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Type C background Root Datum

Type C setup

Let ℓ ∈ {2, 3, . . . } ∪ {∞}. We have the root datum of type C∞ when

ℓ = ∞, or C
(1)
ℓ otherwise.

I = {0, 1, 2, . . . } I = {0, 1, 2, . . . , ℓ}

0 1 2 3 0 1 ℓ− 1 ℓ

C∞ C
(1)
ℓ−1

d = (2, 1, 1, . . . ) d = (2, 1, 1, . . . , 1, 2)

We have simple roots {αi | i ∈ I}, fundamental weights {Λi | i ∈ I}, etc.
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Type C background Residue combinatorics

Type C residues
As in type A, (multi)partitions and tableaux play an important role.

If ℓ = ∞, we have residue pattern . . . ,−2,−1, 0, 1, 2, . . . (take modulus)
If ℓ <∞, we have residue pattern 0, 1, 2, . . . , ℓ−1, ℓ, ℓ−1, . . . 2, 1, 0, 1, . . .
Fix a charge k ∈ Z (will correspond to Λk later). Working modulo 2ℓ, fill
the (1, 1) node of a Young diagram [λ] with |k |, and repeat the pattern
along each row, subtracting 1 to go down a row.

Examples

Let ℓ = ∞, k = −1, λ = (6, 5, 4). Then

[λ] = 1 0 1 2 3 4
2 1 0 1 2
3 2 1 0

Let ℓ = 3, k = 1, µ = (10, 7, 6). Then

[µ] = 1 2 3 2 1 0 1 2 3 2
0 1 2 3 2 1 0
1 0 1 2 3 2
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Type C background Degrees and defect

Degrees and defect
Given a multipartition λ with content β =

∑
A∈[λ] αresA ∈ Q+,

the defect
is

def(λ) := (Λ|β)− 1
2(β|β) = deg T+ codeg T for any T ∈ Std(λ).

Here, the degree and codegree of a standard tableau are defined
recursively via

dA := di (#{addable i-nodes of λ below A}
−#{removable i-nodes of λ below A})

dA := di (#{addable i-nodes of λ above A}
−#{removable i-nodes of λ above A})

for A = T−1(n) ∈ [λ] an i-node.

deg T := deg T↓n−1 + dA(λ) & codeg T := codeg T↓n−1 + dA(λ)
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KLR algebras Presentation

KLR algebras

Let F be a field of characteristic p ⩾ 0, and Λ = Λk1 + · · ·+ Λkr .

The

cyclotomic KLR algebra RΛ
n of type C∞ (ℓ = ∞) and C

(1)
ℓ (ℓ <∞) is the

unital associative F-algebra with generators

{e(i) | i ∈ I n} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}

subject to the relations

e(i)e(j) = δi,je(i);
∑
i∈I n

e(i) = 1;

yre(i) = e(i)yr ; ψre(i) = e(sr i)ψr ;

yrys = ysyr ;

ψrys = ysψr if s ̸= r , r + 1; ψrψs = ψsψr if |r − s| > 1;

yrψre(i) = (ψryr+1 − δir ,ir+1)e(i); yr+1ψre(i) = (ψryr + δir ,ir+1)e(i);
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KLR algebras Presentation

ψ2
r e(i) =



(yr + y2r+1)e(i) if (ir , ir+1) = (0, 1) or if (ℓ, ℓ− 1),

(y2r + yr+1)e(i) if (ir , ir+1) = (1, 0) or if (ℓ− 1, ℓ),

(yr + yr+1)e(i) if ir+1 = ir ± 1, and ir , ir+1 ̸= 0, ℓ,

0 if ir = ir+1,

e(i) otherwise;

ψr+1ψrψr+1e(i) =



(ψrψr+1ψr+yr+yr+2)e(i) if (ir , ir+2, ir+1) = (1, 0, 1)

or (ℓ− 1, ℓ, ℓ− 1),

(ψrψr+1ψr + 1)e(i) if ir = ir+2 = ir+1 ± 1

and ir+1 ̸= 0, ℓ,

ψrψr+1ψre(i) otherwise;

y
⟨α∨

i1
,Λ⟩

1 e(i) = 0;

for all admissible r , s, i, j.
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KLR algebras What is known?

What is known?

Relatively little!

Results

• Ariki–Park (2016): determined the representation type when Λ = Λ0.

• Chung–Hudak (2022): extended this to Λ = Λk , for any k ∈ I .
(Presented by Hudak at this workshop.)

• Ariki–Park–S. (2019): constructed Specht modules for RΛ
n .

• S. (2018): determined semisimplicity criterion for RΛ
n .

• Evseev–Mathas (2022): showed that RΛ
n is a graded cellular algebra,

with cell modules = Specht modules.

• Mathas (2022): Defect 0 blocks of RΛ
n are simple.

• Chung–Hudak (2022): Defect 1 blocks of RΛk
n are Morita equivalent

to Brauer line algebras. (Graded decomposition matrices identical to
type A case.)
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KLR algebras Specht modules

Specht modules
The Specht modules arise as the cell modules in the work of
Evseev–Mathas, but also have an earlier construction (Ariki–Park–S.).

Definition/Example

Let Tλ denote the row-initial λ-tableau. e.g. if λ = (5, 3, 2), then

1 2 3 4 5

6 7 8

9 10

The Specht module Sλ = Sλk is the homogeneous RΛk
n -module generated

by zλ (of degree deg Tλ) subject to the relations

i) e(i)zλ = δi,res Tλz
λ,

ii) yrz
λ = 0 for all r ,

iii) ψrz
λ = 0 if r and r + 1 lie in the same row of Tλ,

iv) For each Garnir node A ∈ [λ], we have a Garnir relation gλ
k,Az

λ = 0.
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KLR algebras Specht modules

Specht modules

Let wT ∈ Sn be such that T = wTTλ.

For each wT, fix a reduced
expression wT = si1 . . . sir , and set vT := ψTzλ = ψi1 . . . ψir z

λ.

Theorem (Ariki–Park–S. (2019), Evseev–Mathas (2022))

For any partition λ, the Specht module Sλ has homogeneous F-basis
{vT | T ∈ Std(λ)}, and deg(vT) = deg T.

(This all works for multipartitions, and any Λ, not just the level 1 situation
mentioned above. APS proves that this set always spans the Specht
module, and is a basis if all Garnir relations have just a single term – i.e. is
of the form ψwz

λ = 0.)
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KLR algebras Specht modules

Graded characters

Definition

The graded character of an RΛ
n -module M is

chM =
∑
i∈I n

dimv (e(i)M)i.

In particular,

ch Sλ =
∑

T∈Std(λ)

vdeg T res T.
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KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13).

Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ =

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ =

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ =

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2)

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2) + (1, 2, 0, 3, 1, 2)

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2) + (1, 2, 0, 3, 1, 2) + (1, 2, 0, 1, 3, 2)

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2) + (1, 2, 0, 3, 1, 2) + (1, 2, 0, 1, 3, 2) + v 2(1, 2, 0, 1, 2, 3)

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2) + (1, 2, 0, 3, 1, 2) + (1, 2, 0, 1, 3, 2) + v 2(1, 2, 0, 1, 2, 3) + (1, 0, 2, 3, 1, 2)

ch Sλ = (1, 2, 3, 0, 1, 2)+(1, 2, 0, 3, 1, 2)+(1, 2, 0, 1, 3, 2)+v2(1, 2, 0, 1, 2, 3)
+(1, 0, 2, 3, 1, 2)

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2) + (1, 2, 0, 3, 1, 2) + (1, 2, 0, 1, 3, 2) + v 2(1, 2, 0, 1, 2, 3) + (1, 0, 2, 3, 1, 2)

+ (1, 0, 2, 1, 3, 2)

ch Sλ = (1, 2, 3, 0, 1, 2)+(1, 2, 0, 3, 1, 2)+(1, 2, 0, 1, 3, 2)+v2(1, 2, 0, 1, 2, 3)
+(1, 0, 2, 3, 1, 2) + (1, 0, 2, 1, 3, 2)

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2) + (1, 2, 0, 3, 1, 2) + (1, 2, 0, 1, 3, 2) + v 2(1, 2, 0, 1, 2, 3) + (1, 0, 2, 3, 1, 2)

+ (1, 0, 2, 1, 3, 2) + v 2(1, 0, 2, 1, 2, 3)

ch Sλ =Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2) + (1, 2, 0, 3, 1, 2) + (1, 2, 0, 1, 3, 2) + v 2(1, 2, 0, 1, 2, 3) + (1, 0, 2, 3, 1, 2)

+ (1, 0, 2, 1, 3, 2) + v 2(1, 0, 2, 1, 2, 3) + v(1, 0, 1, 2, 3, 2)

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2) + (1, 2, 0, 3, 1, 2) + (1, 2, 0, 1, 3, 2) + v 2(1, 2, 0, 1, 2, 3) + (1, 0, 2, 3, 1, 2)

+ (1, 0, 2, 1, 3, 2) + v 2(1, 0, 2, 1, 2, 3) + v(1, 0, 1, 2, 3, 2) + v(1, 0, 1, 2, 2, 3)

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



KLR algebras Specht modules

Graded characters

Example

Let ℓ = 3, Λ = Λ1, λ = (3, 13). Then [λ] = 1 2 3

0

1

2

and the basis is

T1 = 1 2 3
4
5
6

T2 = 1 2 4
3
5
6

T3 = 1 2 5
3
4
6

T4 = 1 2 6
3
4
5

T5 = 1 3 4
2
5
6

T6 = 1 3 5
2
4
6

T7 = 1 3 6
2
4
5

T8 = 1 4 5
2
3
6

T9 = 1 4 6
2
3
5

T10 = 1 5 6
2
3
4

ch Sλ = (1, 2, 3, 0, 1, 2) + (1, 2, 0, 3, 1, 2) + (1, 2, 0, 1, 3, 2) + v 2(1, 2, 0, 1, 2, 3) + (1, 0, 2, 3, 1, 2)

+ (1, 0, 2, 1, 3, 2) + v 2(1, 0, 2, 1, 2, 3) + v(1, 0, 1, 2, 3, 2) + (v + v 3)(1, 0, 1, 2, 2, 3)

Liron Speyer (OIST) Decomposition matrices in type C 16th December, 2022 11 / 24



Decomposition numbers Definition

Graded decomposition numbers

By Evseev–Mathas’s graded cellularity result, we have irreducible
RΛ

n -modules given as heads of certain Specht modules (upto grading shift
and isomorphism).

They showed that the labelling set is the ‘obvious’ type
C analogue of Kleshchev multipartitions – define good nodes etc, using
the type C residue pattern. (Labels match those for vertices in the crystal
for the irreducible highest weight Uq(ŝpℓ)-module V (Λ).)

These irreducible modules have bar-invariant graded characters
(i.e. chDλ = chhd(Sλ) is invariant under v ↔ v−1).

Definition

The graded decomposition number dλµ = [Sλ : Dµ]v is the graded
multiplicity of Dµ in Sλ. i.e.

dλµ =
∑
k∈Z

[Sλ : Dµ⟨k⟩]vk .
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Decomposition numbers Tools

Tools

We want to compute graded decomposition numbers.

What tools do we have for free from graded cellularity, etc?

• The graded decomposition matrix is lower unitriangular w.r.t.
dominance order on (multi)partitions.

• Graded characters of Specht modules are easy to compute.

• The simple labels are known (recursively), and chDλ is bar-invariant.

How far can this short list get us? We will focus on Λ = Λk (level 1).
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Decomposition numbers Examples

Toy example

We’ll start with a small example in defect 1.

(Remember, defect 0 blocks are
simple, and defect 1 blocks are understood already, by Chung–Hudak.)
Let ℓ = 3, Λ = Λ1, and β = α0 + 2α1 + α2. The partitions of content β are (14),
(2, 12), (22), and one can check that (14), (2, 12) label simples.

S(1
4) = D(14) and ch S(1

4) = chD(14) = (1, 0, 1, 2).
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Decomposition numbers Examples

What did we see?

Remember, all we used was:

• The graded decomposition matrix is lower unitriangular w.r.t.
dominance order on (multi)partitions.

• Graded characters of Specht modules are easy to compute.

• The simple labels are known (recursively), and chDλ is bar-invariant.

These are characteristic-free, and led us to a unique graded decomposition
matrix. So it’s characteristic-free!

(Again, this is unsurprising, and is the case for all defect 1 blocks, by
Chung–Hudak.)
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Decomposition numbers Examples

A defect 2 example
Let ℓ = 3 and Λ = Λ1 again.

Then RΛ
δ = RΛ

α0+2α1+2α2+α3
is a defect 2

block.
Repeat the previous tactic – work row-by-row computing the graded
characters of Specht modules, and tear off non-bar-invariant pieces.
We again land on a unique matrix, so that the decomposition numbers are
characteristic-free. (Not the case for defect 2 blocks in type A!)

16 2,
14

3,
13

4,
12

5,
1

16 1 · · · ·
2, 14 v 1 · · ·
3, 13 v v2 1 · ·
4, 12 v2 · v 1 ·
5, 1 · · · v2 1
32 · · v · ·

4, 2 · · v2 v ·
6 · · · · v2
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Decomposition numbers Examples

With a little work, one can also show that the Specht modules in the
previous examples are uniserial, w/ radical layers determined by the
grading.

It is known by work of Shan that in type A, the radical filtration and
grading filtration coincide.
But we see that it is already not quite working here: the radical of S(5,1) is
D(4,12)⟨2⟩ (there is no factor shifted by degree 1).
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Decomposition numbers Canonical bases

An overview of canonical bases for Uq(ŝpℓ)-modules

Recall that the algebras RΛ
n categorify the highest weight irreducible

Uq(ŝpℓ)-module V (Λ) – a submodule of the Fock space F(Λ).

If Λ = Λκ1 + · · ·+ Λκr , then F(Λ) has a standard basis
{λ | λ is an r -multipartition} and V (Λ) is the submodule with standard
basis {λ | λ is a regular r -multipartition}. Under categorification, the basis
element λ corresponds to our Specht module Sλ.

V (Λ) also has a canonical basis {G (λ) | λ is an r -multipartition} uniquely
determined by the following properties:

• G (λ) is bar-invariant.

• G (λ) = λ+
∑

cλ,µµ where cλ,µ ∈ vZ[v ].

Unlike in type A, the canonical basis element G (λ) should not in general
correspond to the projective cover of the simple module Dλ.
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Decomposition numbers Some observations

In computing ‘possible’ decomposition matrices for RΛk
n for small n using the process we saw, we

seem to land on unique matrices whenever the defect is ⩽ 3.

So these are all characteristic-free!

First defect 4 block when ℓ = 2, RΛk

2δ (n = 8). If k = 1, we still see a unique matrix. But the

block is really interesting for Λ = Λ0! First, the above method spits out two possible matrices:

Some extra brute force computation can rule one out.
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1
8

2
,
1
6

2
4

3
,
1
5

3
,
2
2
,
1

4
,
1
4

18 1 · · · · ·
2, 16 v 1 · · · ·

24 · v 1 · · ·
3, 15 v v 2 · 1 · ·

3, 22, 1 v 2+1 v 3 v 2 v 1 ·
4, 14 v 2 · · v · 1

32, 12 2v · · v 2 v ·
32, 2 2v 2 · · · v 2 ·

4, 2, 12 2v 2 · · v 3+v v 2 v 2

4, 22 2v 3 · · v 2 v 3 ·
4, 3, 1 v 4+v 2 v v 2 v 3 v 4 ·

42 · v 3 v 4 · · ·
5, 13 v 2 · · v 3 · v 4

6, 12 v 3 v 2 · v 4 · ·
7, 1 v 3 v 4 · · · ·

8 v 4 · · · · ·
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Decomposition numbers Some observations

So why is this block interesting?

1
8

2
,
1
6

2
4

3
,
1
5

3
,
2
2
,
1

4
,
1
4

18 1 · · · · ·
2, 16 v 1 · · · ·

24 · v 1 · · ·
3, 15 v v 2 · 1 · ·

3, 22, 1 v 2+1 v 3 v 2 v 1 ·
4, 14 v 2 · · v · 1

32, 12 2v · · v 2 v ·
32, 2 2v 2 · · · v 2 ·

4, 2, 12 2v 2 · · v 3+v v 2 v 2

4, 22 2v 3 · · v 2 v 3 ·
4, 3, 1 v 4+v 2 v v 2 v 3 v 4 ·

42 · v 3 v 4 · · ·
5, 13 v 2 · · v 3 · v 4

6, 12 v 3 v 2 · v 4 · ·
7, 1 v 3 v 4 · · · ·

8 v 4 · · · · ·

G (18) = (18) +
∑

µ⊢8 cµµ where cµ ∈ vZ[v ]. So this is the first known
example where the canonical basis cannot match up with decomposition
numbers!
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µ⊢8 cµµ where cµ ∈ vZ[v ]. So this is the first known
example where the canonical basis cannot match up with decomposition
numbers!
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Decomposition numbers Some observations

Next, we can do some more brute force computation in this block...
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Decomposition numbers Some observations

D(3,22,1)

D(18)

S(3,2
2,1) ∼= S(3,2

2,1) ∼= D(3,15)⟨1⟩

D(18)⟨2⟩

D(2,16)⟨3⟩

D(24)⟨2⟩

So we also get our first non-uniserial module, and an example (in any
characteristic!) where the grading filtration and radical filtration do not
match.
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Decomposition numbers Some observations

But even in this block, the decomposition numbers must be
characteristic-free.

Easy to see – only two possible decomposition
matrices, and already in characteristic zero the maximal one is correct.
There’s nowhere else to go!
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Decomposition numbers Some observations

‘Inducing’ up to the (still defect 4) block containing (19), our problems
persist.

G (19) doesn’t match the first column of the decomposition

matrix. The Specht S(3,2
2,12) has the same structure as above. BUT our

computation yields 4 possible matrices, & we can compute that the
decomposition matrix is different in characteristic 2. e.g. computing
structure again, we have:

S(4,2,1
3) ∼=

D(4,2,13)

D(19)⟨2⟩

D(3,22,12)⟨2⟩

D(19)⟨2⟩

D(3,2,14)⟨3⟩

(p ̸= 2) S(4,2,1
3) ∼=

D(4,2,13)

D(19)

D(19)⟨2⟩

D(3,22,12)⟨2⟩

D(19)⟨2⟩

D(3,2,14)⟨3⟩

(p = 2)
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