Nonlinear transport of Wigner crystal on liquid helium in microchannel devices

Denis Konstantinov, Quantum Dynamics Unit OIST Graduate University

Surface States of Electrons on Helium

Electron Density and Phase Diagram

Scattering of electrons

Mobility exceeding 100 M!

Mehrotra et al., 1984

DK and Kono, 2008

Emission of ripplons by moving e⁻:

Constructive interference of ripplons:

Bragg-Cherenkov emission of ripplons

Dykman and Rubo, 1997

Vinen, 1999

Force exerted on liquid surface:

$$F = eE_z \sum_{n=-\infty}^{+\infty} \delta(x - an - v_x t) \approx \frac{eE_z}{a} e^{i(G_1 x - G_1 v_x t)}$$

BC at liquid surface:

$$-\frac{\partial F}{\partial t} + \rho \frac{\partial^2 \phi}{\partial t^2} - \alpha \frac{\partial}{\partial z} \left(\frac{\partial^2 \phi}{\partial x^2} \right) = 0$$

Deformation of liquid surface:

$$\varsigma(x) = \frac{eE_z}{\rho G_1} \left(\frac{1}{v_x^2 - v_1^2} \right) e^{i(G_1 x - G_1 v_x t)} \xrightarrow{v_x \to v_1} \infty$$

Include damping:

$$\varsigma(x) = \frac{eE_z}{\rho G_1} \left(\frac{1}{v_x^2 - v_1^2 + iv_d v_x} \right) e^{i(G_1 x - G_1 v_x t)}$$

Nonlinear transport of Wigner crystal

Microchannel devices

The first microchannel device

Glasson et al., PRL 2001

Stripe phase of Wigner crystal

Damping in Vinen's model

Vinen, 1999

Damping parameter $v_{\rm d}$

- Damping of ripplons due to dissipation
- Finite size of Wigner crystal

$$\begin{array}{c} L << \lambda_{damping} \\ \hline \end{array}$$

Friction force on Wigner crystal:

$$F_{fric} = \frac{e^2 E_z^2}{\rho a} \frac{V_d V_x}{\left(\left(V_x^2 - V_1^2 \right)^2 + V_d^2 V_x^2 \right)}$$

$$F_{fric}^{(\max)} = \frac{n_s e^2 E_z^2}{\rho V_d V_1}$$

$$F = eE_{z} \sum_{n=0}^{+N} \delta(x - an - v_{x}t) \approx$$
$$\approx \frac{NeE_{z}}{\pi} \sum_{m=-\infty}^{+\infty} e^{i(qx - mqv_{x}t)} \frac{\sin[L(q - mG_{1})/2]}{L(q - mG_{1})}$$

$$F_{\text{fric}}^{(\text{max})} = \frac{n_{s}e^{2}E_{z}^{2}}{\rho V_{d}V_{1}} \left(1 - e^{-\frac{LG_{1}}{2}\left(\frac{V_{d}}{V_{1}}\right)}\right)$$

Wigner crystal of finite size

Wigner crystal of finite size

Stripe phase Wigner crystal

Time-resolved measurements

Repetitive Slip-Stick Transitions

Zou et al., PRB 104, 045427 (2021)

Transport through 3-terminal device

Unidirectional (polaronic) transport

Prospects

Frenkel-Kontorova Model (FKM)

Acknowledgement

PhD Students

Jui-Yin Lin (N.C.U.) Shan Zoe

Postdocs

Alex Badrurdinov (RIKEN)

Oleksiy Smorodin (Cryogenic LTD.)

https://www.groups.oist.jp/qdu

External Collaborator

David Rees (NCTU, Cryogenic LTD.)

Funding

KAKENHI MEXT

https://www.oist.jp