Strong coupling of an electron ensemble on the surface of liquid helium to a microwave cavity

Denis Konstantinov, Quantum Dynamics Unit OIST Graduate University

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Okinawa Institute of Science and Technology (OIST) Graduate University

https://www.oist.jp

Mission:

- sustainable development of Okinawa
- advancement of science and technology in Japan

People: 56 faculty members / 440 researchers / 134 graduate students

Expect 100 faculty members in 2024 (towards 300 faculty members)

Quantum Dynamics Unit (QDU)

Avoided crossing: coupled potential wells

Decreasing depth of right well

 $U(x)$ Particle in two potential wells $U(x)$

$$
H = \begin{pmatrix} E_L & 0 \\ 0 & E_R \end{pmatrix}
$$

Add tunneling between two wells

$$
H = \begin{pmatrix} E_L & g \\ g & E_R \end{pmatrix}
$$

$$
E_{\pm} = \frac{E_L + E_R}{2} \pm \sqrt{\frac{(E_L - E_R)^2}{4} + g^2}
$$

[Landau and Lifshitz, Quantum Mechanics, Vol 2]

Avoided crossing: cavity QED

Strong coupling regime: $g \gg y, \kappa$

$$
H/\hbar = \omega_r a^+ a + \omega_s s_z + g(as^+ + a^+ s^-)
$$

Jaynes-Cummings Hamiltonian

$$
H / \hbar = \begin{pmatrix} -\frac{\omega_s}{2} + \omega_r & g \\ g & \frac{\omega_s}{2} \end{pmatrix}
$$

[A. Wallraff et al., Nature 431 162 (2004)]

Avoided crossing: coupling to an ensemble of particles

Applications: hybrid quantum computer

Coupling to ensembles: classical of quantum?

TECHNOLOGY GRADUATE UNIVERSITY

Ensemble of electrons on liquid helium

 \boldsymbol{C}

±

 $m_{_e}^{} - \!\!\!-\!\!\!- = -eE_{_{MW}}^{} - \!\!\!-\!\!-V\times B -\!\!\!-\!\!\!{}V\!m_{_e}^{}$

e

 $=-e{\vec E}_{\rm MW}-{\vec \nabla}\times{\vec B}-\nu_{\rm v}$

 \vec{a} \vec{b} \vec{c} \vec{c} \vec{d} \vec{d}

Resonant mode: TEM_{00q} Frequency : 35-140 GHz

Quality factor: 1,000-10,000

Second Newton law:

dt

 $d\vec{V}$

eE

Quantum treatment:

$$
\psi(\vec{r}) = Ce^{ik_y y} H_n\left(\frac{x - X}{I_B}\right)
$$

$$
\sigma_{\pm} = \frac{n_s e^2}{m_e} \frac{1}{M(\omega) - i(\omega \pm \omega_c)}
$$

E OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

s

 $\displaystyle j_{\scriptscriptstyle +}= \frac{n_{\scriptscriptstyle S} e}{}$

 $m \,$

 \mathcal{C}_{e} $v - i(\omega \pm \omega_{c})$

 $v - i(\omega \pm \omega)$

E

i

 $v \overline{v} \times B - \nu m$

 $=\frac{H_s \sigma}{H}$ $\frac{L_{\pm}}{H}$

2

Experimental setup

Abdurakhimov et al., PRL117, 056803 (2016)

Quality factor Q=900 Semi-confocal FP resonator TEM $_{003}$ mode: 88.5 GHz

Quantum or classical??

Coupled equations for two oscillators

Current of 2D electrons: $j_{\pm} = \sigma_{\pm} E_{z=-d}^{\pm}$

$$
\sigma_{\pm} = \frac{n_s e^2}{m_e} \frac{E_{\pm}}{v - i(\omega - \omega_c)}
$$

B.C. for magnetic field : $H_{z=-d_+} - H_{z=-d_-} = j_e$

$$
\left(\frac{D}{2c}(\omega-\omega_{r}+i\gamma)\frac{\dot{\eta}_{0}}{1}\right)E_{z=-d}\left(\frac{E_{in}}{0}\right)\left[\text{Det}\left(\frac{D}{2c}(\omega-\omega_{r}+i\gamma)\frac{\dot{\eta}_{0}}{1}\right)-0\right]
$$

$$
g_N = \sqrt{\frac{n_s e^2}{2m_e \varepsilon_0 D}} = \frac{e}{\hbar} \sqrt{\frac{\hbar}{m_e \omega_c}} \sqrt{\frac{\hbar \omega_c}{2\varepsilon_0 V}} \sqrt{n_s A} = \frac{e I_B E_{rms}}{\hbar} \sqrt{N} \propto \sqrt{n_e \frac{e^2}{\hbar c}}
$$

"quantum" result

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Comparison with experiment

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Superradians and Rabi oscillations

Vacuum Rabi oscillations?

Q. Zhang et al. Nat. Phys. 2016

$$
\frac{dj_e}{dt} + (i\omega_c + v)\dot{J}_e = \frac{e^2n_s}{m_e}E
$$

$$
E=-\eta_0 j_e
$$

$$
\frac{dj_e}{dt} + (i\omega_c + \Gamma)j_e = 0
$$

$$
\Gamma = v + \Gamma_s = v + \frac{\eta_0 e^2 n_s}{m_e}
$$

"Superradiant" decay

Qi Zhang et al. PRL, 047601 (2014)

Frequency of (Rabi-like) oscillations:

$$
g=\sqrt{\frac{\Gamma_s c}{2D}}
$$

Most recent experiment

Quality factor Q=7,000 Semi-confocal FP resonator TEM_{003} mode: 35 GHz

Microwave freq.

35.02

35.06

35.1

35.14

ω/2

π (GHz)

Cyclotron freq. $ω_c/2π$ (GHz)

34 34.5 35 35.5 36

35.02

 1.5

 -10.5

Cyclotron freq. $ω_c/2π$ (GHz)

34 34.5 35 35.5 36

E-

 -10.6

 -10.5

 -10.4

Looks like resonance induced by *E*⁺ mode

 E^+ \wedge $E^ \wedge$ i_e

 $\frac{\pi}{\sigma}$ | $\langle f|H_{int}|i\rangle +$ \hbar $W_{i \to f} = \frac{2\pi}{\hbar} \left| \left\langle f \left| H_{int} \right| i \right\rangle + \right|$ $\left. + \sum_{m} \frac{\langle I \vert \mathcal{F}_{int} \vert II \rangle \langle III \vert \mathcal{F}_{int} \vert I \rangle}{E_{i} - E_{f}} \right| \delta(E_{n} - E_{i} - \hbar \omega)$ $\frac{|\textit{int}|^{111}/\sqrt{111}|^{11} \textit{int}|^{11} \textit{f}|}{\delta(E_{\textit{e}}-E_{\textit{e}})}$ E . $-E$ $f|H_{\omega}$ m $\langle m|H_{\omega}|i\rangle|^2$

Ripplon-assisted (Raman) transitions

INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Conclusions

Strong coupling between electron cyclotron motion and a microwave cavity mode

Can be fully described on a completely classical ground

Two coupled oscillators $=$ two coupled linear systems

Cavity QED experiments with electrons on helium? Need a nonlinearity!

$$
|G\rangle = \left|\frac{N}{2}, \frac{N}{2}\right\rangle
$$

$$
|E\rangle = \left|\frac{N}{2}, \frac{N}{2} - 1\right\rangle
$$

Consider spin $S = \frac{N}{2}$ which has states $|S, S_z\rangle$

Apply (Holstein-Primakoff) transformation:

$$
\hat{S}_z = S - \hat{b}^+ \hat{b}, \ \hat{S}^+ = \sqrt{2S - \hat{b}^+ \hat{b}} \ \hat{b}, \ \hat{S}^- = \hat{b}^+ \sqrt{2S - \hat{b}^+ \hat{b}}
$$

Bosonic operator $\hat{b}^{\dagger}(\hat{b})$ creates (annihilates)

one spin excitation in N-spin system

Dicke model, 1954

In the <u>low-excitation limit</u> (S- S_z<<S):

$$
\hat{S}_z = S - \hat{b}^+ \hat{b}, \ \hat{S}^+ = \sqrt{2S} \ \hat{b}, \ \hat{S}^- = \hat{b}^+ \sqrt{2S}
$$

Full Hamiltonian becomes:

$$
\boxed{\hat{H} / \hbar = \omega_r \hat{a}^+ \hat{a} - \omega_s \hat{b}^+ \hat{b} + g \sqrt{N} \Big(\hat{a} \hat{b}^+ + \hat{a}^+ \hat{b}\Big)}
$$

Ensemble of two-level systems on helium surface

MW

 $+V_B$

 \equiv InSb

 $\hbar\omega$

Use inter-subband resonance rather then CR

Dipole matrix element $~\sim a_B$ ≈10 nm

Coupling to single electron:

$$
g = ea_{B}E_{\text{rms}} = ea_{B}\sqrt{\frac{\hbar\omega_{21}}{2\varepsilon_{0}V}} \approx 100 \text{ kHz}
$$

Nonlinearity: Coulomb shift of energy levels

Heʻ

 $He⁴$

Cyclotron resonance harmonics

