, ¢) and
r’ = 1. Note that res(1, ) # res(3, ¢) by our assumption and T(1,k) = kfork =1,2,...,¢—1
by Lemma 1.8. We now proceed by induction on Ay — .

First, suppose that Ay = ¢. We must have T(1, A1) = n, by Lemma 4.3(2).

If A\ = ¢, then we define row-strict tableaux T and G’ of shape (\g, ¢) by

T(i,))=T>+1,5)—¢ +1, &,5)=6"PG+1,5)—¢ +1.
Then G’ becomes a Garnir tableau with Garnir node A and
T > G and res(T') = res(@),

which implies that T = G’ by Lemma 4.4. Thus we have T = G475,
If \y > ¢/, then

A,B A,B
Tip-1 2 Gw;_l and res(Tj,—1) = res(Gir’b_l),

which implies that T, = Gf7£1 by induction on A\; — ¢/. Thus we have T = G4-5.

Now suppose that Ay > ¢. Then n is located in the node (2, A2) in 4B, Thus T-!(n) =
(2, \2) or (3,c¢) since T = GAB. Suppose that T~'(n) = (3,¢). Since res(T) = res(GP), we
have res(3, ¢) = res(2, A2) and therefore kK + Ao —2 >0 and kK + ¢ — 3 < 0.

If Ao = 41, then res(3,¢) = res(2, A2) = res(1, ¢) which is a contradiction.

If \a > ¢ + 1, then we have res(T"*(n — 1)) = k + A2 — 3 = res(T"(n)) — 1. Then
k+c—3 < 0 implies that T~1(n — 1) cannot be in the third row, so that T~!(n —1) = (1, \)
or (2,\2). But then res(T~!(n — 1)) # k + A2 — 3, another contradiction. Therefore we must
have T=1(n) = (2, \2).

Thus we have

A,B A,B
Tin1 26,7, and res(Tj,—1) = res(Gir’b_l),

which implies, by induction on A — ¢/, that Tj,,_; = ny’fl. We conclude that T =645, O

4.1. A lemma for block braid relations.

1 2

Lemma 4.6. Let v = v! s v? x v3 where a1,a3 > 1 and

1/1

(t+1,i4+2,...,i+a1),

2= (i,i—1,...,1,0,1,...,i—1,4),

v

v =(i+az,i+az—1,...,i+1),
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for some i > 0. We set as =2i+1 and a = (1,a1 — 1,a2,a3 — 1,1). Then
\IIQ\Ill\Ilg(al, as, ag)e(u) — \I/1\Ilg\Ill(a1, ag, ag)e(v)

s given as follows.

(1) Suppose i # 0. Then it is equal to
U WU W3Ws(a) (21 + Tay+1 + Tas+as + Tar+as+as)e(V).
(2) Suppose i = 0. Then it is equal to V1V VoWUsWs(a)(x1 + Taytas+1)e(V).
Proof. Following Remark 2.17, we compute

VoW Uy (ar, az, az)e(v) — W1 WaW(ay, az, az)e(v)
as

= Z \I’Q(CL?, + k,a1,a9 — k)Xk\IJ[al, k — 1]6(V),
k=1

where X = Wa(ag + k —1,a1,1)¥[a; + az,a3] — V]a; + ag,as]¥a(k — 1,a1,1).
Then, Lemma 2.16 tells that the term Wo(as + k,a1,a2 — k)X Vla1, k — 1]e(v) survives
only if for some 1 < s < aqp and 1 <1t < ag,
e the sth entry of ' = (i + 1,3 +2,...,i 4+ ay),
e the kth entry of v2 = (i,...,0...,1),
e the tth entry of 13 = (i +as,...,i+ 1)

form a triple of the form (1,0, 1), (4,7 +1,7) for j > 0, or (j,j —1,7) for j > 2. Hence, either
(s,k,t) = (1,1,a3) or (1,ag,as) are possible. Thus, if i # 0 we insert

X1 = \11[2,(13 — 1]@2(2,&1 +as — 2,(13)\112(1,(11 -1, 1),
Xay = V]ag — 1,a3]¥2(a2 — 1,2,a3 — 1)¥a(az + 1,a1 — 1,a3)Va(az, a1 — 1,1),
and X = 0 for k # 1, as, to obtain
\IJQ\I’l\I’Q(al, ag, ag)e(y) — ‘111‘112\1/1(0,1, as, ag)e(u)
= (Va(ag + 1,a1,a2 — 1) X1 + X4, ¥[ar, a2 — 1)) e(v).
On the other hand, if i = 0 we obtain
VoW Ws(as,as, az)e(v) — U1 WaWy(ar,az,as)e(v)
= (:L’a3 + xa3+2)\ll[2, asz — 1]‘1’2(2, ap — 1, a3)\l’2(1,a1 — 1, 1)6(1/).

(1) Suppose that ¢ # 0. We write

vl =(i+1) %0 2= (@)« 10 (i), V3 =% (i + 1)
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and let v = (i + 1) x % (i) * ¥ % (i) * v° % (i + 1). Then the first term is
Uy(as + 1,a1,a2 — 1)V[2,a3 — 1]Va(2,a; + a2 — 2,a3)Va(1,a; — 1, 1)e(v)
= (Vs W WeWs) (VW) (Vg UsUsW,UWUs)(Ps)(a)e(v),

where a = (1,a1 — 1,1,a2 — 2,1,a3 — 1,1). Then, following the recipe in Remark 2.17, we
know that there is no error term in WsW W5 (b)e(u) — Uy W5Wy(b)e(n), so that

=(U1W2) (VU5 Wy W6) W5 Vs W5 (b)e(p) U3 Vs W W5 Vs (a)
=0 UoUs W WU U5 W WU WsWsWy(a)e(r),
where 1 = (i + 1) % () * v * v % P % (i + 1) % (i) and b = (1,1,a3 — 1,a1 — 1,a9 — 2,1, 1).
Then, Lemma 2.12(1) implies
— (U oUW (B )e (1) U U5 U g Ws Uy UgUs U (a)
=0 WU WU W WU, UsWsWs(a)e(r)
where o/ = (i + 1) % (i) * €% P % (i +1) % (1) *v* and V' = (1,1,a3 — 1,a2 — 2,1,1,a; — 1).
We continue with similar arguments:
=(U1Wo) U5 W6 W5 (0" )e(u") Uy W30, W05 Ws(a)
=0 U WU WU WU, UsWsWs(a)e(rv)
where p = (i + 1) % (i) * v % P % v % (i + 1) x (i) and V" = (1,1,a3 — 1,a2 — 2,a1 — 1,1, 1),
=(U1 W W05 Uy Wy W) UF(L" )e(n") W5 Wa(a)
=W WU W5V WsWy(Ta;tartas—1 T Tastas+as) Vs P2(a)e(v)
=0 Vo WeWs Wy W3 Wy W5V (a)(Zay+as + Tay+astas)e(V)
=(U1 oW Ws) Wy W30y (b )e(n")UsV2(a)(Tar+az + Tar+as-+as)
=V Wy UeWs W3 Wy WUsWsWs(a)(Tas+ar + Tar+as+as)e(V)
=0 WU W3Ws Wy UsWsWo(a)(as+as + Tar+as+as)€(V),
where p" = (i 4+ 1) % (i) x v* % P x v % (i) * (1 + 1) and b = (1,1,a1 — 1,02 — 2,a3 — 1,1, 1),
and after one more step, we obtain
U WeWoWsW W5 W W3Wo(a)(Tay+ay + Taytagtas)e(V)-

Then, we can check that this is equal to U1 W4 UoWsWs(a)(Tay+ay +Tas+as+as)e(V) if we change
atoa=(1l,a1 —1,a2,a3 — 1,1).
Next, we consider the second term

Ulas — 1,a3]Wa(ag — 1,2,a3 — 1)Wa(az + 1,a1 — 1,a3)Va(az, a1 — 1,1)¥[as, az — 1le(v)
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= (VoW WgWo)(WUsWy)(WeWs5)(Vy) (VoW WsWs)(a)e(r),
where a = (1,a1 — 1,1,a9 — 2,1,a3 — 1,1). Then
=(WoW ) W3WoWs(b)e(u)VaWeWsW WU WaWs(a)
=WoWU  UoWsWoW WU W, Wl UsWy(a)e(v),
where pp= (i) x P % (i + 1) * €% (i) * (i + 1) xv* and b= (1,a9 — 2,1,a3 — 1,1,1,a; — 1),
=V WU Wy U UsWy) W20 Ve(r )T U305 (a)
=WoU WU W WeWUsW, U UsWs(a)e(rv),
where ¢/ = (i) % (i + 1) * P % v (i) x % (i + 1) and ' = (1,1,a2 — 2,01 — 1,1,a3 — 1, 1),
=W Uy Wy (b")e(u" ) UsWy UUs W, U W3y (a)
=0 U0 WU U500 UsWs(a)e(v),
where p/ = ()% (i + 1) x %P % () x (i + 1) xv® and V" = (1,1,a3 — 1,a2 — 2,1,1,a; — 1),
= (03U U W50 ,) U3 (0" e (i) U3Us(a)
=0 U WU WeWUsWy(x; + 22)UsWa(a)e(rv)
=WeU WoWUsW, U5 UsWy(a)(z1 + Tay+1)e(V),
where " = (i+1) (i) %P+ v%% (i) * v+ (i+1) and b = (1,1,a9—2,a1 —1,1,a3—1,1). Then
this is equal to U1 W WoW3Ws(a)(x1 4 x4,+1)e(v) if we change a toa = (1,a;1 —1,a9,a3—1,1).
(2) Suppose that i = 0. We write ! = (1) x v, 1?2 = (0), v = v % (1) as before, and let
v=1)*v"%(0)*v°* (1) and a = (1,a1 — 1,a3 — 1,1). Then
(Tag + Tagt2)¥Y[2,a3 — 1]¥2(2,a1 — 1,a3)¥a(1,a1 — 1,1)e(v)
= (Tag + Tag+2) V1V Vs W3Wa(a)e(v) = U1 Wy W WsWsa(a) (@1 + Tay+ag+1)e(V),
which is the desired result. g

4.2. A special three row case. To handle the case that the Garnir belt of G4Z has three
rows, we may assume that A = (A1, A2, A\3) with A3 > 0 and that Garnir nodes are A = (2, ¢),
B = (1,¢) with ¢ < ¢’. In this subsection, we consider a special case, that is, we assume

(i) The first row of the Garnir belt has residues v} = (i + 1,i +2,...,A\ —c +i+ 1)

T
from left to right.
(ii) The second row of the Garnir belt has residues v2, = (i,i — 1,...,1,0,1,...,i — 1,4)
from left to right.
(iii) The third row of the Garnir belt has residues v} = (¢ +4,c+i—1,...,i+ 1) from

left to right.
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In particular, res(A) = ¢ and res(B) =i+ 1. We denote

(i) the residues of the first row of A by v} * v/},
(ii) the residues of the second row of A by v? x 12, * V2,
(ii) the residues of the third row of A by v % 3,

respectively. Pictorially, if ¢ # 1 and ¢’ # Ao then

v i+1i+2] v
B
vi i1 va, i i+l v
v litolit1] v

Recall from Lemma 1.18 that there are fully commutative elements w4 and w® such that

0(GAP) = o(w?) + (6 = £(wP) + £(GP).

We will show that @bwAgii = wwggg (mod gd A, B)) in Lemma 4.11. We build up to this

with several smaller lemmas, as the calculation is qulte lengthy.
2 2 2 3 3

We denote the length of 1/11, U ,V,Qn,uf,l/l, v by a; 7‘1%7‘11 y Gy, G, A7, Ay, Tespectively,
and define
1 2 3
(alvarvalv m?awal? r)v
1 3
(alva alvalv m?awar)v
1
(alvalvanwar? r?al7 r)v
1 a2
(a’lvalv ay, m?al7 r? r)

Lemma 4.7. We have

wwAgii - wagg = \113\116\114\115\114(9/)(.1'%14_%24_1 + xa}—i—a}—&-af—i—a%—&-a?)‘P7\P6\I}2\Ij3(b)m>\

where
/ 3
b= (al,al,l al —1,d2,,a3 —1,1,a%,a3),
2 2
b= (aj,1,at —1,a7,d%, a2 a} —1,1,a3).

Proof. Note that al > 1, a2, > 1, a? > 1 by definition. Then, by considering the two-line

notation for w®" and w®" as in Lemma 2.8, we know that

4 = S4S5(Q) and wGB = SgSg(g).
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Similarly, we have w? = §;5355(a’) and w? = S35455(a"). Thus,
Vwagh — Yo gly = VU300, U5 (a)m” — UaW, U5 WUy (a)m?
= (U4 U3T4(a”) — U3V T3(a")) e(p) U2 Ts5(a)m?,
Vvl st xv2 0P« 2 x 3. We apply Lemma 4.6 to compute
3y 1, 2

where p =y,
3)6( Ly 2 « Vl?’) — \Ifllllg‘lll(a}q,agn,al e(v, x v,

1 2 3
\112\111\112(0,7", Ay 5 A vV, x Vg, * U )

Then the result is as follows.

(i) If i # 0 then
Vopagh — s gl = U3UeUaUs Uy (0) (X + Xo) U7 T Ta Wy (b)m™,

where X1 = 2,11 0211 + %ol palva? a2, +ap A X2 = To1 40140241 + Tal 1l ra? a2,
(ii) If ¢ = O then
Vopagh — s gl = VaUeWa W50y (0) X1 U7 WeWoWs(b)m?,
where X1 =214 0241 + ol pal4a?+ad41-
As U7WgW,W3(b) does not touch the fifth block of b, if @ # 0 then
XoUrWeWaWs(b)m? = Uy UgWyW3(h) Xom™ = 0.

Lemma 4.8. Let
2 a2 a} —1,1,a3),

b= (al17 17@71" - 1,a12,am,ar,

b =(a},a},1,at — 1,626} —1,1,ad%,a3),
c=(ai,1,at —1,a? —1,1,d2%,,a%,a} — 1,1,a3),
d=(a},1,at —1,a},a%,,1,a> — 1,63 —1,1,a>).

(1) If a} =0, then
U306 Wy WsPy(b)2,1 402 0T U5 (b)m? = 0.

Otherwise,

\113\116\114\115\1’4(bl)$a11+al2+1\117\116\112\113(b)m)\
= (U UgWeWo) U5 W U3 WsWeWq(c)m™ + (U UgWaWs)(Wy W50y — Us Uy U5)W3WeWy(c)m

(2) If a? = 0, then
W0 PsWa(b) 241 4ot 4a24a2, M?\m/ﬁxpz\pg@)w =0.

Otherwise,
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\113\1161114\115\P4(b/)xall+a$+al2+a$n+a?\117\116\1121113 (b)m)\

—(\113\112\118\114)\115\116\117\115\114\1/3 (d)m

Proof. First, note that U7WgWoW3(d) is the product of

Uq(at,al, 1,ak — 1,62, a3 — 1,62, 1,a3)e(v} 7 % (i +

Ue(at,al,1,at — 1,62, a2 a} —1,1,a)e(v} 7 % (i +
\Iig(al,l,al,a —1,d2,,ad%,a} 1,1,ar)e(1/ll>s<(z—|—1)>k
Us(a),1,al —1,a?,62,,a2,a} —1,1,a2)e(v) * (i +1)

in this order, where v} = (i + 1) * i}, v} = 1} «

(14 1).

(1) Moving Tl yq241 O the right,

(\117\If8\1/6\112)\115\114\1/3\115\P6\I/7(Q)m)\ + (\117\118\116\1’2)(‘1/4\115\114 — \P5\I’4‘I’5)\I’3\P6\I’7(g)m

xall+a12+1\lf7‘116\1/2\113(b)m
We apply Lemma 2.12(3) to ($a}+a?+1\1’2

p=uvjx(i+1) %

A
= \117\116(1‘a1+a2+1

\I’Ql’

2 -1 2 2
XV kVp, ¥V, %

If al2 = 0 then ¥y and W3 are the identity and

wal1+al2+1\l’7\116\112\113(b)m

Now suppose that al2 > 1. Note that a? = alz +1

I/:I/ll

A= xall+al2+1\ll7\116(b)m

x (i +1) %0« 07

w (1) %2 *

Then, after applying Lemma 2.12(3), we obtain

\113\116\114\115\1’4@1)1?al1+a12+1‘1’7‘1’6\112\1’3@)

Then we can continue as follows.

1 2,
Doxit 2«02 s v

1 2, 3
1) % v, x5, *xUs * Uj %

1/2*1/1 L2

3N 3 3

*yf*yl *
2

(¢
(
P (
(¢

[

*Vl

vl vf U2 K 1

Wy —
)6l where
7w (i 4 1) % 3

A A
= \117\116 (b)xall—i-a?—‘rlm

> 2. We write
2

V2% P x

(i+1) 3.

:(\:[14\117)\118(\115\116\115) (\112\114\113)\117(g)m)‘
=(U U W) UsTeWs( )e(v) VU U3y (c)m?,

where l//:l/ll*l'/?*(i—i-l)*(i—l-l)*%}*l/

111(1—1@

(alva[ bl m7

and we have

\114\117\118\P5\IJ6\I’5\I/2\IJ4\113\II7(Q)m

Hence, U U, WgUs WU WU, U3 Wy (c)m?

—1,a? 1(1

s Wy

2), so that

2ok d k2 k(i 4+ 1) %3 and ¢

\IJG\II5\:[’6 (g’)e(l/’)

U5 WeWs5(c)e(') =

:\114\1’7\118\116\115\1’6\1’2\1’4\IJ3\I/7 (Q)’I?’L
=W WgWeWo (Vg WsWy)WaWeWr(c)m

is equal to

Wox 1) W3 (b)m m?.

= 0.

A

(T3 U g W) (T U5 Ug— U5 U5 ) Up Uy Ts(d)m

7"7

m* = WU UsWaUs WU, Uy Uy Us(c)m
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(2) Similarly, if we move Lol fal a2 a2, +a} 1O the right,
T 2 s Wy WU Ws(b)m?
a; +a}+al +a2n+al T¥6¥2¥ 30
— A
- ql2m3(za%+a}+a12+a$n+a?q]7 - \Ij7$al1+a}+al2+a$n+a3+af)\1]6(Q)m )

and we apply Lemma 2.12(4) to (xallJraHalera?nJrals\Ih - \P7xal1+a%+al2+a%+ag+a?)e(,u),
where
1,2, .2 .3 2

p=vl s (i + 1) xot x v w2 w0P w2 % (i 4 1) 3.
If az = 0 then Vg and W7 are the identity and
xall+a}+al2+a3n+a13\Ij7\II6\I’2\II3(b)mA = \P2\P3(b)xa}+a}+a%+a?n+al3m/\ = 0.

Now suppose that a? > 1. We write v = v} «(i+1)*0 s« xv2 x (i+1) 02535 (i+1) 513,

Then, after applying Lemma 2.12(4), we obtain
VaWeWaWsWa(b)earsalsarta2, M?\I/yxl:ﬁ%q;g(@)mx
= U WU WUy U WU, Wy Ws(d)m?
= —(U3Wo W0 ,) (W W5 We)Ur T, Ws(d)m.
Hence, —(U3WoWgW,)(VUeWsWs) W70, Ws(d)m? is equal to
— (WU W W) U5 WU U5 W, Us(d)m? — (W3 Wy W W, ) (VW5 W — UsWgWs) U7 W, Us(d)m?>. O
Lemma 4.9. Let ¢ and d be as in Lemma 4.8. Then
S75856525554593555657(c) and S3595854555657555453(d)
are reduced.

Proof. By Corollary 2.9, it suffices to check that they have length 10 if c =d = (1,...,1),
which is easy to check. O

Lemma 4.10. Let A’ = (2,¢—1), B’ = (1, +1). Then we have the following.
(1) Let a} > 1 and a? = 0. Then

‘1’3‘1’6‘1’4‘1’5‘1’4(bl)fllaluralul‘1’7‘1’6‘1’2\1’3(b)mA = Yuw g

for some reduced expression of w € &, with {(weY) = £(w) + £(GA") < £(GHF).
(2) Let a? > 1 and af = 0. Then

\113\116\114\115‘1’4(bl)xa}+a}+af+a$n+af ‘1’7\1’6\1’2\1’3@)"”/\ = —wng/\y

for some reduced expression of w € &, with {(wG"") = L(w) + £(GF") < £(GHP).
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Proof. The result follows readily if we can show that the second term in each of Lemma 4.8(1)
and (2) are zero under the corresponding conditions, since ¢}, = U5Ws¥7(c)m?* and g3y =
UsW, W3 (d)m?. (We note that under the corresponding hypotheses, ¥7(c) in (1) and ¥3(d)
in (2) are the identity.)
(1) For the second term from Lemma 4.8(1), it suffices to consider
(\:[14\:[/5\114 - \115\114\1/5)\113\1/6\117(@?71)‘ = (\If4\1f5\114 - \115\114\115)(g')e(u')\Ilg\Ilg\I/7(g)m)‘,
where v/ = v} % (i + 1) % 02 x 0t % (i + 1) 02« v 2 % (i + 1) x 12 and
d=(a},1,a} —1,a} —1,1,a} —1,a%,,a2,1,a>).
For this, we need to compute
(T Uy — U W0y ) (ar — 1,1,a] — D)e() * (i +1) % 57).
When a! = 1, this error term is zero, and we are done. So we may assume that al > 2
and continue as follows. The above expression is equal to
\11[27a? - 2]\P2(27 CL714 - 27 CL? - 1)‘1’2(1,&1{ - 27 1)6( 1} * (Z + 1) * Vlg)
by Lemma 2.16, but we need a different formula here: first, we apply Lemma 2.16 to
obtain
(U1 Wy — U WoWy)(af — 1,1, ar — L)e( * (i + 1) x 1))
= Uy(al — 1,6} —2,1)¥[a} — 2,a} — 1]Us(a} —1,2,a} — 2)e(} « (i + 1) x ).
Then, we apply the anti-involution of R(3) to obtain

(U Wy — U Wy )(al —1,1,af — De() « (i + 1) x5)
= Uy(al —1,al —2,2)¥[al — 1,0} — 2]Ws(al — 1,1,a — 2)e(} « (i + 1) * ).

We use this formula to compute the second term. To state the result in this case, we

change ¢ to
c=(a},1,1,al —2,a? —1,1,62,,a3 — 2,1,1,a3).

)y M Y m

The second term is then
—(WgWo) (U7 Wg) (W) [(U7 W) (WaWs)(W6)] (s W7)(P5Wa)(c)m™.
We continue as follows.
= — Wy UgWo (U WUy ()e(V) WeWyWsWeWsW, Uy Wy (c)m?
= WU W WU WU,y U5 WU Wy (U2) Wy (c)m?
= — Uy (U WoWg(c")e(V)) Uy WU UsWaWs W, Uy (c)m?
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= —\I/Q\PQ\Pg\I/7\I/6\I/4\I/5\I/6\I/3\I/4\I/7\I/9(Q)m)‘
= 0 (because ¥y(c) = ol fal+a? a2, +a} 1 annihilates m?, as af =al +1>2),
where the third equality above follows from Lemma 2.12(1) and

d=(a},1,a? —1,a} —2,1,1,a} —2,1,a%,,1,a?),

V=l s (i)« 0F 0P+ (0 +2) % (0 + 1) %0} % (0 +2) 02 % (i 4+ 1) 2,
" =(a},1,af —1,a} —2,1,1,a2,,a} —2,1,1,a2),

V=l s (D) 2 *0P x (i+2) % (i + 1) %2 0 5 (1 +2) % (i +1) %172
Thus, if we write

Vo = U UgUeWoUs W U3(af, 1,0l — 1,67 — 1,0} —1,1,d2,,a2,1,a>)

)y my Yy oy Y

by abuse of notation, we have the result.
(2) For the second term from Lemma 4.8(2), it suffices to consider

(UeWsWg — UsWeUs) WU, Us(d)m? = (UgUsWg — UsWaWs)(d (V) Ur U Ws(d)m?,

where v/ = v} % (i + 1)« v x V2, x 0}« (i + 1) % 7P x D2 % (i + 1) x 2 and

d = (all,l,alz,a ai —1,1,(1?—1,@3—1 1 a3).

2
m? 9 -y Y

For this, we need to compute
(U Uy — U1 U0y )(al —1,1,a] — D)e() * (i + 1) x5})

again. But, our assumption that al2 = 0 is equivalent to a? = 1, which implies that

this error term is zero. Thus if we write

Yo = WU WU U5 WUy (af,1,a7,a%,1,ar — 1,602 — 1,63 —1,1,a>)

my T

by abuse of notation, the result follows. O
Lemma 4.11. We have
¢wAgf>x = d}ngg (mod gie(c,A,B))-
Proof. Lemma 4.8 implies that

wwAgj - %;ng = 1/Jwgf>y - ww/gg/ +v+9,

for some reduced expressions of w,w’ € &,, such that £(w) 4 £(GA") < £(GAF) and £(w') +
0(GP") < €(GAP). Here, v and § are the second terms appearing in Lemma 4.8(1) and (2)
respectively, and are both zero by Lemma 4.10 unless al2 > 1 and a? > 1. Lemma 4.9 implies
that wng}v and ¢w/gg, belong to gig(GA,B); we may also have that wwgig, or ¢w/gi‘3/ are zero,

in the degenerate cases that a? =0 or a? = 0, respectively, by Lemma 4.8.



48 SUSUMU ARIKI, EUIYONG PARK, AND LIRON SPEYER

So it remains to show that v+ =0 (mod gig(GA,B)) when a% > 1 and ag > 1. In fact, we

will show that v+ § = 0. We continue by further calculation with v and 4.
As in Lemma 4.8(1), we compute v by using

(U0 Wy — U W W) (al — 1,1,a] — De(@) * (i + 1) * i)
= Uy(a} —1,al —2,2)¥[al — 1,0} — 2]Wy(al — 1,1,a — 2)e(} « (i + 1) * ).

T

To state the result, we change c to

c=(a},1,1,al —2,a? —1,1,a%,,1,a> — 1,a} — 2,1,1,a3),
and write v = v}« (i + 1) % (i +2) % Dl w02 % (i 4+ 1) w2, % (i + 1) % 225 03 % (i 4+ 2) * (i + 1)+ 12,
Then
v = — (UgWg) (T19W11 ) (U7 W) (Wa) (U7 WU, U5Wg)(UaWy)(UgWr)WgWyoWsWg(c)m™

= — UgWoW gy Uo(UrUsWr(c)e() WUy WsUaWaW, WUy WoWoWgWy(c)m?

= — UgWoW g0y Uy Wg Uy WUy WsWWaWy(UE(c)e(r))WrWoWy o WgWy(c)m™

= — (\118\119\118(Q”/)e(l//”))\1110\1111\IJQ\117\116\114\115\116\113\114\:[/7\119\1110\118\1/9(Q)m)\,

= — WgWg (VW gWo(c" )e(w)) W11 Uo7 WeW, UsWeWaW Uy gUsWg(c)m?,

where

d=(a},1,a? — 1,03 —2,1,1,al —2,1,a%,,1,a> — 1,1,a3),

9 Y 'mo ) Y 9y »r
V=l (i D)3« 03 s (i +2) % (i + 1) %0l % (0 +2) %02 5 (1 + 1) %2 % (i 4+ 1) 12,
d" = (af,1,1,a — 2,07 — 1,1,a3 — 2,a2,,1,1,a> — 1,1,a>),

2 2

V=l (i 1) (4 2) s wvF x i+ 1) %08 w02 5 (1 4+2) % (1 + 1) %22 % (i 4 1) 2,

r

" =(af,a} —1,1,a3 —2,1,1,62,,al —2,1,1,1,a% — 1,a>),

L 1 an,s ay
VW=t s (i D) s P (i 2) % i+ 1) %2 sl s 1+ 2) % (i + 1) % (i +1) x 02 %02
w=vp* Ui+ 1) * P % (i +2) % (i + 1) w2 i s (i 4+ 1) % (1 +2) % (i + 1) x2 %13,
We use
(VoW Wy — U W0y )(1, 1, 1)e((i+ 1)« (1 +2)x(i+1) =e((i+1)* (1 +2)x(i+ 1))
to continue as follows.
= — WgWgW10Wg(U19W11 Trg(e)e(w)) ToWr Wl U5 W3, U7 UgWTg(c)m?
+ U WUy U Ur WUy U5 WU Wy Ur WU Ty (c)m™
= — U0 WeWy WU Ur U Wy U5 UWs 0, UrTg Wy Py (c)m?
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+ Uy Wy W W WUy W WsWe Wy W Wy Uy WeWy(c)m?
=+ Uy Uy Wo (Vg UrWeUs T Urg) Uy U10TgWy(c)m™, (1)
where, in the final equality, we have used that Wq(c)m* = wall+a}+al2+a,2n+a$+al3flm)\ =0
since a? >2,and e = (all,al2 -1, 1,az3 —2,1,1,a2,,al —2,1,a%2 —1,1,1,a3),

W=k (D) P (2 (D) w2 k0w (1) %02 % (0 +2) % (i + 1) %2

Similarly, we compute § as in the proof of Lemma 4.8(2) by using the same equality as
above. We replace d with c:

c=(a},1,1,al —2,a7 —1,1,a%,,1,a> — 1,a} — 2,1,1,a3)

L an,,
and write v = v}« (i + 1) % (i +2) % w02 % (i 4+ 1) 02, % (i + 1) w25 U3 % (i +2) * (i + 1)+ 12,
Then
§ = — (T5Wy)(WsW2) (V6 W5)(T11) (P WsWeWrTg)(T10Wo)(WsWe) Wy s Wy (c)m™
= — U5 Uy WU Ug (VW5 Tg(c )e(v))) U1y UrWsWygWoWs W6 Wy U5 T30y (c)m’
=— \115\11411151113\112\119\1/8\1/6\1/7\1/8(\1111\1110\119)(\Dg(g")e(l//))(\114\113)\116\115\114(g)m’\
=— \115\114\115\113\112\119\116(\114‘113)(\Ifg\If7\IJ8(Qm)e(l/”/))(\1111\1110\119)\116\115\114(@771)‘
= — (U504 U5 (d)e(w)) PP Wy UsWoWeWr U U7 Wy 010 W WeWsWy(c)m?
= — W05 (U W30y (d )e(w)) U WsWoWeUr WU Wy UygUgWelsUy(c)m?
= — Uy WU 0y (U3 W Ws(d")e(w”)) U UWrUsTr Wy Wy WoWeWsWy(c)m?
— Uy U5 WU Wy WUy WUy (W W1oWo)(WeWs)Wy(c)m?
= — WU Uy WU W WU UgWr Wy Uy WeWeWs Wy Wy (c)m?
— Uy Wy Uy Wo(Us W U7 UsUrUaWs) Wy WigWoWy(c)m?
= — U0y Wo (Vs e UrUsTrUaWs) Uy U1 PgWy(c)m™ (1)
where we have used Lemma 2.12(2) for the fourth equality, ¥o(c)m?* = wall L1m* =0 (since
al > a2+ 1> 2) in the final equality, and
d = (all, 1,al2 —1,1,d2,, 1,a? —2,al —2,1,1,1,a> — 1,a3),
1/:Vll*(i—l—l)*vf*(i—f—l)*ygl*(i—l—Q)*&l?’*ﬁﬂ*(i+1)*(i+2)*(i+1)*1)§*y§,
¢ =(a},1,af —1,1,1,a2,,a} — 2,1,a2 — 1,0} —2,1,1,a3),
V=l (i 1)« 0fx (i 1) % (i 4+2) %2 %0t (0 + 1) %02 5 57 5 (i 4+ 2) * (i 4+ 1) x 2,
" =(a},1,1,a} —1,1,a2,,a} — 2,1,a} — 2,1,1,a% — 1,a3),

VW=l s (D) (i +2) %08 5 (i + D) 2«0l x (i + 1) %P (i +2) % (i +1) %02 502

T
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d=(a},a? —1,1,1,1,a} —2,a%,,1,1,a} —2,1,a®> - 1,a3), d =d

ymy Sy oy 9 Ly Y

W= 2% i+ 1) ((+1) % (G +2) %P 02 x (i +1) % (i +2) % % (14 1) 02 x>
W=tk (D) k(42 i+ D) kP k2 k(i 4+ 1) x (i +2) % % (i +1) %2y
d’ = (aj,1,1,a} —1,1,a} —2,a2,,1,1,a; —2,1,a? — 1,a}),

W=l (i 1) % (4 2) %02 x4+ 1) P 12 % (i +1) % (1 4+2) x il % (i 4+ 1) % 022 % 12,
It’s easy to see, by applying three further braid relations which don’t yield error terms, that
(1) and (1) are negations of each other, so that v+ ¢ = 0, and the proof is complete. O
4.3. Proof of Theorem 3.19.

Lemma 4.12. Let A and B be Garnir nodes of [\]. Let w? and w® be the fully commutative
elements given in Lemma 1.18. Then we have

waAgi\l = 1/}ng%3 (mOd gi[(GAvB))

Proof. We may assume that A = (r,¢) is to the left of B = (+/,¢) in [A].

Suppose r = 7’ + 1 and res(B) = res(r 4+ 1, ¢). Without loss of generality, we may assume
that [A] has 3 rows and r' = 1. Then the assertion holds by Lemma 4.11.

Otherwise, it follows from Proposition 2.2 and Corollary 3.2 that

VwdGh — LBl = Z awthpym”  for some a, € O,
w

where w runs over all elements such that (i) w < w"” and (ii) e(res(GAB))hym? = ym?.
By Lemma 4.5, we conclude that

Vot G4 — B gy = 0. O

Lemma 4.13. Let T € Row(\). Suppose that T = wGA for w € &,, and a Garnir node A of
[ with £(T) = £(w) + £(GP).

(1) If T =uGB for u € &, and a Garnir node B of [\ with £(T) = £(u) + £(GB), then
Yugh = Yugy  (mod G2yp).
(2) We have

{ gy =0 foralli€ {1,...,n},
0

dg? i
unless s;T € Row(\) and s;T < T, (mo g<g(T))

(8) For o € &, with {(c) + £(G*) < £(T),

1/}0-91{; = 0 (mod gig(—r))



SPECHT MODULES FOR QUIVER HECKE ALGEBRAS OF TYPE C 51

Proof. First, we prove (1), (2), and (3) for Garnir tableaux. Let T = G4. If ¢4 = uGP
for some u € &, and some Garnir node B of [\] with £(T) = £(u) + £(GP), then it implies
G4 >1 6B, so that G4B = ¢4 follows. Thus B = A and u = id by Lemma 1.17, proving (1).
Assertion (3) also holds obviously since there is no o € &,, such that £(o) 4+ £(G4) < £(G4).
Assertion (2) follows from Lemma 3.7.

Now we prove (1), (2), and (3) by induction on [ := £(T). If [ = min{¢(T) | T € Row(\)},
then T is a Garnir tableau and there is nothing to prove. We assume that (1), (2), and (3)
hold for all " = w/G*" € Row(\) with

0Ty = 0(w') + £(GY) < L.
(1) We consider T = wG? = uG? for some w,u € &,, and Garnir nodes A, B of [\] with
((T) =1 = L(w) + £(GA) = £(u) + £(GP). By Lemma 1.14, there is v € &,, such that
T = oG8 with (T = £(v) 4 £(G*F),
which tells us that
w = vw? with £(w) = £(v) + £(w?),
u=vw? with 0(u) = £(v) + L(w?),

where w?

and w? are given in Lemma 1.18. Then, by Proposition 2.2 and the induction
hypothesis on (3), we know that if ¢, appears as an error term in (1, — ¥yt a)e(res(G4))
then v¥,9% € GQZ(T)' Similarly, if 1/, appears as an error term in (¢, — 1,5 )e(res(G?)) then
1/}0'9?.\3 € GiZ(T)’

By Lemma 4.12 and the induction hypothesis, we have

1%9% - wugg = 1/}v¢wf‘gi\l - ¢v¢w5’gi\3

= Yo(Yuagd — Yurgp) (42)
=0 (mod gim)).
Thus, (1) holds for ¢(T) = L.
(2) For i =1,...,n, it follows from
zihwe(res(Gh)) =y, —1gye(res( (@) Z Y fure(res(G))  for fur € Olzy,...,x)]
w! <w

that
xiqﬁwgi& = wwﬂjw—l(i)gi& + Z ww’fw’gi& =0 (mod giK(T))
w!' <w
by the induction hypothesis. It remains to prove that ijwgi“ = 0 unless s;T € Row(\) and
5;T < T. There are two cases:

(i) s;T ¢ Row(\) (i.e. s;T ¢ RowStd(A) or s;T € Std(]))),



52

(i)

(i)

(i)

SUSUMU ARIKI, EUIYONG PARK, AND LIRON SPEYER

s;T € Row(A) and s;T > T.

If s;T ¢ RowStd(\), then there is a node (r,c) € [A] such that
T(r,c) =4, T(r,c+1)=j+1.

By Lemma 1.13 (2), we can take B € [A] and u € &,, such that
(a) GB(r,c+1) =6B(r,c) +1,

(b) T = uG”,

(¢) sju = us, where p = GP(r,c).
Thus, we have

ijue(y) = ¢u¢pe(y) + Z ¢u’fu’e(y) for fu’ c O[xla ce 7~Tn]a

u' <u

where v = e(res(GP)). Since (1) holds for the length I, Proposition 2.2 implies that
Vuwg) — bug)y € 921—37 so that ¥;¥,g) = ¥jYugy (mod ggm)) by the induction
hypothesis on (3). Similarly, Proposition 2.2 and Lemma 3.7 imply that ijugg =
@Z)ui/)pgg (mod gim)), and ¢pg]’\3 =0, so that

qu/)wgi\x = wjlbugi\% = ¢u¢pgi\3 =0 (mOd gié(T))‘
Suppose that s;T € Std(A). Then there is a node C' = (7, ¢) € [A] such that
T(r,e)=j+1, T(r+1,¢)=j.

By Lemma 1.13(1), there is a permutation v € &,, such that
(a) T =wGY,
(b) sjv = vs, where ¢ = G%(r + 1, ¢).

In a similar manner as above, we have
Vihwgh = ihegd = utbegd =0 (mod G2 yq).
We assume that S := s;T € Row(\) and S > T. Note that ¢(T) = ¢(S) + 1. Then
S =uGP and £(8) = 4(u) + £(GP)
for some Garnir node B € [A] and u € &,,. As (1) holds for the length [, we have
Vihwgd = ititugs = Quiv (T, 7)) %ugn =0 (mod G2y,

where v = (v1,...,v,) € I™ is the residue sequence of uG?.
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By (i) and (ii) the assertion (2) holds for ¢(T) = [.

(3) Suppose that T = wG” for w € &,, and a Garnir node A of [\] with £(T) = £(w) +£(G?).
Let o0 = s, ...5;, be areduced expression for o, so that ¥, = 1, ... 10, and £(c) +£(G4) < L.
Note that we do not assume that £(cG4) = £(0) + £(G4).

If /(0GA) = ¢(0) 4 £(G?), then 0G* € Row()\) by Lemma 1.12. Thus, we are done.

If £(0G*) < £(0) + £(G?), then there is some k such that £(s;, ...s;,GY) = £(s;, ...s;.) +
0(GA) and £(s;,_, ...5i,G*) < £(s;, ...5i,GA). Once again, by the induction hypothesis on
(2), we have that 1, , ...1;,0) € Qig(s%m%cf,) and may conclude that 9;, ... ;. g} € Qil
by induction.

Thus, assertion (3) holds for ¢(T) = [, which completes the proof. O

Corollary 4.14. For each T € Row()), we fix a Garnir node A and w € &, such that
T = wG?, and set g3 = wwgﬁ + QQE(T). Then

(1) The element g3 € gA/gie(T) does not depend on the choice of A or the choice of
reduced expression for w.
(2) The O-submodule Y., G2 is an R(B)-submodule of M*.

Proof. Part (1) and (2) follows from Lemma 4.13 (1) and Lemma 4.13 (2), respectively. [
Recall that G* = im H» and S* = qdeg(TA)coker H for A\ F n.

Theorem 4.15. (1) The O-submodules {G2,}1ez-, give a filtration of G
(2) Fort € Zso, G24.1/G2¢ is a free O-module with basis

{g2 | T € Row(\),4(T) = t}.
Proof. Corollary 4.14(2) implies that G* = 3°,_, G2, which is (1). Then (2) is clear. O
We are now ready to prove Theorem 3.19.
Proof of Theorem 3.19. Let us consider
V= ap19,m m* + aTzwwwgm)‘ + o+ aprthynm® € M
for some aq1,...,art € O and Ty,...,T; € Std(A\). By (3.4) and Theorem 4.15, we have
ve @ ifand only if apn = - = apr =0,

which implies that {¢,m* | T € Std(\)} is linearly independent in S*. Thus the assertion
follows from Theorem 3.12(1). O
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5. A CONJECTURE IN TYPE Cél)

We end with a conjecture giving the elements gg explicitly in type C’él), as well as a basis

of S* in this type. In Remark 3.6, we noted the similarity between the Garnir elements in
type A and C,,. Similarly, we expect that the affine type C case resembles that of affine
type A. Our constructions in this section closely follow [21, Section 5]. We fix A € £ and
k € Z! throughout, as well as a Garnir node A = (r,¢,t) € [A]. Recall the definition of the
Garnir tableau G* from earlier, as well as the residue pattern in type Cé” — in particular the
natural projection p : Z — Z/207.

Definition 5.1. A brick is a set of 2¢ adjacent nodes in the same row of the Garnir belt B4,
{(a,b,t),(a,b+1,t),...,(a,b+2¢ —1,t)}, such that p(k; + b —a) = p(ky + ¢ — 7).

We denote by k the number of bricks contained in B4, and label the bricks By, Bs, ..., By
from left-to-right along row r + 1 and then from left-to-right along row r. We now introduce
permutations which transpose adjacent bricks. Let d be the smallest entry of By in G*. Then
for 1 < r < k, the permutation

d+2rf—1
w, = wi = H (a,a+20) € &,
a=d+2(r—1)¢

may be thought of as transposing B, and B,;1. We have the corresponding elements o, =
o = (=1)%py, € R(B). We further define 7, = 74 := o, + 1. We should emphasise
here that we have a (—1)¢ in our definition of ¢,, which differs from the definition of row
Specht modules in [21, Section 5.4]. However a similar minus sign occurs in their definition
of corresponding elements in column Specht modules [21, Section 7.1]. We suspect that this
minus sign is merely an artefact of our choice of the polynomials Q; ;(u,v).

Note that any permutation w of bricks may be written as a reduced expression u =
Wy, ... Wy, and if v is fully commutative we have a well-defined element 7, := 7., ... 7,.

We define T to be the tableau obtained from G4 by rearranging the entries in the bricks
By, ..., By so that they are in order along row r and then row r+1. This is the most dominant

row-strict tableau which may be obtained from G4 by acting by our brick permutations w;..
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Example 5.2. Let £ =2\ = (15,7,3) € Z5, and A = (1,5). We depict the Garnir tableau
G4 below with Garnir belt shaded and bricks By, Bo, B3 labelled, as well as the tableau T4,

By B

| |

1] 2]3]4]1o0f11]12[13]14]15]16]17]18[19]20]
¢4 =[56l7]8| 9212
23(24(25] TS

[\

By

1)2]3]4]6[7]8]9]i0]11]12]13]18[19]20]
T4 = |5 [1a]15]16]17]21] 22
23[24[25

Note that G2 = wyw.TA.

Conjecture 5.3. Let A € 2. and let A € [\] be a Garnir node. Suppose B4 contains a

bricks in the first row, and b in the second. Then in type Cél), the Garnir element gi& 18

A A A
ga = E Ty Y ram”,
u

where the sum is over all u € Sq44p/Sq X Sy. Furthermore, Theorem 3.19 and Corollary 3.21
hold in type Cél), giving a homogeneous basis of S* indexed by standard \-tableau.

Example 5.4. Continuing from the previous example,

gg = waA m)\ + T2¢wTA m)\ + 71 TwaTA m)\

=3¢, 4 m + 2091, 14 m* + oy o2, 1A m + o1, A m’.

Evidence for our conjecture is provided by many examples we have computed in GAP [11].

Finally, we note that the above form for gig does not instantly yield a clean expression
in terms of basis elements of M?» — this can be seen in Example 5.4 where wT4m?» is not
row-strict. Fayers [10] has addressed this problem in type A, and in fact if our conjecture
holds, then his work automatically applies to our gfg too.
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