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1 Motivation

Fix F a field of characteristic p > 0 throughout and e ∈ {3, 4, . . . }∪{∞}. Let q ∈ F be a
primitive eth root of unity, (if e =∞ then q is not a root of unity) and κ = (κ1, . . . , κl) ∈
(Z/eZ)l. We denote by Hn = Hn(q, κ) the cyclotomic Hecke algebra (of type G(l, 1, n))
of degree n with parameters q and κ. It is a deformation of the group algebra of the
complex reflection group G(l, 1, n) = (Z/lZ) oSn.

Brundan and Kleshchev [2] have shown that Hn is a Z-graded algebra, and Hu and
Mathas [3] have shown that it is in fact a graded cellular algebra. The cellular structure
agrees with that of the Dipper–James–Mathas construction of the cyclotomic Hecke alge-
bra. The cell modules are indexed by the set P l

n of l-multipartitions of n and the simple
modules by a certain subset Θ ⊂P l

n of these.
Ariki’s theorem tells us that in fact there are many different parameterisations Θ ⊂

P l
n for the simple modules, and the Dipper–James–Mathas setup sees only one of these.

We would like different cellular structures for each one of these.

Aim Study graded decomposition numbers for Hn corresponding to various parameter-
isations of the simple modules.

In order to do this, we must lift to the setting of quasi-hereditary covers of Hn. We will
see that the diagrammatic Cherednik algebra depends on a weighting, θ, which in turn
determines which parameterisation Θ we are seeing. (For any θ we get a quasi-hereditary
cover of Hn, and different covers may yield different parameterisations of simples.)

2 Nested sign sequences

We begin by discussing some level 1 results for graded decomposition numbers which we
would like to generalise. Fix e ∈ {2, 3, . . . } ∪ {∞} and i ∈ Z/eZ throughout. Note that
for this section alone we allow e = 2.

We will take a mirrored-Russian convention for drawing our Young diagrams. For
example, the Young diagram for the partition (4, 1) is drawn as
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Definition 2.1. Given µ a partition of n, we draw its Young diagram and fill with e-
residues. Reading from left to right, we draw a path which we call the terrain of µ using
the following steps: {

� for each removable i-node of [µ];

� for each addable i-node of [µ].

Example. Take e = 3, i = 2 and µ = (14, 12, 11, 8, 7, 4, 3, 1). The Young diagram [µ]
with residues is
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and so the terrain of µ is

Given λ and µ partitions of n with λ B µ which differ by moving i-nodes, we give
our terrain of µ a λ-decoration as follows. To each addable i-node (down steps) of µ
which has been added to obtain λ, we associate a “(”, and to each removable i-node (up
steps) of µ which is removed to obtained λ we associate a “)”. This gives us a system of
nested parentheses, which we identify with the edge they are associated to. We denote
the λ-decorated terrain of µ by P (µ, λ).

Example. Continuing with the previous example, if we let λ = (15, 13, 10, 9, 7, 4, 2) then
the λ-decorated terrain of µ is

(

( ) ( )

)

We may order pairs of parentheses by inclusion in the obvious manner; we let Q(µ, λ)
denote the partially ordered set of parentheses on P (µ, λ).

Definition 2.2. Given a pair of parentheses P ∈ Q(µ, λ), the set of latticed paths on
P (µ, λ) with respect to P is the set of all possible paths obtained by replacing some
number of ridges formed of edges strictly between the parentheses to obtain flattened
ridges.

Given two such paths ρ and ρ′, we write ρ 6 ρ′ if every vertex in ρ′ is at least as high
as the corresponding vertex in ρ.

If ρ is a latticed path, we say that ρ has norm ||ρ|| given by the number of non-flattened
steps between the parentheses comprising P , plus 1.
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Example. Continuing with the previous example, there are four latticed paths with
respect to the pair of parentheses on the first and eighth edges of the path, with norms
7, 5, 5 and 3.

( )

(1)

( )

(2)

( )

(3)

( )

(4)

The only latticed path with respect to the pair of parentheses on the second and third
edge is P (µ, λ) itself, with norm 1.

There are two latticed paths on P (µ, λ) with respect to the pair of parentheses on the
fourth and seventh edges of the path, with norms 3 and 1.

( )

(a)

( )

(b)

Definition 2.3. A well-nested latticed path for P (µ, λ) is a collection {ρP | P ∈ Q(µ, λ)}
of latticed paths such that if P,Q ∈ Q(µ, λ) and P ⊂ Q, then ρP > ρQ. We let Ω(µ, λ)
denote the set of all well-nested latticed paths. The norm of a well-nested latticed path
is given by the sum of the norms of the constituent paths.

Example. Continuing with our example, all triples are well-nested latticed paths except
((1), P (µ, λ), (b)) and ((3), P (µ, λ), (b)).

Theorem 2.4 [5, Theorem 4.4]. Suppose λ Q µ are partitions of n which differ onlytt
by moving i-nodes. Then the graded decomposition number dλµ(v) for the Hecke algebra
of type A is independent of the characteristic of F and is given by

dλµ(v) =
∑

ω∈Ω(µ,λ)

v||ω||.

Example. Continuing with our example, we have dλµ(v) = v11 + 2v9 + 2v7 + v5.

3 The diagrammatic Cherednik algebra

We will now discuss the combinatorics of Webster’s diagrammatic Cherednik algebra [6].
Given a weighting θ ∈ Rl, we have an associated diagrammatic Cherednik algebra

A(n, θ, κ) which is a quasi-hereditary cover of the cyclotomic Hecke algebra Hn. The
algebra A(n, θ, κ) is defined using a diagram calculus similar to that of Khovanov and
Lauda [4], but more involved. We omit the full definition due to its complexity, but rather
give a flavour of the underlying combinatorics. Note that while the algebra is difficult to
work with, this difficulty pays off in terms of yielding representation theoretic results!
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Definition 3.1. Given a weighting θ and some λ ∈P l
n, we draw the Young diagram [λ]

of λ by placing the first node of the jth component at point θj on the x-axis, with all
boxes having diagonals of length 2. We tilt our Young diagrams ever so slightly clockwise,
so that the top corners of different nodes have different x-coordinates.

The loading iλ is the n-tuple of real numbers given by projecting the top vertices of
boxes of [λ] onto the real line, along with the residue associated to each box.

Definition 3.2. We write λ Qθ µ, and say λ θ-dominates µ, if for every real number a
and every j ∈ Z/eZ, there are at least as many j-nodes to the left of a in iλ as in iµ.

If l = 1 this order is a coarsening of the usual dominance order. Similarly, if θ is
well-separated (that is, if θ1 << θ2 << · · · << θl), this order is a coarsening of the usual
dominance order on multipartitions. In general, the θ-dominance order depends subtly
on θ.

Example. Suppose θ = (0, 0.5). If λ = ((3), (12)) and µ = ((2), (2, 1)), then we draw [λ]
and [µ] as below, with the loadings given by projections onto the real line.

0-2 -1 0.5 1.5 0-1-0.5 0.5 1.5

Definition 3.3. Let λ, µ ∈ P l
n. A semistandard tableau of shape λ and weight µ is a

map T : [λ]→ iµ which respects residues and for all admissible r, c, k,

• T (1, 1, k) > θk,

• T (r, c, k) > T (r − 1, c, k) + 1,

• T (r, c, k) > T (r, c− 1, k)− 1.

We denote the set of semistandard tableaux of shape λ and weight µ by SStd(λ, µ).

Note that SStd(λ, µ) = ∅ unless λ Qθ µ.

Example. Let e = 3, l = 1, n = 3 and θ = κ = (0).
The only semistandard tableau of shape (13) is

0
1

2
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There is one semistandard tableau in SStd((2, 1), (2, 1)) and one in SStd((2, 1), (13)).

0
−1 1

0
2 1

There is one semistandard tableau in SStd((3), (3)), and one in SStd((3), (2, 1)).

0
−1

−2

0
−1

1

Technically, the coordinates written in the boxes should take into account the slight
tilting of our Young diagrams. We have omitted them to keep the diagrams neat, but
they account for the reason the following tableau is not semistandard.

0
2

1

Example. Suppose e = 3, θ = (0, 0.5) and κ = (0, 1). With λ and µ as before, the only
element of SStd(λ, µ) is

0

−1

−0.5

0.5

1.5

Theorem 3.4 [6, Theorem 4.10]. The diagrammatic Cherednik algebra A(n, θ, κ) is
a graded cellular algebra with respect to the θ-dominance order and a basis indexed by
SStd(λ, µ) as λ and µ range over P l

n.
In particular we have graded standard modules ∆(λ) = 〈CT | T ∈ SStd(λ,−)〉F with

graded simple heads L(λ) forming a complete set of graded simple modules, up to grading
shift.

Over C, the module category of A(n, θ, κ) is equivalent to category O for the rational
cyclotomic Cherednik algebra. If θ is well-separated (that is, θj − θk >> 0 for all j and
k), then A(n, θ, κ) is Morita equivalent to the q-Schur algebra of Dipper–James–Mathas
over arbitrary fields.

We would like to compute the graded decomposition numbers dλµ(v) for A(n, θ, κ).

Example. With the level 1 example for e = n = 3, the graded decomposition numbers
may be obtained from the semistandard tableaux, almost for free.
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4 Subquotients of A(n, θ, κ)

Pick a set S ⊂ Z/eZ of residues which is adjacency-free; that is, if i ∈ S then i± 1 /∈ S.
Suppose γ ∈P l

n has no removable i-nodes for any i ∈ S, and letM denote a multiset
of residues in S. Now let ΓM denote the set of multipartitions obtained from γ by adding
nodes of residues in M.

Example. Let e = 4, S = {0, 2} and γ = (8, 7, 6, 5). If M = {0, 0, 2} then we could
have for instance, λ = (9, 8, 7, 5), µ = (8, 72, 6, 1) ∈ ΓM.
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Fact: The set ΓM is an interval in the θ-dominance order, with maximal element given
by placing all nodes as far left as possible, and minimal element given by placing all nodes
as far right as possible. Thus we may take a subquotient AΓM whose standard modules are
indexed by all λ ∈ ΓM. In particular, for λ, µ ∈ ΓM, the graded decomposition number
dλµ(v) for AΓM is the same as the corresponding decomposition number for A(n, θ, κ).

Theorem 4.1 [1, Theorem 3.8]. If M is adjacency-free and M =M0 ∪M1 ∪ · · · ∪
Me−1 is a decomposition of M into disjoint residues, then

AΓM
∼= AΓM0

⊗ AΓM1
⊗ · · · ⊗ AΓMe−1

as graded F-algebras.

Thus, we may from now on consider the subquotient AΓm , corresponding to partitions
obtained from some γ by adding m i-nodes for some fixed residue i.

Example. Continuing with the previous example, we have that

dλµ(v) = d(9,72,5)(8,72,5,1)(v)× d(82,6,5)(8,7,62)(v).

5 Isomorphisms and decomposition numbers

Theorem 5.1 [1, Proposition 4.11 & Theorem 4.12]. Let e, ē ∈ {3, 4, . . . } ∪ {∞}
with i ∈ Z/eZ and ī ∈ Z/ēZ, and suppose γ (respectively γ̄) is a multipartition with no
removable i-nodes (respectively ī-nodes) and x addable i-nodes (respectively ī-nodes) for
some x. Then the corresponding subquotients AΓm and AΓ̄m

are isomorphic as graded
vector space over F.

Moreover, if F = C, we have

dλµ(v) = dλ̄µ̄(v)

for λ, µ ∈ Γm and λ̄, µ̄ ∈ Γ̄m.
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Example. Let e = 4 and ē = 5. Take γ = (8, 5, 4, 32, 1).
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Then γ has no removable 0-nodes and four addable 0-nodes.
Let κ̄ = (0, 1), θ̄ = (0, 0.5) and γ̄ = ((7, 6, 4), (3, 2)).
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Then γ̄ has no removable 2-nodes and four addable 2-nodes. Thus we can compare
decomposition numbers in AΓm with those in AΓ̄m

, where Γm is the set of partitions
obtained from γ by adding m 0-nodes, and Γ̄m is the set of bipartitions obtained from γ̄
by adding m 2-nodes. In particular, we can apply the combinatorics of Theorem 2.4 to
this level 2 example and calculate the corresponding decomposition numbers!

Our proof of the graded vector space isomorphism is by an explicit construction, which
we verify by examining i-diagonals in [γ]. Without going into the details, we apply the
defining relations of the algebra “close to the i-diagonals” and our proof is based around
this idea, using some case analysis. The i-diagonals are essentially just diagonals in the
Young diagram which have residue i, as pictured below.

i

i

i

Theorem 5.2 [1, Theorems 4.28 & 4.30]. Take e, ē, i, ī, γ, γ̄ as before. Under somemain
extra conditions on the i-diagonals of γ and γ̄, the isomorphism of the previous theorem
is an isomorphism of graded algebras.
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In particular, if κ contains at most one instance of the residue i, the graded decomposi-
tion numbers are parabolic Kazhdan–Lusztig polynomials, and can be calculated explicitly
as in Theorem 2.4.

Example. Let κ = (0, 1) and e = 3, i = 0. For θ = (0, 20), γ = ((6, 4, 22, 12), (5, 3, 1)).
Then [γ] is
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Setting λ = ((7, 5, 23, 12), (5, 3, 1)) and µ = ((6, 4, 3, 2, 13), (5, 4, 2)), we have the Young
diagrams below.
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Now take ē = 3, ī = 2 and γ̄ = (14, 12, 10, 8, 6, 4, 2). The Young diagram [γ̄] with
residues is

2

0
1

2
0

1
2

0
1

2
0

1
2

0
1 2

2
0

1
2

0
1

2
0

1
2

0
1 2

1
2

0
1

2
0

1
2

0
1 2

0
1

2
0

1
2

0
1 2

2
0

1
2

0
1 2

1
2

0
1 2

0
1 2



Kleshchev’s decomposition numbers for cyclotomic Hecke algebras 9

Setting λ̄ = (15, 13, 10, 9, 7, 4, 2) and µ̄ = (14, 12, 11, 8, 7, 4, 3, 1), we have the Young
diagrams below.
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Finally, take ¯̄e = 4, ¯̄i = 1, ¯̄θ = (0, 0.5), ¯̄γ = ((9, 6, 3), (42, 23, 13)). Then [¯̄γ] is
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Taking ¯̄λ = ((10, 7, 4), (42, 3, 22, 13)) and ¯̄µ = ((9, 6, 3), (5, 4, 3, 23, 13)), we get the
Young diagrams below.
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All three examples involve the same sequences of addable and removable nodes (and
thus the same decorated path), and we can compute that dλµ(v) = v11 + 2v9 + 2v7 + v5

in all three cases.

As it happens, our condition on the i-diagonals in Theorem 5.2 is not satisfied by
these examples, and thus we do not get isomorphisms between the three blocks in positive
characteristic. In light of the decomposition numbers matching up, we expect that they
are Morita equivalent to each other!
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