SPECIAL RELATIVITY – FINAL EXAM

Exercise 1. A particle with mass m and negative electric charge -q travels with spatial momentum p. It passes by a very heavy particle with positive charge +Q. The distance of closest approach (also called the "impact parameter") is b.

- 1. Find the angle θ by which the first particle's trajectory is deflected, assuming that this angle is small. Hint: you can perform a calculation based entirely on the non-deflected trajectory.
- 2. How does θ scale with p in the limits $p \ll m$ and $p \gg m$?

Exercise 2. Let's explore the space of antisymmetric matrices $F^{\mu\nu} = F^{[\mu\nu]}$ on $\mathbb{R}^{3,1}$. Consider the following classes of such matrices:

- 1. $F^{\mu\nu} = a^{[\mu}b^{\nu]}$, where a^{μ} is timelike.
- 2. $F^{\mu\nu} = a^{[\mu}b^{\nu]}$, where a^{μ} and b^{μ} are spacelike and orthogonal to each other.
- 3. $F^{\mu\nu} = a^{[\mu}b^{\nu]}$, where a^{μ} is lightlike, and b^{μ} is orthogonal to it.

How many degrees of freedom are in each class? Do these cover the degrees of freedom of a general antisymmetric $F^{\mu\nu}$? In class 3, what is the signature of b^{μ} ?

Exercise 3. Show that the Maxwell equations $\partial_{\nu}F^{\mu\nu} = J^{\mu}$ in $\mathbb{R}^{3,1}$ admit the following solution for the electromagnetic potential A_{μ} :

$$A^{\mu}(x) = \int d^4x' \, G(x - x') \, J^{\mu}(x') \,, \qquad (1)$$

where G(x) is the retarded propagator:

$$G(x^{\mu}) = \frac{1}{2\pi} \,\delta(x_{\mu}x^{\mu})\,\theta(t) \ , \qquad (2)$$

and we assume that everything falls off sufficiently quickly at infinity. Hint: we already demonstrated $\Box G(x) = -\delta^4(x)$ in the lectures. Another hint: what can you say about $\partial_\mu A^\mu$?

Exercise 4. Consider two spinors ψ^{α} and χ^{α} in $\mathbb{R}^{2,1}$. Let us work out the geometric meaning of the spinor sum $\psi^{\alpha} + \chi^{\alpha}$.

- 1. Recall that the squares $\psi^{\alpha}\psi^{\beta}$, $\chi^{\alpha}\chi^{\beta}$ of ψ^{α} , χ^{α} describe lightlike vectors, which we'll denote as a^{μ} , b^{μ} . What is the vector c^{μ} described by $\psi^{(\alpha}\chi^{\beta)}$? Hint: consider its scalar products with a^{μ} , b^{μ} , as well as with itself.
- 2. What is the signature of c^{μ} ?
- 3. What is the lightlike vector described by the square of $\psi^{\alpha} + \chi^{\alpha}$?