

Detection of the Rydberg states of electrons on superfluid helium confined in microchannel devices

POLL III IIA

Shan Zou

Public presentation 2022/07/12

Motivations

Quantum bit (qubit)

Quantum computation platform

Electrons on liquid helium system A new platform for quantum computing?

First proposal: P. Platzman and M. Dykman, Science 284, 1967 (1999)

Advantages: Large scalability Mobile qubits Full electrical control

Goal: Realizing sensitive quantum state detection of electrons on helium for qubit implementation

Content

Introduction to electrons on helium system (for qubit implementation)

Quantum (Rydberg) states detection

--Project 1: Conductivity method--Project 2: Image charge method

Novel transport phenomenon

--Project 3: Repetitive stick-slip motion

2022/7/14

Electron on helium system for qubit implementation

Basic picture

 $\Lambda = 0.0068$

Charge Qubit

Qubit implementation

Spin-Orbit coupling

D. Schuster, et al., PRL 105, 040503 (2010) E. Kawakami et al., PRL 123, 086801 (2019)

 \downarrow)

S. Lyon, PRA 74, 052338 (2006)

Quantized lateral motion of a single electron

D. Schuster, et al., PRL 105, 040503 (2010)
G. Koolstra, et al., Nat. Comm 10, 5323 (2019)
X. Zhou, et al., Nature 605, 46 (2022)

MW: microwave CPW: coplanar waveguide circuit QED: circuit quantum electrodynamics

5

 $T_2^* = 50 \, ns$

 $T_2 = 220 \, ns$

Quantized vertical motion of a single electron

6

 $g\mu_B B_z(z_2)$

 $g\mu_B B_z(z_1)$

Micromagnet

Project 1

Rydberg state detection (conductivity method)

2022/7/14

1.1 Background

In-plane motion: Nondegenerate 2DES

Phase diagram

Coulomb interaction: $1/\sqrt{n_s}$

Kinetic energy: $k_B T$

1.2 Microchannel devices

1.3 Rydberg states detection (conductivity change)

Cross-sectional profile of electron density and holding field

Excitation induced conductivity change

limitations:

(1) Sensitive to the B field

Hall effect

(2) Many-electron effect

cannot scale down to single electron

Project 2

Rydberg state detection (Image-charge method)

2.1 Image charge method

e : Elementary charge

D = 2mm

10⁸ electrons

1000

24

2.2 Image charge detection using microchannel device

2.3 Improving Signal to Noise Ratio (SNR)

2.3 Improving SNR

Summary

(1) Two simple methods to measure the Rydberg excitation of electrons the microchannel device

(2) Increased sensitivity using the helical resonator (approx. 100 electrons)

Outlook

(1) Scale down to single electron to be used in quantum computing

(2) Spin-state detection mediated by Rydberg excitation

Project 3

Novel transport phenomenon

2022/7/14

© Okinawa Institute of Science and Technology Graduate University 2020

Novel transport properties

S. Zou et al. PRB, 104 045427 (2021)

Novel transport properties

Conclusion

PhD projects:

• Rydberg state detection: Conductivity measurement

[1] **S. Zou**, S. Grossenbach and D. Konstantinov, *Observation of the Rydberg Resonance in Surface Electrons on Superfluid Helium Confined in a 4-µm Deep Channel*, Journal of Low Temperature Physics, Online publication (2022)

• Rydberg state detection: Image-charge measurement

[2] **S. Zou** and D. Konstantinov, *Image-charge detection of the Rydberg transition of electrons on superfluid helium confined in a microchannel structure*, arXiv. 2207, 03737 (2022)

• Norvel transport properties: repetitive stick-slip motion

[3] **S. Zou**, D. Konstantinov and D. Rees, *Dynamical ordering in a 2D electron crystal confined in a narrow channel geometry*, Phys. Rev. B 104, 045427 (2021)

Acknowledgment

prof. Denis Konstantinov

Group members: Dr. Ivan Kostylev Dr. Mohamed Hatifi Dr. Kirill Shulga Dr. Mikhail Belianchikov Dr. Tomoyuki Tani Ms. Taki Tazuke Past members: Dr. Oleksiy Zadorozhko Dr. Erika Kawakami Dr. Jui-Yin Lin Dr. Asem Elarabi Dr. Alexander Badrutdinov

Collaborators: Dr. David Rees Mr. Sebastian Grossenbach

Thank you for listening!