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Nuclear spins ensembles  
in MnCO3 

2D electrons on helium 

Impurity spins in diamond 

PRL114, 226402 (2015) 

NV and SiV 
centers 

PRL115, 256802 (2015)  
PRL117, 056803 (2016) 

Current experiments 

PRB 94, 195311 (2016)  

electrodes insulator electrons 

helium 

silicon 10 μm 

1 μm 
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Avoided crossing: coupled potential wells 

Particle in two potential wells 𝑈(𝑥) 𝑈(𝑥) 
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Presentation Notes
Avoided crossing itself is a quite well-known phenomenon. It is observed in many systems. The simplest example is the coupled system of two spring-mass oscillators. The masses A and B are connected to the walls by springs with constants kA and kB, and coupled to each other by spring with constant kappa. If we consider resonant frequencies of the system as a function of spring constant kB, we will see, that when coupling constant is zero, we have two independent oscillators, and resonant frequencies intersect in a point.  However, in the case of coupled system, spectrum modes split into two non-crossing branches, and each normal mode corresponds to collective oscillation of masses. One mode is related to in-phase oscillation of masses, and another mode corresponds to anti-phase oscillations. The splitting value Gamma is proportional to the coupling string constant Kappa. Therefore, the splitting increases with the coupling strength.
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Avoided crossing: cavity QED 

[A. Wallraff et al., Nature 431 162 (2004) ] 
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Avoided crossing: coupling to an ensemble of particles 

2𝑔 

[Y. Tabuchi et al., PRL 113, 083603 (2014)] 
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Rev. Mod. Phys. 85, 623 (2013) 
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Presentation Notes
Observed avoided crossing was very pronounced. It means that splitting constant g was much larger than linewidths of cavity mode and magnon mode, otherwise it would be impossible to resolve the avoided crossing. This condition is called condition of strong coupling. In quantum regime, strong coupling can be described by this Hamiltonian. This term corresponds to the cavity mode and these are operators of creation and annihilation of photons, this is term for magnon mode and these are operators of creation and annihilation of magnons, and this term is related to strong coupling between photons and magnons.  
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Applications:  hybrid quantum computer 

2𝑔 

[Y. Tabuchi et al., PRL 113, 083603 (2014)] [A. Wallraff et al., Nature 431 162 (2004) ] 

Ensemble-photon coupling SC-qubit-photon coupling 

“memory” “processor” 
spin system: 
• difficult to manipulate 
• coherence time is long 

superconducting qubits: 
• easy to manipulate 
• coherence time is short 

photons 

Presenter
Presentation Notes
At this moment, systems with strong coupling between microwave photons and spin ensembles attract a lot of attention, because they proposed to be important building elements of hybrid quantum computers. For physical implementation of quantum bits, there is always a trade-off between coherence time and simplicity of quantum states manipulation.  On the one hand, there are superconducting qubits which are suitable for fast control, but their coherence time is short. On the other hand, there are spin systems which have long coherence time but it is difficult to manipulate their states rapidly. Therefore, the idea of hybrid architecture of quantum computer is to use a system of superconducting qubits as a processor and a spin system as a memory. The information will be transferred between memory and processor by microwave photons through strong coupling.
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Coupling to ensembles: classical of quantum? 

[L. Novotny, Am. J. Phys. 78, 1199 (2010)] 
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As I’ve already said, in previous studies, it was shown that strong coupling between microwave field and electron spin system can be realized. But for quantum computer applications, it will be also useful to realize strong coupling between photons and nuclear spin system, because coherence times for nuclear spins are extremely high. In our experiments, we observed avoided crossing in the frequency range of Nuclear Magnetic Resonance. The question then arises is it caused by coupling between photons and nuclear spin system? In this talk I will present our interpretation of this result.
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Ensemble of electrons on liquid helium 
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Resonant mode: TEM00q 

Quality factor: 1,000-10,000 
Frequency : 35-140 GHz 

TEM003 N~108 
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Experimental setup 

Abdurakhimov et al., PRL117, 056803 (2016) 

Quality factor Q=900 

Semi-confocal FP resonator 
TEM003 mode: 88.5 GHz 
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Avoided crossing: cavity spectrum and electron response 

Reflected MW power 
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Quantum or classical?? 

2DEG in GaAs heterostructures: 

G. Scalari et al. Science 2012 
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Q. Zhang et al. Nat. Phys. 2016 
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Our classical model 

Current of 2D electrons: ±
−=±± = dzEj σ

B.C. for magnetic field : edzdz jHH =−
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Comparison with experiment 
Reflected power 

DC photoresponce 

|S11|=|Eout/Ein|2 

AC current je 
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Superradians and Rabi oscillations 

Q. Zhang et al. Nat. Phys. 2016 

Vacuum Rabi oscillations? 
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Most recent experiment 

Quality factor Q=7,000 

Semi-confocal FP resonator 
TEM003 mode: 35 GHz 
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Most recent experiment 

Looks like resonance induced by E+ mode 
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Conclusions 

Strong coupling between electron 
cyclotron motion and a 
microwave cavity mode 

Can be fully described on a 
completely classical ground 

Cavity QED experiments with 
electrons on helium? Need a 
nonlinearity! 
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Holstein-Primakov bosons 

1
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Dicke model, 1954 

Consider spin 𝑆 = 𝑁
2
 which has states |𝑆, 𝑆𝑧⟩ 

Apply (Holstein-Primakoff) transformation: 

b̂b̂Sb̂Ŝb̂b̂b̂SŜb̂b̂SŜz
++−+++ −=−=−= 22   ,   ,

Bosonic operator      ( )b̂b̂ + creates (annihilates)      

one spin excitation in N-spin system  

In the low-excitation limit (S- Sz<<S ): 

Sb̂Ŝb̂SŜb̂b̂SŜz 22 +−++ ==−=   ,   ,

Full Hamiltonian becomes: 

( )b̂âb̂âNgb̂b̂ââ/Ĥ sr
++++ ++−= ωω

Presenter
Presentation Notes
Full description of the coupling between electron spins, nuclear spins, and photons is a challenging theoretical problem, but some estimations can be done by using the model of the enhanced microwave field hn. As I explained earlier, influence of electron spin motion on the nuclei can be taken into account by considering the enhanced microwave field hn acting on the nuclei. The microwave field hn is enhanced by the factor 150 relative to the applied field h1, and is perpendicular to the equilibrium direction of the nuclear magnetization. The coupling strength of interaction between nuclear spins and effective microwave field is estimated to be about 1 MHz which is consistent with experimental value. Therefore, we conclude that observed avoided crossing is due to coupling between nuclear spins and enhanced microwave field.
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Ensemble of two-level systems on helium surface 
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Coupling to single electron:  
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Cyclotron resonance harmonics 

Yamashiro et al., PRL 115, 
256802 (2015)  
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