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1 Motivation

Fix F a field of characteristic p > 0 throughout and e ∈ {3, 4, . . . }∪{∞}. Let q ∈ F be a
primitive eth root of unity, (if e =∞ then q is not a root of unity) and κ = (κ1, . . . , κl) ∈
(Z/eZ)l. We denote by Hn = Hn(q, κ) the cyclotomic Hecke algebra (of type G(l, 1, n))
of degree n with parameters q and κ.

Brundan and Kleshchev have shown that Hn is a Z-graded algebra, and Hu and
Mathas have shown that it is in fact a graded cellular algebra. The cellular structure
agrees with that of the Dipper–James–Mathas construction. The cell modules are indexed
by the set P l

n of l-multipartitions of n and the simple modules by a certain subset Θ ⊂P l
n

of these.
Ariki’s theorem tells us that in fact there are many different parameterisations Θ ⊂

P l
n for the simple modules, and the Dipper–James–Mathas setup sees only one of these.

We would like different cellular structures for each one of these.

Aim Study graded decomposition numbers for Hn corresponding to various parameter-
isations of the simple modules.

In order to do this, we must lift to the setting of quasi-hereditary covers of Hn. We will
see that the diagrammatic Cherednik algebra depends on a weighting, θ, which in turn
determines which parameterisation Θ we are seeing. (For any θ we get a quasi-hereditary
cover of Hn, and different covers may yield different parameterisations of simples.)

2 The diagrammatic Cherednik algebra

We will now discuss the combinatorics of Webster’s diagrammatic Cherednik algebra.
We take a mirrored-Russian convention for drawing our Young diagrams. For example,

the Young diagram for the partition (4, 1) is drawn as

Given a weighting θ ∈ Rl, we have an associated diagrammatic Cherednik algebra
A(n, θ, κ) which is a quasi-hereditary cover of the cyclotomic Hecke algebra Hn.
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Definition 2.1. Given a weighting θ and some λ ∈P l
n, we draw the Young diagram [λ]

of λ by placing the first node of the jth component at point θj on the x-axis, with all
boxes have diagonals of length 2. We tilt our Young diagrams ever so slightly clockwise.

The loading iλ is the n-tuple of real numbers given by projecting the top vertices of
boxes of [λ] onto the real line, along with the residue associated to each box.

Example. Suppose θ = (0, 0.5). If λ = ((3), (12)) and µ = ((2), (2, 1)), then we draw [λ]
and [µ] as below, with the loadings given by projections onto the real line.

0-2 -1 0.5 1.5 0-1-0.5 0.5 1.5

Definition 2.2. We write λ Qθ µ, and say λ θ-dominates µ, if for every real number a
and every j ∈ Z/eZ, there are at least as many j-nodes to the left of a in iλ as in iµ.

If l = 1 this order is a coarsening of the usual dominance order.

Definition 2.3. Let λ, µ ∈ P l
n. A semistandard tableau of shape λ and weight µ is a

map T : [λ]→ iµ which respects residues and for all admissible r, c, k,

• T (1, 1, k) > θk,

• T (r, c, k) > T (r − 1, c, k) + 1,

• T (r, c, k) > T (r, c− 1, k)− 1.

We denote the set of semistandard tableaux of shape λ and weight µ by SStd(λ, µ).

Note that SStd(λ, µ) = ∅ unless λ Qθ µ.

Examples. 1. Let e = 3, l = 1, n = 3 and θ = κ = (0).

The only semistandard tableau of shape (13) is

0
1

2

There is one semistandard tableau in SStd((2, 1), (2, 1)) and one in SStd((2, 1), (13)).

0
−1 1

0
2 1
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There is one semistandard tableau in SStd((3), (3)), and one in SStd((3), (2, 1)).

0
−1

−2

0
−1

1

2. Suppose e = 3, θ = (0, 0.5) and κ = (0, 1). With λ and µ as before, the only
element of SStd(λ, µ) is

0

−1

−0.5

0.5

1.5

Theorem 2.4 (Webster). The diagrammatic Cherednik algebra A(n, θ, κ) is a graded
cellular algebra with respect to the θ-dominance order and a basis indexed by SStd(λ, µ)
as λ and µ range over P l

n.

In particular we have graded standard modules ∆(λ) = 〈CT | T ∈ SStd(λ,−)〉F with
graded simple heads L(λ) forming a complete set of graded simple modules, up to grading
shift.

Over C, the module category of A(n, θ, κ) is equivalent to category O for the rational
cyclotomic Cherednik algebra. If θ is well-separated (that is, θj − θk >> 0 for all j and
k), then A(n, θ, κ) is Morita equivalent to the q-Schur algebra of Dipper–James–Mathas
over arbitrary fields.

We would like to compute the graded decomposition numbers dλµ(v) for A(n, θ, κ).

Example. With the level 1 example for e = n = 3, the graded decomposition numbers
are obtained from the semistandard tableaux, almost for free.

3 Subquotients of A(n, θ, κ)

Pick a set S ⊂ Z/eZ of residues which is adjacency-free; that is, if i ∈ S then i± 1 /∈ S.

Fix γ ∈P l
n with no removable i-nodes for any i ∈ S, and letM denote a multiset of

residues in S. Now let ΓM denote the set of multipartitions obtained from γ by adding
nodes of residues in M.

Example. Let e = 4, S = {0, 2} and γ = (8, 7, 6, 5). If M = {0, 0, 2} then we could
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have for instance, λ = (9, 8, 7, 5), µ = (8, 72, 6, 1) ∈ ΓM.

0

0
1

2
3

0
1

2
3

2

3
0

1
2

3
0

1
0

2
3

0
1

2
3

2

1
2

3
0

1

0

Fact: The set ΓM is an interval in the θ-dominance order, with maximal element
given by placing all nodes as far left as possible, and minimal element given by placing
all nodes as far right as possible. Thus we may take a subquotient AΓM whose standard
modules are indexed by all λ ∈ ΓM.

Theorem 3.1 (Bowman, S). If M is adjacency-free and M =M0 ∪M1 ∪ · · · ∪Me−1

is a decomposition ofM into disjoint residues, then

AΓM
∼= AΓM0

⊗ AΓM1
⊗ · · · ⊗ AΓMe−1

as graded F-algebras.

Thus, we may from now on consider the subquotient AΓm , corresponding to partitions
obtained from some γ by adding m i-nodes for some fixed residue i.

Example. Continuing with the previous example, we have that

dλµ = d(9,72,5)(8,72,5,1) × d(82,6,5)(8,7,62).

4 Isomorphisms and decomposition numbers

Theorem 4.1 (Bowman, S). Let e, ē ∈ {3, 4, . . . } ∪ {∞} with i ∈ Z/eZ and ī ∈ Z/ēZ,
and suppose γ (respectively γ̄) is a multipartition with no removable i-nodes (respectively
ī-nodes) and x addable i-nodes (respectively ī-nodes) for some x. Then the corresponding
subquotients AΓm and AΓ̄m

are isomorphic as graded vector space over F.
Moreover, if F = C, we have

dλµ(v) = dλ̄µ̄(v)

for λ, µ ∈ Γm and λ̄, µ̄ ∈ Γ̄m.

Example. Let e = 4 and ē = 5. Take γ = (8, 5, 4, 32, 1).
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0
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Then γ has no removable 0-nodes and four addable 0-nodes.

Let κ̄ = (0, 1), θ̄ = (0, 0.5) and γ̄ = ((7, 6, 4), (3, 2)).

2

0
1

2
3

4
0

1
0

4
0

1
2

3
4 2

3
4

0
1

2

4

1
2

3
2

0
1 4

Then γ̄ has no removable 2-nodes and four addable 2-nodes. Thus we can compare
decomposition numbers in AΓm with those in AΓ̄m

, where Γm is the set of partitions
obtained from γ by adding m 0-nodes, and Γ̄m is the set of bipartitions obtained from γ̄
by adding m 2-nodes.

Our proof of the graded vector space isomorphism is by an explicit construction, which
we verify by examining i-diagonals in [γ].

Theorem 4.2 (Bowman, S). Take e, ē, i, ī, γ, γ̄ as before. Under some extra conditions
on the i-diagonals of γ and γ̄, the isomorphism of the previous theorem is an isomorphism
of graded algebras.

In particular, if κ contains at most one instance of the residue i, the graded decomposi-
tion numbers are parabolic Kazhdan–Lusztig polynomials, and can be calculated explicitly
by a combinatorial result of Tan and Teo.

Remark. Tan and Teo’s combinatorics just uses the sequences of addable and removable
i-nodes in λ and µ.

Example. Let κ = (0, 1) and e = 3, i = 0. For θ = (0, 20), γ = ((6, 4, 22, 12), (5, 3, 1)).
Then [γ] is

0

0
1

2
0

1
2 0

2
0

1
2 0

1
2 0

1
0

2
1

0 0

1
2

0
1

2 0

0
1

2 0
2

1

Setting λ = ((7, 5, 23, 12), (5, 3, 1)) and µ = ((6, 4, 3, 2, 13), (5, 4, 2)), we have the Young
diagrams below.
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Now take ē = 3, ī = 2 and γ̄ = (14, 12, 10, 8, 6, 4, 2). The Young diagram [γ̄] with
residues is
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Setting λ̄ = (15, 13, 10, 9, 7, 4, 2) and µ̄ = (14, 12, 11, 8, 7, 4, 3, 1), we have the Young
diagrams below.
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Finally, take ¯̄e = 4, ¯̄i = 1, ¯̄θ = (0, 0.5), ¯̄γ = ((9, 6, 3), (42, 23, 13)). Then [¯̄γ] is
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Taking ¯̄λ = ((10, 7, 4), (42, 3, 22, 13)) and ¯̄µ = ((9, 6, 3), (5, 4, 3, 23, 13)), we get the
Young diagrams below.
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All three examples involve the same sequences of addable and removable nodes, and
we can compute that dλµ(v) = v11 + 2v9 + 2v7 + v5 in all three cases.
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