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ABSTRACT

We use computational, data-driven methods to study how neurons and
microcircuits in the brain operate. We are interested in the interaction between
fundamental properties like morphology or excitability and neural functions like
information processing or learning. Most of our models concern the cerebellum as
this brain structure has a relatively simple anatomy and the physiology of its main
neurons has been studied extensively, allowing for detailed modeling at many
different levels of complexity.

In FY2010 significant progress has been made on several research projects.
Highlights include the layered approach used in NineML, based on theoretical work
in the unit. Further development of STEPS includes the option to import SBML
models. We performed a deep analysis of how noise affects the signaling pathways
involved in induction of cerebellar LTD. We developed efficient methods to simulate
buffered calcium diffusion in large neuron models and started modeling the
chloride metabolism of Purkinje cells. We are analyzing the relationship between
neighboring trees in forests of Purkinje cell dendritic trees and developed a simple
model for the growth of dendritic bifurcations. We showed that gap junctions
between Golgi cells are less important in generating cerebellar oscillations than
previously reported. We have started analyzing complex spike data from monkey
cerebellar recordings.

1. STAFF

General services and neuroinformatics
Technical Staff: Ivan Raikov
Research Administrator / Secretary: Tsuyuki Nakabayashi

Molecular modelling
Researchers: Gabriela Antunes, Weiliang Chen
Technical Staff: Iain Hepburn

Cellular modelling
Researchers: Sungho Hong, Shiwei Huang, Yihwa Kim
Techmical Staffs: Haroon Anwar, Werner Van Geit (till November 2010)
Research Assistant / Graduate Student: Hermina Nedelescu, Pascal Warnaar

Network modeling
Researchers: Fabio M.S. de Souza, Mario Negrello, Rodrigo Publio (till October
2010)
Research Assistant / Graduate Student: Shyam K. Sudhakar

2. COLLABORATIONS

Theme: Cerebellar physiology, multiple themes 

Type of collaboration: Scientific collaboration and graduate program

Researchers:

Professor M. Giugliano, University of Antwerp, Belgium

Professor D. Snyders, University of Antwerp, Belgium

Dr. Q. Robberecht, University of Antwerp, Belgium

Dr. K. Tahon, University of Antwerp, Belgium

Dr. K. Veys, University of Antwerp, Belgium

Theme: Stochastic modeling of IP3 receptors 

Type of collaboration: Scientific collaboration 

Researchers:

Professor M.L. Linne, Tampere University of Technology, Finland

Dr. K. Hituri, Tampere University of Technology, Finland

Theme: Spiking activity of monkey cerebellar neurons 

Type of collaboration: Scientific collaboration

Researchers:

Professor H.P. Thier, University of Tübingen, Germany

Dr. A. Ignashchenkova, University of Tübingen, Germany

Dr. M. Junker, University of Tübingen, Germany

Dr. A. Schmigdlin, University of Tübingen, Germany

Theme: Molecular identification of cerebellar signaling pathways and cerebellar

optogenetics 

Type of collaboration: Scientific collaboration 

Researchers:

Professor G.J. Augustine, Korea Institute for Science and Technology
(KIST), Korea

Professor K. Tanaka, Korea Institute for Science and Technology (KIST),
Korea

Dr. J. Kim, Korea Institute for Science and Technology (KIST), Korea

Theme: Molecular modeling of diffusion in dendrites 

Type of collaboration: Scientific collaboration

Researchers:

Professor F. Santamaria, University Texas, San Antonio, United States of
America

Theme: Ultrastructural morphology of Purkinje cells

Type of collaboration: Scientific collaboration

Researchers:

Professor M. Ellisman, University California, San Diego, United States of
America

Professor M. Martone, University California, San Diego, United States of
America

Dr. L. Fong, University California, San Diego, United States of America

Theme: Modeling of effects of ethanol on the cerebellum 

Type of collaboration: Scientific collaboration

Researchers:

Professor C.F. Valenzuela, University of New Mexico, United States of
America

Theme: Correlation of neurons linked to their excitability 

Type of collaboration: Scientific collaboration

Researchers:

Professor S.A. Prescott, University of Pittsburgh, United States of
America

Dr. S. Ratté, University of Pittsburgh, United States of America

Theme: Purkinje cell morphology and physiology, modeling 

Type of collaboration: Scientific collaboration

Researchers:

Professor M. Häusser, University College London, United Kingdom

Dr. H. Cuntz, University College London, United Kingdom

Dr. A. Roth, University College London, United Kingdom

Dr. A. Watt, University College London, United Kingdom

Theme: Molecular modeling of Drosophila photoreception 

Type of collaboration: Scientific collaboration

Researchers:

Professor M. Jusoola, University of Sheffield, United Kingdom

Dr. Z. Song, University of Sheffield, United Kingdom

3. ACTIVITIES AND FINDINGS

3.1 Neuroinformatics standards

3.1.1 A standard language for multiscale modeling in neuroscience

The International Neuroinformatics Coordinating Facility (INCF) has assembled a
task force of simulator developers to propose a declarative computer language for
descriptions of large-scale neuronal networks. The name of the proposed language
is "Network Interchange for Neuroscience Modeling Language" (NineML). Its initial
focus is restricted to point neuron models and uses a layered approach as
advocated by our previous work (Raikov and De Schutter, 2011).

As part of the ongoing development effort on NineML, we have implemented code
generation software for the diagram-based notation used by NineML for
describing hybrid dynamics, which is capable of generating code for several
interpreted and compiled programming languages. NineML uses set operations to
construct composite neuronal populations and connectivity patterns. In order to
describe populations, we have implemented a software library for compact
representation of very large sets of neuronal populations. This library is
complemented by a library of graph functions that can express connectivity
between large populations compactly.

In addition, NineML has as design aims to provide tool support for explicit
declarative mathematical definitions of spiking neuronal network models in a
simulator independent manner, and to allow addition of new model descriptions
without modification of the previous structure and organization of the language.
To meet these goals, we have developed an initial prototype of a NineML model
description interpreter, which integrates the different aspects of NineML in order to
allow the construction of complete models, from neuronal and synaptic dynamics
to complete networks. The interpreter is capable of reading specialized syntax for
NineML models, as well as a preliminary XML syntax, and can invoke the code
generation functions for the currently supported programming languages and
neuronal simulators. The interpreter provides a consistent and unified user
interface to the different model description functionality of NineML.

3.2 Molecular mechanisms of synaptic plasticity

3.2.1 STEPS software development

STEPS (Wils and De Schutter, 2009) is a software system for simulation of biological
reaction-diffusion systems in well-mixed systems or complex 3D morphologies,
such as the signaling pathways involved in synaptic plasticity.

Computational efficiency has always been one of the major focuses in the
development of STEPS, since SSA simulations are commonly time consuming.
Several update versions of STEPS were released after extensive profiling and
reimplementation, reducing simulation time significantly. We implemented a
recent SSA solution with lower computational complexity (Slepoy et al., 2008).

Improvement was made in the mesh preparation for STEPS simulations.
Traditionally tetrahedral meshes were constructed by combinations of predefined
geometry primitives, such as cylinders and spheres (Santamaria et al., 2006).
Although this method provides fast solution for mesh generation, the lack of
biological realism of generated meshes limits their application. We have added the
option to generate 3D meshes from the skeleton of more accurate, surface meshes
of dendritic sections, which are reconstructed from electron microscopy image
series.

3.2.2 Support for SBML in STEPS

The Systems Biology Markup Language (SBML; Hucka et al. 2003) has become a de
facto standard for representing computational models of networks of biochemical
interactions. The neuronal signaling pathways that STEPS is designed to simulate
in a well-mixed context fall into this category. Therefore, support for SBML is an
important aspect of STEPS development.

Figure 1: SBML model of calcium oscillations simulated in STEPS. The Goldbeter et
al. (1990) model is solved with stochastic methods in femtolitre compartments.

SBML has evolved from the assumption that the simulator will solve differential
rate equations, which is somewhat different from the stochastic approach where
the underlying maths is based on one fundamental, unchanging stochastic
reaction constant. This presented several challenges when developing SBML
support, particularly the need to read, store and solve mathematical expressions
provided in MathML format. STEPS now provides structures to represent the
mathematical expressions in nested Python sequences, along with functions for
solving them. Such expressions may then be saved and updated during simulation,
which has allowed support for many important features of SBML such as Events
and Rules. Also, by providing methods to compare the mathematics specifically for
a reaction 'speed' to the form of a fundamental reaction, we can separate reactions
into those that can be represented as an ordinary reaction in STEPS and those of
which the form differs, and so are solved by an approximate method. This MathML
support means that STEPS represents all reactions correctly. Any stochastic
simulator that ignored such mathematical expressions would represent the
majority of SBML models incorrectly.

SBML support in STEPS has been tested against the extensive SBML 'Test-Suite' and
against many models from the Biomodels database (Li et al. 2010). 71% of the first
900 Test-Suite models are supported, and the majority of the failed imports are
unphysical models of 0-dimensional or 1-dimensional compartments or incomplete
models with no chemical species present. Figure 1 shows an example stochastic
simulation of an SBML model of signal-induced calcium oscillations (Goldbeter et
al. ,1990) in STEPS.

3.2.3 Stochastic modeling of induction of cerebellar long-term depression

Many cellular processes involve small number of molecules and are susceptible to
undergo stochastic fluctuations in their level of activity. Among these processes is
the induction of cerebellar long-term depression (LTD), a long-lasting decrease in
the efficacy of the excitatory synaptic transmission between granule cells and
Purkinje cells, expressed as a reduction in the number of synaptic AMPA receptors
(AMPARs). Cerebellar LTD can be induced through elevations in the postsynaptic
intracellular calcium ions concentration ([Ca2+]i), which leads to the activation of a
positive feedback loop fundamental for LTD occurrence that includes the Ca2+-
dependent protein kinase Cα (PKC) and the cytosolic phospholipase A2 (cPLA2),
both activated directly by [Ca2+]i, and the mitogen-activated protein kinase (MAPK)
pathway, that is activated by PKC. The persistent activation of PKC regulates the
trafficking of AMPARs, leading to the synaptic depression. We developed a
stochastic model of the signaling network and mechanisms of AMPAR trafficking
involved in LTD, and showed that the network activity switches between two
discrete stable states. Fluctuations in the signaling network activity lead to the
probabilistic induction of LTD, which gives rise to the macroscopic sigmoidal
relationship between LTD and the concentration of the triggering signal observed
experimentally. Increasing the biochemical population size modifies quantitatively
and qualitatively its macroscopic behavior (Figure 2), which is caused by the
reduction of the stochastic fluctuations of the signaling network.

Figure 2: Fluctuations in the activity of the signaling network are controlled by the
biochemical population size. Increasing the biochemical population size, which was
done by increasing the volume of the biochemical compartment where the
reactions take place, reduces the stochastic fluctuations of the model (A – original
population, B – population 32 times larger, C – population 64 times larger). D:
Alterations in the population size of the model changes the sigmoidal relationship
of LTD as a function of the input signal, potentiating the bistability observed during
LTD induction. E: The alterations in the macroscopic bistability of LTD induction can
be measured by the hill coefficient (nHill) of the sigmoid curves, which increase as
a function of the population size represented here by the volume of the
biochemical compartment. F: the [Ca2+]i requirement for LTD induction (KCa) is
independent of the population size.

3.3 Cellular mechanisms regulating firing and synaptic properties of neurons

3.3.1 Improvements of a Purkinje neuron model

We have recently obtained voltage clamp data of the P-type calcium current
recorded in Dr. Indira Raman's lab (Northwestern University). The P-type calcium
channel is present through all parts of the Purkinje neuron including the axon, and
plays an important role in excitability not only by itself but also by contributing to
activation of the calcium-activated potassium channels. One of the main issues of
computational modeling this channel is that it both expresses calcium-induced
facilitation (CIF) and inactivation (CII), but full under-standing of the biophysical
mechanisms causing them has yet not been established (Dunlap, 2007). CIF usually
expresses significantly when the channel is only partially activated. Since the
baseline membrane potential of the dendrites is around this partial activation
range, it is important to have a model with CIF to test its influence on the entire
Purkinje neuron model.

We adopted the suggested mechanism by Chaudhuri et al. (2007) and
implemented it in our P-type channel model, and it successfully reproduced the CIF
in the experimental data. We are currently investigating the effects of CIF in the full
Purkinje neuron model.

3.3.2 Modeling detailed calcium dynamics in the Purkinje cell dendrite

Intracellular Ca2+ concentration plays a crucial role in the physiological interaction between

Ca2+ channels and Ca2+-activated K+ channels. We have investigated the role of different

Ca2+ buffering mechanisms in simulating this physiological interplay (Anwar et al., 2011). The

exponential decaying pool used in most multi-compartmental neuron models could not

simulate characteristic Purkinje cell Ca2+ spikes. The reason is its short relaxation time which

can approximate fast transients and therefore activate a BK-type channel, but fails for the

small conductance (SK) channel that activates slowly and requires different Ca2+ dynamics. A

simple and effective solution may be to use two Ca2+ pools respectively for the fast and slow

transient. Alternatively one could use a detailed model of Ca2+ dynamics (Schmidt et al.,

2003) including Ca2+ diffusion, diffusible parvalbumin and calbindin buffers and pumps.

Unfortunately simulating diffusion is very computation intensive and would make

simulations of a multi-compartmental model prohibitively slow. Therefore we developed a

Diffusion Compensation Method (DCM) that replaces diffusion of Ca2+ and buffers with a

DCM buffer (Anwar et al., 2011).

Figure 3: Dendritic Ca2+ spikes generated using different Ca2+ buffering models.
Spikes are aligned at the peak of the first spikelets in a, b and f. a. First burst of
Ca2+ spikes, b. Burst of Ca2+ spikes around 57 s, c and d, Spontaneous Ca2+ spike
bursting over 100 s, e. Inter burst interval (IBI) as a function of current injection, f.
Burst of Ca2+ spikes around 57 s with injection of 0.004 pA current. (Anwar et al.,
2011).

When dendritic Ca2+ spikes with multiple spikelets comparable to those observed
in vitro were simulated using different Ca2+ buffering models (Figure 3a-b), the
spikes generated using pool based models were different from the spikes
generated using the other buffering models. Differences existed in spike width,
spike height and afterhyperpolarization and lead to completely different behavior
of the models over longer time scales (Figure 3c-e). On the other hand, the Ca2+
spikes generated using DCM were similar to those generated using detailed model.

While using detailed Ca2+ dynamics models with diffusion in a detailed
morphology of a Purkinje cell, we discovered large gradients of Ca2+ levels in
neighboring segments with different diameters (Figure 4). The peak Ca2+
concentration showed a close to linearly inverse relationship to the diameter of the
compartment. This effect was present also when 3D diffusion was simulated using
STEPS. We deem such pronounced gradients of Ca2+ within the dendrite as
unphysiological, leading to the paradoxical effect that more realistic models
(buffered Ca2+ diffusion) produce unrealistic gradients compared to the simpler
pool models which are relatively insensitive to diameter. We are exploring possible
regulatory mechanisms to compensate for this effect in neurons.

Figure 4: Detailed Ca2+ buffering models cause a strong dependence on dendritic
diameter. Ca2+ transients shown in panel b are generated using uniform channel
densities in a piece of dendrite with varying diameter as shown in panel a (STEPS
simulation).

3.3.3 Modeling chloride dynamics in Purkinje cells

Regulation of intracellular Cl- concentration in neurons is important for synaptic
inhibition. The molecular mechanisms underlying this regulation are not well
understood. Biophysical properties of many Cl- channels and transporters are
examined in heterogeneous expression systems and their physiological role
determined from gene expression studies – both of which do not provide
information on the dynamics of Cl- regulation. However, these studies can be used
to construct a dynamical model of Cl- regulation.

Cl- concentration in Purkinje cells may be regulated by two classes of transporters
– the Potassium Chloride Co-transporters (KCCs) and the Excitatory Amino Acid
Transporters (EAATs). KCCs utilize the ion gradient of K+ to remove intracellular Cl-
(Blaesse et al., 2009) and is co-localized with GABAaRs. EAATs utilize the ion
gradients of Na+, H+ and K+ to exclude glutamate from the synapse (Zerangue and
Kavanaugh, 1996). In addition to their transport function, the binding of Na+ and
glutamate to the transporter activate an uncoupled channel within the transporter,
permeant to monovalent anions (Fairman et al., 1995). Purkinje cell EAAT current is
predominantly an anion current as replacing Cl- with a more permeant anion
greatly enhances the current amplitude (Otis et al., 1997). This current may
contribute to Cl- regulation, particularly in low intracellular volume compartments
(e.g. spines) where the Cl- gradient can fluctuate rapidly.

Detailed models of KCC2 and Purkinje cell EAATs were constructed and
incorporated into a biophysically and morphologically realistic model. The model
will be used to explore conditions at which KCC2 and Pn EAATs can alter Cl- reversal
potential and IPSC amplitudes.

3.3.4. Efficient estimation of the phase response curve via compressive
sensing

The phase response curve (PRC) is an important characterization of biological
oscillators such as neurons. However, estimation of the PRC from the experimental
data has posed a problem due to a large mismatch between the dynamical time
scales of the stimuli injected during the experiments and neuronal intrinsic
mechanisms (Torben-Nielsen et al, 2010). Recently, we developed a new method to
estimate the PRC based on a recent breakthrough in information theory, called
compressive sensing (Baraniuk, 2007). The method shows good results with
surrogate data. It will be applied to PRCs from cerebellar Golgi cells, recorded at
the University of Antwerp.

3.3.5 Modeling dendritic growth with simple models

How neurons attain their specific shapes has attracted attention over centuries.
The dendritic shape determines the type of input a cell receives. Cell-internal as
well as external mechanisms are known to contribute in determining the
characteristic morphology of each cell type. We try to identify the contributions of
such internal and external mechanisms to growth using modeling approaches.

In order to assess the morphological property of each neuron type, we have used
dendritic bifurcations as the unit of study due to their abundance in number and
the fact that only three measures are sufficient to completely account for their
geometrical properties. Since within each neuron type variability exists in the
shape, single cell reconstruction data was pooled from the Neuromorpho.org
database (Ascoli et al. 2007) and statistical properties of the bifurcation shapes of
neurons were studied.

A growth model that was based only on internal mechanisms guiding development
was tested and found to match the characteristic bifurcation shapes of most
neurons.

3.4 Information processing in the olivocerebellar system

3.4.1 Morphological variability in populations of neighboring Purkinje cells

For decades anatomists have primarily relied on reconstructing dendritic arbors at
the rate of only a single or a few sparsely located cells at a time. Such studies have
generated only a partial understanding of a network's cytoarchitecture and
underlying neuronal plasticity throughout life.

To gain a more comprehensive insight into the architecture of anatomical networks, we have

commenced to explore the nature of structural changes occurring among neighboring

Purkinje cells as a function of neuronal growth. In collaboration with Alanna Watt and

Hermann Cuntz of the University College London, we study large forest populations of

Purkinje cells. We have been able to investigate the morphological changes at different

neuronal growth stages of hundreds of neurons by combining transgenic mouse technology

and microscopy with computational anatomy. Figure 5 demonstrates a small sample of a

reconstructed Purkinje cell forest from the cerebellum of a Green Fluorescent Protein (GFP)

expressing transgenic mouse in which specifically Purkinje cells are labeled by GFP. We have

made further progress by employing Brainbow technology as a tool in our research to

facilitate differentiation of neighboring Purkinje cells. Thus far, our results suggest that there

is considerably more organizational and morphological variability among neighboring

Purkinje cells in the network then previously thought.

Figure 5: Sample of anatomical reconstructions from the cerebellum of a young
GFP transgenic mouse. A: Intact forest spanning ~211 X 211 X 134 μm and
containing 33 Purkinje cells. False colors are arbitrary to facilitate visualization of
neighboring arbors. B: Spread out visualization of individual neurons composing
the dense forest in (A). Note the immense diversity among neighboring neurons
and their subtrees. C: Illustration of the forest, spread out, in the x-z view. All
images were plotted with the TREES toolbox.

3.4.2 Predicted effect of ethanol on granular layer oscillations

A network model of cerebellar cortex has been developed to simulate the actions
of ethanol on cerebellar function. This is based on a previously constructed neural
network model of the cerebellar granular cell layer (Simões de Souza and De
Schutter, 2011), and work that studies the excitatory action of ethanol on single
cerebellar Golgi Cells by inhibiting the Na+/K+ ATPase (Botta et al., 2010).

We first used the neural network model to explore the unclear role of gap junctions
between Golgi cells on the generation of cerebellar electrical oscillations. We
discovered that gap junctions only increase the robustness of oscillations that are
primarily driven by a synaptic feedback loop between Golgi and granule cells
(Simões de Souza and De Schutter, 2011; Figure 6). We are extending these studies
to investigate the effects of ethanol on the granular layer oscillations.
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Figure 6: Neural network topology and effect of gap junctions on network in the
oscillations. A The spatial location of neurons in their two-dimensional layers is
shown. Only 1% of the granule cells and parallel fibers are displayed for better
visualization. B Schematic diagram illustrating the connectivity between the layers.
C Inset showing the neurotransmitters and synaptic receptors used by each
modeled synaptic connection. D The influence of gap junctions between GoCs on
the responses of the network in the complete configuration with weak parallel
fiber inputs. E Raster plot (top panel) and PSTH (bottom panel) of the Golgi cells
with (red) and without (blue) gap junctions. Each dot in the raster plot is a spike.
Mossy fiber input with mean firing rate at 5 Hz was turned on at 1000 ms. F Same
as (E) but for the granule cells.

3.4.3 Complex effects of the complex spike

Along with other unique architectonic and dynamic particularities, the cerebellum
receives one of the most peculiar inputs in the whole brain, the climbing fiber. A
single climbing fiber axon lays over the exuberant arbor of the Purkinje neuron as
ivy, with hundreds of synaptic contacts producing one of the strongest cell to cell
contacts in the whole brain. The climbing fiber action potentials are relatively rare
— approximately one per second — and lead the Purkinje neuron to the
production of a 'complex spike'. This is a momentous event, which is bound to have
significant functional implications for higher functions such as movement
coordination and learning.

In collaboration with the Primate Lab of the University of Tübingen, we study the
influence of the complex spike measured from the primate cerebellum in both
spontaneous and guided oculo-motor movements. We analyze the effects of the
complex spike on (1) the local field potentials (Figure 7), (2) simple spike trains and
pauses, and (3) on oculo-motor movements. Our results seem to imply an
interpretation that is at odds with functions commonly associated with the
complex spike, and indicate a more direct impact on behavior than previously
believed.

Figure 7: Impact of a saccade to 8 directions on the local field potential in
cerebellum.

No thorough attempt has ever been made to describe the variety of complex
spikes seen in the cerebellum in vivo. Using the same data sets and employing
spectral analysis to subdivide complex spikes we have found multiple forms for
different recordings, but also in single recordings a clear variety can be seen. The
differences among the complex spikes consist of spikelet number differences and
frequency of spikelets differences (Figure 8). Further investigation will focus on
functional relevance of the different complex spike waveforms seen.

Figure 8: Variability in complex spike shapes in vivo. Data obtained from a single
Purkinje cell in monkey cerebellum. Inset shows number of occurrences of each
shape in one recording.

3.4.4 Intrinsic heterogeneity of the superchiasmatic nucleus

The superchiasmatic nucleus (SCN) is a pacemaker of the circadian rhythm in mammalian

hypothalamus. SCN is often referred as an example of dynamic synchronization because the

oscillating neurons, despite manifest heterogeneity in isolation, can generate a coherent

rhythm due to intrinsic nonlinearities and mutual coupling. However, the imaging

experimental data obtained by our collaborators Jihwan Myung (Kyoto University) and Tohru

Takumi (Hiroshima University) show evidence that gene expression in SCN neurons still has

some heterogeneity even when the whole slice generates a coherent rhythm. A problem in

analyzing this data was that the mean oscillation is so dominating that the typical pairwise

correlation is close to one, making it difficult to obtain topographically stable patterns from

the observed heterogeneity. We developed a method, based on partial correlation and multi-

scale spectral clustering algorithm (Azran and Ghahramani, 2006), to classify the neurons in

the imaging data into clusters according to similarities in their oscillating patterns.
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