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Abstract

Detection of the Rydberg states of electrons on superfluid helium

confined in microchannel devices

The potential for quantum information processing with surface-state electrons (SSE) on

liquid helium has been pointed out in one of the historically first proposals for quantum

computing [1]. The quantized Rydberg states of the vertical motion of SSE, as well as

the spin states of SSE, present two promising candidates for the experimental implemen-

tation of qubit states. However, the lack of a sensitive state-readout method for a single

electron has so far prevented much progress in implementation of these states for quan-

tum computing. In order to overcome this obstacle, this PhD project seeks to lay the

experimental groundwork for the realization of Rydberg state detection of SSE on liquid

helium confined in microchannel devices, as well as their potential use for spin state de-

tection. We start from the transport measurements of SSE in a microchannel setup, since

well-understood transport behavior of SSE can help us to detect the Rydberg transition.

An unusual transport effect is reported and discussed. By employing the time-resolved

measurements, we show that the effect is due to the dynamical interaction of the electron

crystal with the surface excitations of the liquid substrate. Next, the feasibility of detect-

ing the transition between Rydberg states in a 4-µm deep channel device is demonstrated

using two different methods, the conductivity method and the image-charge method. We

find that the observed transition frequency for the two lowest Rydberg states, which is

in the range of 0.4 − 0.5 THz, is determined by the image charges induced by SSE in
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Abstract v

the conducting electrodes of the microchannel device and the applied potentials, and is

in a good agreement with our analytical and numerical calculations. Owing to the low

sensitivity of this method, the number of SSE in the device is required to be large, on the

order of 104, that is the sensitivity is far below the final goal of single electron readout.

Taking advantage of the LC (tank) resonating circuits, we significantly improve the mea-

surement sensitivity by employing a resonator albeit with a relatively low quality factor.

Finally, we present our ongoing experimental efforts to optimize the resonator setup, in

particularly increasing its quality factor, which is an important step towards realizing an

ultra-sensitive readout of the single-electron Rydberg states.
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Nomenclature

Some commonly used symbols in this work.

b̂†q, b̂q Bosonic creation and annihilation operators
g Gravitational acceleration
q Wave vector of ripplons
k In-plane wave vector of electrons
ℏ Reduced Planck constant
ns Density of SSE
E⊥ Pressing field exerting on SSE
Γ Plasma parameter
kB Boltzmann constant
me Free electron mass
mq Effective mass of ripplons
ϵ0 Vacuum permittivity
α Surface tension of liquid helium-4
σ Electrical conductivity
ρ Mass density of liquid helium-4

ξ(r), ξq Surface displacement and its Fourier transform
Ωq Dispersion relation for ripplons
µ Electron mobility

In this thesis, all the equations are set to be in cgs unit, unless mentioned.

viii



Contents

Declaration of Original and Sole Authorship ii

Abstract iv

Acknowledgment vi

Abbreviations vii

Nomenclature viii

Contents ix

List of Figures xiii

List of Tables xvi

Introduction 1

1 Electrons on superfluid helium overview 4

1.1 General properties of SSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Bound state of a single electron in the vertical direction . . . . . . . . . . . 7

1.2.1 Hamiltonian of a single electron for the motion in the vertical direction 7

1.2.2 Vertical states in the presence of an external electric field . . . . . . 9

1.3 The in-plane motion of SSE . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ix



Contents x

1.3.1 In-plane Hamiltonian and phase diagram . . . . . . . . . . . . . . . 12

1.3.2 Excitations in 2DES . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Coupling of SSE to the environment . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Elementary surface excitations . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Coupling of ripplons to SSE . . . . . . . . . . . . . . . . . . . . . . 22

1.4.3 Scattering rate of an electron . . . . . . . . . . . . . . . . . . . . . 28

1.5 Mobility calculations for nondegenerate electrons (Semi-classical treatment) 30

1.5.1 Overview of the Boltzmann kinetic theory . . . . . . . . . . . . . . 30

1.5.2 Momentum relaxation rate of a single electron . . . . . . . . . . . . 32

1.5.3 Averaging over all electrons . . . . . . . . . . . . . . . . . . . . . . 34

1.6 Mobility of the electron solid . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.7 Transition linewidth of the excited Rydberg states . . . . . . . . . . . . . . 39

1.8 Brief overview of qubit proposals . . . . . . . . . . . . . . . . . . . . . . . 40

1.8.1 Charge qubits with electrons on liquid helium . . . . . . . . . . . . 41

1.8.2 Spin qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Experimental methods 47

2.1 The Sommer-Tanner (ST) methods . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Device geometry and electrostatics . . . . . . . . . . . . . . . . . . . . . . 50

2.2.1 Corbino disk device . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.2 Microchannel device . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Properties of superfluid helium film . . . . . . . . . . . . . . . . . . . . . . 56

2.3.1 Film profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.2 Hydrodynamical instability . . . . . . . . . . . . . . . . . . . . . . 59

2.4 Electrostatic simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4.1 Flat helium surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4.2 Curved helium surface . . . . . . . . . . . . . . . . . . . . . . . . . 64



Contents xi

3 Transport measurements of SSE on superfluid helium in the microchan-

nel device 68

3.1 Overview of the earlier transport experiments with SSE on helium . . . . . 69

3.2 Transport measurements of SSE confined in the microchannel device with

the parallel channel configuration . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Equivalent circuit analysis of the microchannel device . . . . . . . . 72

3.2.2 Temperature dependence of the electron transport . . . . . . . . . . 73

3.2.3 Dependence of the transport of SSE in the central channel on the

confining potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Unusual transport behavior of WS in response to the driving voltage Vd . . 77

3.3.1 I-V characteristics of WS . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.2 Multi-step structure of I-V curves . . . . . . . . . . . . . . . . . . . 79

3.4 Time-resolved transport measurements . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Time-resolved current response in different regimes of WS transport 85

3.4.2 Repetitive stick-slip process . . . . . . . . . . . . . . . . . . . . . . 86

3.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Rydberg resonance detection for SSE confined in microchannel devices 91

4.1 Review of the MW absorption measurement . . . . . . . . . . . . . . . . . 92

4.2 Conductive detection of the Rydberg resonance in SSE confined in a single

microchannel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Method and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Image-charge detection of the Rydberg resonance in SSE confined in a

microchannel array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Contents xii

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Helical resonator for the image-charge detection 112

5.1 Theory of a resonant circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1.1 Introduction to a RLC resonator . . . . . . . . . . . . . . . . . . . 113

5.1.2 Determining unloaded Q from the two-port measurements . . . . . 116

5.2 Helical resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.1 Coupling a helical resonator to the measurement circuit . . . . . . . 123

5.2.2 Image-charge detection using the helical resonator . . . . . . . . . . 125

5.3 Improving the quality factor of the helical resonator . . . . . . . . . . . . . 126

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Future plans and outlook 130

Bibliography 132



List of Figures

1.1 Energy spectrum and energy eigenstates of an electron bound to the surface

of liquid helium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Variation of the energy level spacing due to the Stark effect . . . . . . . . 11

1.3 The phase diagram of SSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 The saturated vapor pressure of 3He and 4He as a function of temperature 18

1.5 Dispersion relation of surface capillary-gravity waves . . . . . . . . . . . . 20

1.6 The difference between the Bloch and adiabatic approaches . . . . . . . . . 28

1.7 Schematics of the wave vectors in a scattering process . . . . . . . . . . . . 33

1.8 Mobility of electrons along the 4He surface . . . . . . . . . . . . . . . . . . 35

1.9 The dynamical regimes of the WS . . . . . . . . . . . . . . . . . . . . . . . 38

1.10 The intrinsic linewidth of SSE on 4He. . . . . . . . . . . . . . . . . . . . . 40

1.11 Circuit QED architecture with single electron trap . . . . . . . . . . . . . . 42

1.12 Schematic charge-coupled device for electron transfer . . . . . . . . . . . . 43

1.13 Circuit QED architecture with single electron trap for spin qubit . . . . . . 44

1.14 Energy spectrum of the spin-orbit coupled states of electrons bound to the

surface of liquid helium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.15 COMSOL simulation of the magnetic field distribution in a single electron

trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1 Sommer-Tanner three-electrodes configuration . . . . . . . . . . . . . . . . 48

2.2 The trajectories of I in the complex plane . . . . . . . . . . . . . . . . . . 49

xiii



List of Figures xiv

2.3 Corbino disk device geometry . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Microchannel device geometry . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Annotated images of the sample cell . . . . . . . . . . . . . . . . . . . . . . 54

2.6 A schematic drawing of the microchannel device filled with SSE . . . . . . 55

2.7 General capacitance model of the microchannel device . . . . . . . . . . . . 56

2.8 Profile of the helium film in microchannel device . . . . . . . . . . . . . . . 58

2.9 Capillary radius of curvature Rc . . . . . . . . . . . . . . . . . . . . . . . . 59

2.10 Cross-sectional potential profile in the absence of SSE . . . . . . . . . . . . 62

2.11 Cross-sectional profile of potential profile with a charged layer . . . . . . . 63

2.12 Cross-sectional profile of electron density and holding field on a flat helium

surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.13 Cross-sectional profile of electron density and holding field on the curved

helium surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.14 Calibration of surface curvature . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1 The first experiment using microchannel device . . . . . . . . . . . . . . . 71

3.2 Device geometry and the lumped circuit model used for transport measure-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 The resistive component (Ix) and capacitive (Iy) components of the mea-

sured current I obtained upon cooling SSE . . . . . . . . . . . . . . . . . . 74

3.4 The resistance and the mobility extracted from the measured current I

obtained upon cooling SSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 2D scan of the current magnitude I and phase against Vch and Vga . . . . . 77

3.6 Measured I-V characteristics of SSE . . . . . . . . . . . . . . . . . . . . . 79

3.7 Multi-plateau behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.8 Field-current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.9 The multi-plateau behavior obtained from Ikegami et al. . . . . . . . . . . 83

3.10 The measurement setup for time-averaged and time-resolved measurement 84



List of Figures xv

3.11 Typical real-time traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.12 Typical real-time traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Experimental setup for MW absorption . . . . . . . . . . . . . . . . . . . . 93

4.2 Measuring the absorption signal Vsig by the amplitude modulation . . . . . 94

4.3 Schematics of resonance melting on I-V characteristics . . . . . . . . . . . 96

4.4 Change in current due to resonance excitation . . . . . . . . . . . . . . . . 97

4.5 Stark shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 COMSOL simulation on electron density and holding field . . . . . . . . . 101

4.7 Schematic drawing of the image charge induced in a parallel-plate capacitor

by an electron inside the capacitor . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Schematic drawing of the multi-channel device . . . . . . . . . . . . . . . . 104

4.9 Detection of the transition between Rydberg states by image charge method 105

4.10 Experimental traces of image-charge voltage under Vb sweeping . . . . . . 108

4.11 Experimental traces of image-charge voltage under frequency sweeping . . 109

5.1 The lumped circuit model of the RLC series and parallel circuit . . . . . . 113

5.2 The magnitude of the input impedance versus frequency . . . . . . . . . . 114

5.3 Illustration of two-port measurement . . . . . . . . . . . . . . . . . . . . . 117

5.4 Equivalent circuit of the helical resonator coupled to an external image-

current source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Photograph and sketch of the helical resonator . . . . . . . . . . . . . . . . 120

5.6 Distributed and lumped element model of helical resonator . . . . . . . . . 122

5.7 Measurement setup and equivalent circuit . . . . . . . . . . . . . . . . . . 123

5.8 The S21 transmission spectrum of the experimental setup . . . . . . . . . . 124

5.9 Improvement of the image charge signal by using the helical resonator . . . 125

5.10 The S21 transmission spectrum of the superconducting resonator . . . . . . 128



List of Tables

1.1 Basic properties of SSE on helium and 2DES in GaAs heterostructures. . . 7

2.1 Calibrated surface curvature for a fixed bulk helium level h = 2.64mm. . . 67

5.1 List of symbols for the geometric parameters of the helical resonator shown

in Fig. 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Unloaded Q-value of the resonator for different optimization steps . . . . . 126

xvi



Introduction

Electrons floating on the surface of liquid helium represent a very clean, homogeneous

and controllable two-dimensional electron system which has been widely used to study

the behavior of strongly-correlated electron systems. Additionally, in 1999 Platzman

and Dykman proposed using the quantized states of electron vertical motion as the qubit

states for quantum computing [1]. The Rydberg state qubit is assumed to have sufficiently

long relaxation time since the surface-state electrons (SSE) display the highest mobility

among all known condensed-matter systems. However, a recent study shows that the

relaxation time of the excited Rydberg states is shorter than 1 µs due to the inelastic

ripplon scattering of electrons from the surface-capillary waves (ripplons) [2]. On the other

hand, the spin states of surface electrons on liquid helium are expected to have extremely

long coherence time (exceeding 100 s), much longer than that in any other solid-state

materials, which makes SSE spins a viable resource for quantum computing [3]. It was

proposed that coupling of the spin states to the Rydberg states [4] or the states of the

confined lateral motion of an electron [5] can greatly facilitate the spin-state manipulation

and detection, which would open a new pathway towards building a scalable quantum

computer. In the above proposals, the spin-orbit coupling is introduced by creating a

difference in the Zeeman splitting of the orbital states in a sufficiently strong gradient of

an applied magnetic field. Most recently, the electrons trapped on the surface of solid

neon were demonstrated as another promising platform for realizing qubits [6].

Successful implementation of the proposed schemes for quantum state detection and

manipulation demands confinement and manipulation of electrons, at the level of a single

1



Introduction 2

particle, in a some kind of microstructured device. The circuit quantum electrodynamics

(circuit QED) architecture comprising of a superconducting coplanar-waveguide (CPW)

resonator integrated with an electron trap has already demonstrated capability for the

single-electron quantum state detection [6, 7]. The microchannel devices, which were ex-

tensively used to study the transport properties of SSE on the superfluid helium [8–11],

might provide another very useful platform for such purposes. A typical device consists of

an array of microchannels fabricated on a silicon substrate and filled with the superfluid

helium by the capillary action. The surface of superfluid inside the channels is charged

with SSE, which can be shuttled along the channels by applying ac potentials to the

conducting electrodes incorporated into the channel’s structure. In addition, the applied

electrostatic potential provides fine control of the number of electrons in the channels, for

example realizing a one-dimensional (1D) chain of electrons along the channel [12, 13].

Such devices have shown an unprecedented electron-transport efficiency by employing

a charge-coupled device (CCD) configuration [14], which is well suited for building a

quantum-CCD architecture proposed for the trapped-ion quantum computing [15]. Also,

it was shown that the microchannel structure can be incorporated with other mesoscopic

devices, such as a point-contact constriction, which enhance capabilities for charge ma-

nipulation [16].

Motivated by the possibility to realize the spin-orbit coupling of the spin states of

SSE and their Rydberg states, therefore the spin state detection in SSE, this PhD project

aims to lay the experimental groundwork for realization of the Rydberg state detection for

SSE on liquid helium confined in a small-scale device. This thesis consists of five chapters.

Chapter 1 focuses on the relevant background theory of electrons on the surface of liquid

helium. We demonstrate that many properties of this system are already well-understood

theoretically, which makes it convenient to serve as a qubit system. Chapter 2 presents

an overview of the experimental methods, as well as some frequently used analytical

and numerical methods for characterization of the microchannel devices. In particular,
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we focus on the electric field distribution across the device and the resulting density

distribution of electrons, which are of great importance for understanding the results

of the transport measurements and Rydberg state detection presented in later chapters.

In addition, the hydrodyanmical properties of superfluid helium in a confined structure

are also discussed for the sake of improving our field distribution analysis. Chapter 3

focuses on our transport measurements of SSE in the microchannel devices. In particular,

an unusual nonequilibrium transport phenomenon is discussed based on the results of our

time-resolved transport measurements. In Chapter 4, we present the first measurements

of the microwave-excited Rydberg resonance of SSE confined in a 4-µm deep channel

device, using both conductivity and image-charge detection methods. In Chapter 5,

we demonstrate that employment of a LC helical resonator significantly increases the

sensitivity of the image-charge detection. This chapter is concluded with the discussion

of further improvement in the image-charge detection method towards realization of a

single-electron Rydberg state detection.



Chapter 1

Electrons on superfluid helium overview

A two-dimensional electron system (2DES) is a well established scientific model in solid-

state physics. It is an ensemble of electrons that is free to move in two dimensions, but

tightly confined in the third direction. This tight confinement leads to quantized energy

levels for motion in this direction. The surface-state electrons (SSE) on liquid helium is

a system that matches this definition of 2DES. In the SSE system, electrons are bound

to the surface of liquid helium forming states with hydrogen-like energy spectrum along

the vertical direction. On the other hand, the in-plane motion of electrons is usually

free and independent of the motion normal to the surface. The existence of SSE was

predicted independently by Cole et al. [17] and by Shikin [18] in 1969, and later was

experimentally proved by demonstrating its various properties, such as the lifetime of the

surface-bound states [19–21], SSE mobility and magnetoconductivity [22–30], the liquid

to solid phase transition of SSE [31–34], as well as the excitation of the quantized surface-

bound (Rydberg) states [35–37].

In this chapter, following the most commonly used theoretical approaches in solid-

state physics, we discuss the fundamental properties of SSE on liquid helium surface,

thus laying the theoretical groundwork for the remaining parts of this thesis. In Section

1.1, we briefly summarize the general properties of the SSE system. Section 1.2 presents

the Hamiltonian of a single electron for the motion perpendicular to the surface of liquid

4
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helium, the hydrogen-like energy spectrum of this motion, and the effect of an external

electric field. In Section 1.3, we extend the single electron case to a many-electron system

and discuss the phase diagram and the collective in-plane motion of many electrons.

Section 1.4 introduces the elementary excitations of the liquid surface, so called ripplons.

We will discuss the coupling between electrons and ripplons, in particular the details of

coupling of ripplons to a single electron. In Section 1.5, we reviewed electron mobility using

the classical Boltzmann kinetic equation approach, while a phenomenological description

of the electron mobility for SSE in solid state is given in Section 1.6. In Section 1.7, we

discussed the transition linewidth of the excited Rydberg states. Finally, in Section 1.8,

we briefly summarize the proposals and achievements in the realization of qubits using

the electron-on-helium system.

1.1 General properties of SSE

As a clean many-body system, SSE on liquid helium exhibit some remarkable properties

comparing with other condensed-matter systems. A comparison with the conventional

semiconductor 2DES is listed below:

• Effective mass: It is well known in solid-state physics that the effective mass of

an electron is obtained from the energy spectrum E(k) of an electron due to its

interaction with the crystal lattice, with m∗ = 1
ℏ2

∂2E
∂k2

. In this case, the effective

mass is usually different from the free electron mass. For example, for electrons in

GaAs, m∗ ≃ 0.067me. On the other hand, in the electrons-on-helium system SSE

interact with a uniform neutralizing background due to the applied uniform electric

field. As a result, the effective mass is very close to the free electron mass me.

• Effective Rydberg energy and Bohr radius: For semiconductor 2DES, the

shallow levels are often described in the frame of the effective-mass-approximation

with the Hamiltonian Hm∗ = − ℏ2
2m∗∇2 − e2

εr
+ V (z), where ε is the static dielec-
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tric constant of the semiconductor and V (z) represents the quantum well potential

provided by the GaAs/AlGaAs interface [38]. For SSE, the energy spectrum of

this hydrogen-like bound state is determined by the weak binding potential due to

a weakly polarized liquid ε ≃ 1, leading to large Bohr radius and small Rydberg

energy. The Rydberg energy spectrum and surface-bound states of SSE will be

discussed in Section 1.2.

• Density: In semiconductor 2DES, the electron density is fully determined by the

doping and can reach 1012 cm−2 or even higher. Thus the inter-electron distance is

several nanometers, which is comparable to the thermal de Broglie wavelength λde

of an electron, with λde =
√

2πℏ2
mkBT

, where T is the ambient temperature and kB is

the Boltzmann constant. On the other hand, the SSE system is a clear example of a

classical system. In typical experiments, the density of SSE on helium surface ranges

from 106 − 109 cm−2, which is limited by the hydrodynamic instability of the liquid

helium [39, 40]. This gives the average distance between two adjacent electrons

around 0.3−10 µm. Because of the large inter-electron distance, there is no overlap

between electron wavefunctions. Thus, SSE on liquid helium is a nondegenerate

2DES, even at very low temperatures. The phase diagram of SSE on liquid helium

will be discussed in Section 1.3.

• Mobility: SSE on liquid helium have the highest known electron mobility among

all known 2D electron systems due to the absence of typical scattering mecha-

nisms presented in other systems. The highest measured mobility µ is in the

order of 1010 cm2V−1 s−1 [22, 41], while in typical semiconductors µ ∼ 104 −

107 cm2V−1 s−1 [42]. The details of electron mobility and scattering mechanism

will be given in Section 1.4.

Table 1.1 summarizes the basic properties of SSE on helium and 2DES in GaAs het-

erostructures.
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SSE (4He) GaAs/AlGaAs [38]
Effective mass (m∗/me) 1 0.067

Effective Rydberg Energy (K) 7.6 61.6
Effective Bohr radius (Å) 77.8 103.4

Typical surface density (cm−2) 106 − 109 1011 − 1012

Mobility (cm2/V · s) 106 − 1010 104 − 106

Table 1.1: Basic properties of SSE on helium and 2DES in GaAs heterostructures.

1.2 Bound state of a single electron in the vertical di-

rection

Let’s start with the case of a single electron floating on the surface of liquid helium. We

consider separately the cases of zero and non-zero applied perpendicular electric field.

1.2.1 Hamiltonian of a single electron for the motion in the ver-

tical direction

For a singe electron, as was first proposed by Cole et al. [17, 43], the interaction between

electron and helium atoms can be described by a potential V (z), where z is the distance

of the electron from the helium surface, according to

V (z) =


Vrep, z ≤ 0

Vatt = −Λe2/(z + z0), z > 0.

(1.1)

Here, Vrep ≃ 1 eV is the short-range repulsion due to the Pauli exclusion principle, which

prevents electron from entering the liquid and Vatt is the weak attractive Coulomb po-

tential, due to the polarization of the helium atoms. This potential can be simplified as

the interaction of electron with an image-charge eΛ = e(ε − 1)/4(ε + 1) in the liquid.

In Eq. (1.1), z0 ≈ 1Å is an empirical adjustable off-set parameter which accounts for

the finite width of the vapor-liquid interface [44]. The motion in the z-direction is then
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described by a 1D Hamiltonian

Ĥz = − ℏ2

2me

∂2

∂z2
+ V (z), (1.2)

where me is the mass of the free electron. Introducing the effective Bohr radius a0 and

Rydberg constant Ry according to

a0 =
ℏ2

Λe2me

, Ry =
meΛ

2e4

2ℏ2
, (1.3)

and rewriting the stationary Schrödinger equation Hzψn(z) = Enψn(z) in terms of the

dimensionless coordinate ξ = z/a0 and energy εn = En/Ry, we obtain the Schrödinger

equation in a form (
− ∂2

∂ξ2
− 2

ξ

)
ψn(ξ) = εnψn(ξ). (1.4)

Here, we assumed an infinite barrier Vrep → ∞ and z0 = 0 to simplify our calculations.

The above equation is identical to the Schrödinger equation for the radial part of the wave

function of an electron in the hydrogen atom, with the solution

ψn(z) =
2

n

(
1

a0n

)3/2

ze−
z

a0nL
(1)
n−1

(
2z

a0n

)
, (1.5)

where L(α)
n (x) = x−αex

n!
dn

dxn (e−xxn+α) is the generalized Laguerre polynomial. Thus, the

energy spectrum of such surface-bound (Rydberg) states of an electron above flat surface

of liquid helium is given by

En = −Ry

n2
= −meΛ

2e4

2ℏ2n2
, n = 1, 2, 3, ... . (1.6)

The value of Rydberg energy is Ry = 159.123 GHz or approximately 7.6 K, therefore

for typical experimental temperatures below 1 K, the electrons freeze into the ground

state of their vertical motion, thus forming a 2D system. The lowest three energy levels

and the corresponding wave functions are presented in Fig. 1.1. The average distances
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from the helium surface for the ground, first and second excited states are ⟨1| z |1⟩ ≃

11.42 nm, ⟨2| z |2⟩ ≃ 45.66 nm, ⟨3| z |3⟩ ≃ 102.73 nm, respectively, which significantly

exceed the atomic length scales, with the Bohr radius of electron in the hydrogen atom

about 0.53Å.

Figure 1.1: Energy spectrum and energy eigenstates of an electron bound to
the surface of liquid helium. The lowest three energy levels n = 1, 2, 3 are shown
together with the probability density of the corresponding eigenstates. The spectrum
resembles that of an electron in the hydrogen or Rydberg atom.

Electrons in the ground state can be excited to the higher Rydberg states by external

millimeter-wavelength electromagnetic radiation. The major process that affects the life-

time and coherence of these states is the scattering by the surface excitations (ripplons).

In Section 1.4, we will work out the corresponding scattering rates.

1.2.2 Vertical states in the presence of an external electric field

Under the typical experimental conditions, electrons are bound to the surface not only

by attraction to the image charges but also by an external holding electric field applied

perpendicular to the liquid surface. The interaction of an electron with a uniform external

field E⃗ = E⊥êz results in the electron potential energy eE⊥z. This allows us to vary the

energy spacing between Rydberg states and tune it in resonance with MW radiation.
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It can be convenient to compare the strength of the external field E⊥ in terms of a

characteristic electric field EΛ, which evaluates the effective electric field due to the image

charge, with EΛ = ℏ2
4meea30

≈ 405V/cm. We start from two extreme cases:

• In the case of the weak external field E⊥ ≪ EΛ, the energy correction to the

n-th energy level is given by the usual first-order perturbation theory: ∆E
(1)
n =

eE⊥ ⟨n| z |n⟩, where |n⟩ corresponds to the Rydberg states in zero electric field.

• In the presence of a sufficiently strong holding field, the trapping potential Λe2/a0

provided by the image charge is negligible and we have a linear trapping potential

eE⊥z. The eigenenergy of the Hamiltonian with a linear potential is well-known

[45], En = eE⊥ζn/γF , where γF = (2meeE⊥/ℏ2)1/3 and the discrete numbers ζn are

related to the roots of the Airy function Ai(z), with Ai(−ζn) = 0. The corresponding

wave functions are given in terms of the Airy functions ψn ∝ Ai[(z − ζn
γF
)γF ].

However, for most of the experimental conditions considered in this thesis we work with

intermediate holding fields for which the attractive image potential is not negligible. In

this case, it is difficult to work out the analytical solution for the Hamiltonian. Instead, we

can numerically solve the corresponding Schrödinger equation and find the eigenenergies

En and the corresponding eigenstates. Alternatively, one can use the variational method

where the wave function can be approximated by a trial solution χn(z) resembling the

unperturbed wave function ψn. E.g., the ground state trail solution can be looked for

in a form χ(z) = 2γ3/2ze−γz, where γ is the fitting parameter determined by the con-

dition ∂ ⟨χ|H |χ⟩ /∂γ = 0. Fig. 1.2 shows the eigenenergies for the lowest two Rydberg

states (a) and the frequency of transition from the ground state to the first excited state

(E2−E1)/2πℏ (b) obtained using three different methods. Blue lines are results obtained

by numerically solving the Schrödinger equation. Red lines are results obtained by using

the variational method. Green lines are the analytical Airy solutions obtained by neglect-

ing the image charge potential. One can see that the Airy function asymptote fails for

weak E⊥, while for sufficiently strong E⊥ the transition frequencies obtained by the three
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Figure 1.2: Variation of the energy level spacing due to the Stark effect. (a)
The energies of the lowest two Rydberg states (solid line: n = 1, dashed line: n = 2)
versus E⊥. Blue lines are results from a numerical solution of the Schrödinger equation.
Red lines are results obtained from the variational method. Green lines are the analytical
solution of the Airy function by neglecting the image charge potential. (b) Frequency of
transition from the ground state to the first excited Rydberg state as a function of the
electric field strength. Inset: the same for large values of E⊥.

methods are in good agreement (see inset of Fig. 1.2(b)). Also, in Ref. [46] it was shown

that the variational ansatz can be given by an analytical expression

γ

γ0
=

3λ

4

{
sinh

[
1

3
sinh−1

(
9λ

4

)]}−1

, (1.7)

where γ0 = a−1
0 and λ =

√
E⊥/2EΛ.

1.3 The in-plane motion of SSE

In the previous section, we considered the confined motion of an electron in the vertical

direction. In a typical experiment, the surface of liquid helium is charged with many

electrons, thus forming 2D sheet of electrons in the x-y plane. In this section, we describe

the in-plane motion of such a system assuming that all SSE occupy the ground Rydberg

state of the vertical motion.
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1.3.1 In-plane Hamiltonian and phase diagram

The Hamiltonian for the motion parallel to the helium surface for an infinitely large

electron system can be written as

H2D = Ke + UC =
∑
i

p2i
2me

+
1

2

∑
k,i ̸=j

2πe2

k
eik·(ri−rj), (1.8)

where first term represents the in-plane kinetic energy Ke, and the second term is the 2D

Fourier transform of the Coulomb interaction energy UC = e2/|ri−rj| =
∑

k(2πe
2/k)eik·(ri−rj),

where k = |k| and ri is the coordinate of i-th electrons. One should note that the image

charges and external holding electric field E⊥ provide a uniform positive background, thus

does not affect the in-plane Hamiltonian, whereas for a 2DES in semiconductor the neu-

tralizing background is provided by the atomic lattice, which imposes a periodic potential

on electrons and results in the energy band structure [47].

Phase diagram and Wigner solid

It was pointed out by Wigner [48] in 1934 that a degenerate Fermi gas/liquid is not the only

possible ground state for an interacting electron system. A 3D electron system embedded

in a structureless positive background can also form lattice structure to minimize its energy

at relatively low density, where the potential energy greatly exceeds the kinetic energy.

This lattice structure is called the Wigner solid (WS). Later, it was suggested by Crandall

and Platzman [49, 50] that a similar phenomenon should occur in low-dimensional systems,

such as the SSE system on helium. From the 2D Hamiltonian given by Eq. (1.8) one can

see that the phase diagram of a 2D electron system is determined by the competition

between the long-range Coulomb interaction and the kinetic energy of electrons. One

could define a dimensionless plasma parameter Γ as the ratio of the interaction energy

to the kinetic energy, Γ = UC/Ke. The phase boundary between electron liquid and

electron solid can therefore be obtained by setting the plasma parameter equal to a critical

value Γ = Γ0; this is the so called Lindemann criterion. The phase diagram of SSE on
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a bulk liquid surface was first analyzed by Platzman and Fukuyama [50]. This study

prompted an experimental search for WS in the electrons-on-helium system. The first

experimental proof of Wigner crystallization was given by Grimes and Adams in 1979

[31], who measured the critical value of Γ0 ≃ 137. This result was in good agreement with

the Monte Carlo calculations which gave Γ0 = 125± 15 [51].

It is clear that the mean Coulomb energy per electron is UC = e2/r0, where r0 is the

average distance between electrons, which is related to the electron density as ns = 1/πr20.

The mean kinetic energy per particle can be evaluated using the Fermi-Dirac distribution

f(εk) = (exp[(εk − µe)/kBT ] + 1)−1 as

Ke =
2

ns

∫
d2k
(2π)2

εkf(εk) =
mek

2
BT

2

πnsℏ2
F (z), (1.9)

where z = exp(−µe/kBT ), F (z) =
∫∞
0

dx
1+zex , and the chemical potential µe is related to

the electron density as

ns = 2

∫
d2k
(2π)2

f(εk) =
mekBT

ℏ2
ln

(
1 +

1

z

)
. (1.10)

By substituting these two equations into the expression for the plasma parameter Γ, one

can obtain the parametric equations for the liquid-solid boundary

ns(z)

nc

=
[ln(1 + 1/z)]4

4F 2(z)
, (1.11)

T (z)

T ∗ =
[ln(1 + 1/z)]3

2F 2(z)
, (1.12)

where nc = 4/(πa2BΓ
2
0) and T ∗ = 2e4m/(ℏ2kBΓ2

0). For Γ0 = 137, we have nc ≃ 2.43 ×

1012 cm−2 and T ∗ ≃ 33.6K. The melting curve normalized in terms of the critical density

nc and critical temperature Tc = 0.39T ∗ is shown in Fig. 1.3(a).

It is instructive to consider the high-density limit first. In order to estimate the plasma
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parameter, we assume the zero-temperature limit

lim
T→0

f(εk) =


1 if εk ≤ µe = εF

0 if εk > µe = εF ,

(1.13)

where εF = ℏ2/mr20 is the Fermi energy. The radius of the Fermi circle in k-space is given

by kF =
√
2πns. The mean kinetic energy per particle given by Eq. (1.9) then reduces to

Ke = εF/2, thus the plasma parameter is given by

Γ =
UC

Ke

=
e2

r0

2mr20
ℏ2

=
2r0
aB

≡ 2rs, (1.14)

where aB = ℏ2/e2m is the Bohr radius for the hydrogen atom and rs is the normalized

inter-particle distance. Eq. (1.14) shows that in the high-density limit the plasma parame-

ter is proportional to the inter-electron distance, which decreases with increasing electron

density. In particular, for sufficiently high density, such as rs ≪ Γ0/2, the kinetic energy

Ke ∝ 1/r2s is much larger than the potential energy Uc ∝ 1/rs. So the system is in a

degenerate Fermi liquid state.

To achieve the condition rs ≃ Γ0/2 at which the degenerate Fermi liquid crystallizes

into a solid phase, one needs to have the density at least 1012 cm−2 of electrons. Contrarily,

the typical density for electrons on helium is in the range 106 − 109 cm−2, given rs ∼

103 − 105. Thus, an experimentally accessible regime is located in the low density region

of the phase diagram, see Fig. 1.3(a). In this region and at finite temperature, the kinetic

energy is determined by the thermal fluctuations, with Ke = kBT , such that we can

rewrite the the plasma parameter as Γ(ns, T ) = UC/kBT = e2aB/kBTrs, which has the

opposite dependence on rs.

Fig. 1.3(b) shows the high-density asymptotic melting curve at finite temperature,

which is indicated by the orange shaded area in Fig. 1.3(a), the low-temperature asymptote
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Figure 1.3: The phase diagram of SSE. (a) The normalized phase diagram obtained
by Platzman et al., with nc ≃ 2.4 × 1012 cm−2 and Tc ≃ 13.1 K, as described in the
text. The orange and blue shaded area represents the quantum and classical regimes,
respectively. The figure is reproduced from Ref [44]. (b) Quantum melting curve obtained
using the asymptotic solution of Eq. (1.15), as described in the text. (c): Classical melting
curve given by the competition between thermal kinetic energy and Coulomb interaction,
as described in the text.

of Eq. (1.11) is given by:
ns

nc

≃ 1− 2m2
e

3ℏ4n2
s

(kBT )
2. (1.15)

In the low-density regime, the resulting melting curve is given by

ns = T 2

(
Γ0kB
π1/2e2

)2

, (1.16)

and is shown in Fig. 1.3(c).

Note that the melting curve presented in Fig. 1.3(a) was obtained using an assumption

that the plasma parameter is fixed to Γ0 along the liquid-solid boundary. Other mecha-

nisms, such as the dislocation melting (Kosterlitz-Thouless) mechanism, might affect the

phase boundary [52, 53].
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1.3.2 Excitations in 2DES

So far, we described the ground state of 2DES. In this section, we will outline the disper-

sion relation of 2DES excitations following an approache given by D. Pines [54]. Using

the 2D Hamiltonian given by Eq. (1.8), together with the Hamilton’s equations of motion

ẋi = ∂H/∂pi and ṗi = −∂H/∂xi, we can obtain the corresponding equation of motion for

the i-th electrons as

r̈i = −i2πe
2

me

∑
k,j

k
k

eik·(ri−rj). (1.17)

In general, the set of the above equations for i = 1, . . . , N is difficult to solve. One could

simplify the problem by using the mean-field approximation and introducing the density

function ρ(r) and its Fourier transform according to

ρ(r) =
∑
i

δ(r − ri) =
∑
k

ρkeik·r, (1.18)

ρk =

∫
ρ(r)e−ik·rdr =

∑
i

e−ik·ri . (1.19)

Note that ρ(k=0) = ns represents the mean electron density, and ρk with k ̸= 0 describes

fluctuations about the mean density ns. Taking the time derivative

d2ρk

dt2
= −

∑
i

[(k · ṙi)2 + ik · r̈i]e−ik·ri , (1.20)

and substituting the equation of motion for r̈i, we obtain

d2ρk

dt2
= −

∑
i

(k · ṙi)2e−ik·ri −
∑
k′

2πe2

mek′

∑
i

e−i(k−k′)·rik′ · k
∑
j

e−ik·rj . (1.21)

Next, we split the second term into two parts, with k′ = k and k′ ̸= k. For k′ ̸= k, one can

apply the random phase approximation with r0 ≫ (k′ − k)−1. Then the oscillating term

ei(k′−k)·ri averages to zero by the summation over all particle coordinates. For k′ = k, the

summation
∑

i e
−i(k−k′)·rik′ · k becomes

∑
i k

2 = k2ns. Thus Eq. (1.21) can be rewritten
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as
d2ρk

dt2
= −

∑
i

(k · ṙi)2e−ik·ri − 2πe2nsk

me

∑
i

e−ik′·ri . (1.22)

In the long-wavelength approximation with small |k| ≪ r−1
0 , the first term (k · ṙi)2 is

negligible comparing to the second term. Thus we obtain

d2ρk

dt2
+

2πe2nsk

me

ρk = 0, (1.23)

with the corresponding dispersion relation given by

ω
(l)
k =

√
2πnse2k

me

. (1.24)

This is the well-known plasma frequency describing the collective behavior of the elec-

trons in terms of the density oscillations. The superscript l stands for the longitudinal

mode of the collective system, as we know that physically liquid can not support the

transverse mode. Note that for the 3D electron system the Fourier transform of Coulomb

potential is e2/|ri − rj| =
∑

k(4πe
2/k2)eik·(ri−rj) and the differential equation under the

long-wavelength approximation is given by dρ2k/dt
2 + (4πnse

2/me)ρk = 0, with the dis-

persion law ω3D
k =

√
4πnse2/me.

Things become more complicated when the electron system crystallizes into solid

phase. In particular, the transverse mode and longitudinal mode can coexist in WS. In

the long-wavelength limit (k ≪ r−1
0 ), the transverse mode is acoustic, with the dispersion

relation given by [55]

ω
(t)
k =

(
0.138

e2

mer0

)1/2

k, ct ≡
(
0.138

e2

mer0

)1/2

. (1.25)

In the short-wavelength limit, where the wavelength is comparable to the inter-electron

distance, the dispersion relation deviates from the simple asymptotes (1.24) and (1.25).

In particular, for different types of 2D Bravais lattices, the ground state phonon spectrum
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of WS was calculated by Bonsall et al. in terms of Ewald’s summation method [55].

1.4 Coupling of SSE to the environment

As any experimental system in the real world, SSE unavoidably interact with the local

excitations of the environment leading to a finite electron mobility, finite life time and

decoherence of the excited Rydberg states, etc. In the 2D electron system formed on the

soft substrate of liquid helium, the major effect comes from the interaction of electrons

with the helium vapor atoms, as well as elementary surface excitations, ripplons. Since

the vapor density of helium is extremely low at the typical experimental temperatures

(T ≤ 1K), see Fig. 1.4, we will omit the discussion of the interaction with the vapor

atoms and concentrate on the interaction with ripplons.

Figure 1.4: The saturated vapor pressure of 3He and 4He as a function of temperature.

1.4.1 Elementary surface excitations

The excitations of the surface of liquid helium, known as ripplons, can be introduced by

a conventional hydrodynamical model [56–59]. In particular, they are described as the

surface deformation ξ(r) of an ideal incompressible fluid due to the gravitational force,

surface tension and presence of a solid boundary at distance d below the surface.
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The dynamics of fluids can be described by the well-known Euler equation, in the form

dv/dt = −∇P/ρ, where P is the pressure inside the liquid. Taking account the pressure

due to the gravity −ρgξ and surface tension α∇2ξ, we can rewrite the Euler equation as

ρ
dv
dt

= α∇2ξ − ρgξ, (1.26)

At the surface of the liquid helium, the velocity field of the fluid is given by the boundary

condition

vz =
∂ξ

∂t
=
∂Φ

∂z
, (1.27)

where Φ(r, z) is the velocity potential of the fluid induced by the surface displacement,

with v = ∇Φ. Note that for the incompressible liquid the velocity potential also satisfies

the Laplace equation ∇2Φ = ∇ · v = 0. By taking the time derivative of Eq. (1.26) and

using the boundary condition given by Eq. (1.27), we obtain

ρg
∂Φ

∂z
+ ρ

∂2Φ

∂t2
− α∇2

(
∂Φ

∂z

)
= 0. (1.28)

Finally, using a trail solution Φ ∼ e−iΩteqzf(r), where f(r) is a periodic function of r with

period 2π/q, we obtain the famous dispersion relation for surface capillary-gravity waves

Ω2
q =

(
gq +

α

ρ
q3
)
tanh(qd). (1.29)

In typical experiments using bulk helium, the liquid depth is relatively large, therefore

tanh(qd) → 1. Moreover, for typical values of q the gravitational term is negligible com-

paring to the surface tension term. Thus, the above relation reduces to Ωq =
√
α/ρq3/2.

Fig. 1.5(a) plots the dispersion relation as a simplified q3/2 law. Since the damping of

ripplons is very weak in superfluid 4He, the dispersion relation (1.29) can be checked

experimentally in the long-wavelength limits. The first experimental observation of the

break-down of the q3/2 law due to the gravitational force at large wave vectors has been
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Figure 1.5: Dispersion relation of surface capillary-gravity waves. (a) q3/2 disper-
sion relation in the long-wavelength limit, (b) dispersion relation in the short-wavelength
limit measured by the neutron scattering techniques. Dashed line: Phonon-roton spec-
trum of superfluid helium at zero pressure. Solid line: ripplon spectrum predicted by
Edwards’s semiempirical theory of compressible liquid [58]. The figure is reproduced from
Ref [60].

done by Lauter et al. [60]. Modifications of the dispersion relation for smaller wavelength

have been done by taking into account the surface curvature and compressibility of liq-

uid, which lowers the q3/2 spectrum in the short-wavelength range [58, 61, 62]. Fig. 1.5(b)

presents the measured data in in this regime.

In our system, most of the ripplons interacting with SSE belong to the long-wavelength

region, which is known to be accurate in terms of the spectrum Ωq =
√
α/ρq3/2 [44]. In

the remaining parts of this chapter, we assume the q3/2 law.

Second quantization description of ripplons

Next, we review the description of ripplons using the second quantization treatment of

the quantum mechanics. Starting from the classical hydrodynamical model, the ripplon

Hamiltonian is given by [63]:

Hr =
ρ

2

∫
(∇Φ)2d2rdz +

∫
F(|r′ − r|)ξ(r)ξ(r′)d2r′dr, (1.30)
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where the first term denotes the kinetic energy of fluid and the second term represents

the potential energy of fluid arising from the surface tension force. F(|r′ − r|) is an

unknown structure factor. Using periodic boundary condition, the Hamiltonian (1.30)

can be expanded in terms of the wave vector q using ξ(r) = 1√
SA

∑
q ξq eiq·r. Then, one

can rewrite F in q-space by relating the Fourier transform Fq to the ripplon spectrum Ωq

using Ω2
q = 2qFq/ρ.

The kinetic term can be solved by using the Green function method [63], which gives

Ke =
ρ

4πSA

∑
q,q′

ξ̇qξ̇q′

∫ ∫
dSdS ′ ei(q·r+q′·r′)

|r − r′|
,

=
ρ

2qSA

ξ̇qξ̇-q =
1

2mqSA

|ξ̇q|2. (1.31)

Thus, the canonical Hamiltonian in q-space can be written as

Hr =
1

SA

∑
q

(
1

2mq

|πq|2 +
1

2
mqΩ

2
q|ξq|2

)
, (1.32)

where mq = ρ/q and πq = mq ξ̇q is the effective mass of ripplons and the generalized

momentum, respectively. Note that the Hamiltonian (1.32) is identical to the expression

for a harmonic oscillator. Following the standard quantization procedure of quantum

mechanics, we replace ξq and πq with operators. Note that ξ̂q and π̂q are Hermitian

operators, which satisfy ξ̂†q = ξ̂-q and π̂†
q = π̂-q. Using orthogonality, we can verify the

fundamental commutation relation [ξ̂q, π̂-q′ ] = iℏδq,q′ .

One could further write the Hamiltonian Ĥr in the second-quantization notation by

introducing the bosonic creation and annihilation operators b̂† and b̂ according to

ξ̂q =

√
ℏ

2mqΩq

(b̂†−q + b̂q), (1.33)

π̂q = i

√
ℏmqΩq

2
(b̂†−q − b̂q), (1.34)
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which satisfy [b̂q, b̂
†
q′ ] = δq,q′ . The Hamiltonian is therefore written as

Ĥr =
∑
q

ℏΩq(b̂
†
-qb̂q +

1

2
) =

∑
q

ℏΩq(nq +
1

2
), (1.35)

where nq denotes the occupation number of the ripplon state corresponding to the wave

vector q. This formalism permits a considerable simplification in the description of the

ripplon system.

1.4.2 Coupling of ripplons to SSE

In this section, we introduce the coupling of electrons to ripplons and derive the general

form of the corresponding interaction Hamiltonian. Note that the coupling of electrons to

superfluid excitations is mathematically complex, leading to some lengthy calculations.

For the sake of simplicity, we only focus on discussing the physical picture and derive the

main results. Detailed calculations can be found in Ref. [44, 46, 63–66].

The Hamiltonian of ripplons interacting with a single electron can be written as

Ĥ = Ĥ(0)
r + Ĥ(0)

e + Ĥint,

= Ĥ(0)
r +

p̂2||
2m

+

[
p̂2⊥
2m

+ V̂ (0)
e (z)

]
+ δVe, (1.36)

where Ĥ(0)
r is the Hamiltonian of the ripplon system given by Eq. (1.35). The Hamiltonian

of an electron Ĥ
(0)
e is treated as usual by separating it into in-plane and vertical parts,

with V (0)
e (z) representing the potential energy of an electron on a flat helium surface

V (0)
e (z) = Vrep(z) + Vatt(z) + eE⊥z. (1.37)

In addition in Eq. (1.36), we introduced the interaction Hamiltonian Ĥint ≡ δVe as the

electron energy arising from the deformation of the liquid surface ξ(r), that is δVe =

V
(0)
e (z+ξ(r))−V (0)

e (z). We will treat Ĥint as a perturbation and find the matrix elements
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of Ĥint assuming that the unperturbed electron wave function coincides with the wave

function of an electron over the flat surface. This is referred to as the Bloch approach [44].

From the general form of (1.37) we write the potential energy of an electron over the

deformed surface as

Ve(z + ξ(r)) = Vrep(z + ξ(r)) + Vatt(z + ξ(r)) + eE⊥z. (1.38)

The polarization interaction term is obtained by considering the contribution from the

helium atoms comprising the liquid with the deformed surface

Vatt(z + ξ(r)) = −Λ

π

∫
d3R′ θ(ξ(r′)− z′)

|R′ − R|4

= −Λ

π

∫
d2r′

∫ ξ(r′)

−∞

dz′

[(r′ − r)2 + (z′ − z)2]2
, (1.39)

where θ is the step function, R′(r′, z′) and R(r, z) is the position vector of an element

volume of liquid and an electron, respectively. Note that at ξ = 0, the potential Vatt(z +

ξ(r)) → Vatt(z + 0) recovers the interaction potential for the flat surface, Vatt = −Λe2

z
.

The perturbative description of the repulsive term Vrep(z+ ξ(r)) is rather simple. For

the flat surface, the repulsive barrier is simply a step function V0θ(−z). Thus, we can

write the perturbed repulsive potential as Vrep(z + ξ(r)) = V0θ(ξ(r)− z).

Finally, assuming that the unperturbed wave function of an electron coincides with

the wave function over the flat surface, the potential energy provided by the external field

E⊥ remains the same as for the flat surface, that is eE⊥z.

The interaction Hamiltonian Ĥint = δVe is therefore given by

δVe(z + ξ(r)) = Ve(z + ξ(r))− V (0)
e (z)

= Vrep(z + ξ(r))− Vrep(z) + Vatt(z + ξ(r))− Vatt(z)

= δVrep + δVatt. (1.40)
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We are interested to find the matrix elements of Ĥint over the unperturbed states, which

are state products |n⟩ |k⟩, where |n⟩ = ψn denotes the Rydberg states and |k⟩ = 1√
SA

eik·r

represents the state of in-plane motion of an electron, and SA is the area of liquid surface.

We calculate the matrix elements of δVrep and δVatt separately. In the following, we

will use the following short notations for the matrix elements ⟨n| · · · |n′⟩ ≡ (· · · )nn′ and

⟨k| · · · |k⟩ ≡ (· · · )kk′ .

Matrix element of repulsive term δVrep

Using the explicit form of Vrep in terms of the step function, we immediately obtain

⟨n′,k′| δVrep |n,k⟩ = ⟨k′| ⟨n′|Vrep(z + ξ(r))− Vrep(z) |n⟩ |k⟩

= ⟨k′|V0

[∫ ξ(r)

−∞
ψ∗
n′(z)ψn(z)dz −

∫ 0

−∞
ψ∗
n′(z)ψn(z)dz

]
|k⟩

= ⟨k′|V0
∫ ξ(r)

0

ψ∗
n′(z)ψn(z)dz |k⟩ . (1.41)

Next, we expand the wave function of the vertical motion in the Taylor series around

z = 0

ψn(z) = ψn(0) +
∂ψn(0)

∂z
z +O(z2) ≃ ψn(0) + ψ′

n(0)z. (1.42)

Using this and keeping terms up to the second order in ξ, we obtained from Eq. (1.41)

⟨n′,k′| δVrep |n,k⟩ ≃ V0ψn′(0)ψn(0) ⟨k′| ξ |k⟩+ V0
2
[ψn′(0)ψ′

n(0) + ψ′
n′(0)ψn(0)] ⟨k′| ξ2 |k⟩ .

Finally, using the continuity of the electron wave function at z = 0, that is ψ′
n(0) =

k0ψn(0), where k0 =
√
2mV0/ℏ, we obtain

⟨n′,k′| δVrep |n,k⟩ ≃
ℏ2

2m
ψ′
n′(0)ψ′

n(0) ⟨k′| ξ |k⟩+
√
V0ℏ2
2m

ψ′
n′(0)ψ′

n(0) ⟨k′| ξ2 |k⟩ . (1.43)
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For practical calculations, it is convenient to express the derivatives ψ′(0) in terms of an

integral over the interaction potential V (z) = −Λe2

z
+ eE⊥z. Using the Ehrenfest theorem

−⟨n| dV
(0)
e

dz
|n⟩ = ⟨n| dp

dt
|n⟩ , (1.44)

and the basic property of a bound state ⟨n|p |n⟩ = 0, where p is the operator of momen-

tum, we have

⟨n| d

dz
(V0θ(−z) + V ) |n⟩ = 0 ⇒ −V0ψ2

n(0) +

(
∂V

∂z

)
nn

= 0. (1.45)

Then, we immediately obtain

ψn(0) =
1√
V0

√(
∂V

∂z

)
nn

and ψ′
n(0) = k0ψn(0) =

√
2m

ℏ2

√(
∂V

∂z

)
nn

. (1.46)

Finally, the matrix element of the repulsive part of the electron-ripplon interaction δVrep

up to the term quadratic in the surface deformation ξ can be represented as

⟨k′, n′| δVrep |k, n⟩ =

√(
∂V

∂z

)
nn

(
∂V

∂z

)
n′n′

∑
q

Q′
q(b̂

†
−q + b̂q) ⟨k′| eiq·r |k⟩+

+ k0

√(
∂V

∂z

)
nn

(
∂V

∂z

)
n′n′

∑
q,q′

Q′
qQ

′
q′(b̂

†
−q + b̂q)(b̂

†
−q′ + b̂q′) ⟨k′| ei(q+q′)·r |k⟩ . (1.47)

Above, we used the representation of the amplitude of the surface deformation in the

second-quantization form ξ(r) = S
−1/2
A

∑
q ξqe

iq·r =
∑

qQ
′
q(b̂

†
−q + b̂q)eiq·r, where Q′

q ≡√
ℏ

2mqΩq
, see Eq. (1.33).



Electrons on superfluid helium overview 26

Matrix element of attractive term δVatt

To derive the matrix element of ⟨k′, n′| δVatt |k, n⟩, we recall the expression for attractive

potential (1.39) and expand it in terms of z

δVatt = −Λ

π

∫
d2r′

{
ξ(r′)

[(r′ − r)2 + z2]2
+

2zξ2(r′)
[(r′ − r)2 + z2]3

}
. (1.48)

Using the table integrals

∫
d2r′

eiq·r′

[r′2 + z2]2
=
πq

z
K1(qz), (1.49)∫

d2r
ei(q+q′)·r′

[r′2 + z2]3
=
π|q + q′|2

4z2
K2(|q + q′|z), (1.50)

where Kn (n = 1, 2) is the modified Bessel function of second kind [67]. The matrix

elements of δVatt over the electron states can be represented as

⟨k′, n′| δVatt |k, n⟩ = −
∑
q

Q′
q(b̂

†
−q + b̂q) ⟨n′| Λq

z
K1(qz) |n⟩ ⟨k′| eiq·r |k⟩−

−
∑
q,q′

Q′
qQ

′
q′(b̂

†
−q + b̂q)(b̂

†
−q′ + b̂q′) ⟨n′| Λ|q + q′|2

2z
K2(|q + q′|z) |n⟩ ⟨k′| ei(q+q′)·r |k⟩ .

(1.51)

Representation of matrix element of the δVe

Finally, the matrix element of δVe = δVrep + δVatt is given by the summation of Eq. (1.47)

and (1.51). The term linear in the surface deformation ξ represents the one-ripplon

scattering processes, while the term proportional to ξ2 corresponds to the two-ripplon

scattering processes. Again, for practical calculations it is convenient to rearrange the

expression for the one-ripplon scattering elements. We add and subtract a term

(
∂V

∂z

)
n′n

=

(
Λe2

z2
+ eE⊥

)
n′n

=

(
Λe2

z2

)
n′n

+ eE⊥δn′n (1.52)
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into the corresponding expression. Then, the summation of Eq. (1.47) and (1.51) can be

represented as

⟨k′, n′| δVe |n,k⟩ =
∑
q

Q′
q(b̂

†
−q + b̂q)

(
eiq·r

)
k′k ×{

Λq2
(

1

(qz)2
− K1(qz)

qz

)
nn′

+

[√(
∂V

∂z

)
nn

(
∂V

∂z

)
n′n′

−
(
∂V

∂z

)
n′n

]
+ eE⊥δn′n

}
+

∑
q,q′

Q′
qQ

′
q′(b̂

†
−q + b̂q)(b̂

†
−q′ + b̂q′)

(
ei(q+q′)·r

)
k′k

×

[
k0

√(
∂V

∂z

)
nn

(
∂V

∂z

)
n′n′

−
(
Λ|q′ + q|2

2z
K2(|q + q′|z)

)
nn′

]
(1.53)

It is convenient to represent this result in a more compact form

(δVe)kk′,nn′ =
∑
q

ξ̂qUq(z)(eiq·r)kk′ +
∑
q′q

ξ̂q′ ξ̂qUq′q(z)[ei(q
′+q)·r]kk′ (1.54)

= (Ĥ1r
int)kk′,nn′ + (Ĥ2r

int)kk′,nn′ , (1.55)

where ξq = Q′
q(b̂

†
−q + b̂q), while Uq(z) and Uq′q(z) are given by the expressions in curly

and square brackets in Eq. (1.53), respectively.

In addition to the Bloch approach, there is another treatment of the electron-ripplon

interaction called the adiabatic approximation. The motion of the surface deformation

is considerably slower than the motion of an electron, providing the wave number of

corresponding ripplons is sufficiently small. For such ripplons, the electron wave function

is adjusted adiabatically to follow the slow motion of the surface displacement ξ. In other

words, the electron wave function is assumed to be zero at the uneven helium surface.

Contrarily, in the perturbative Bloch approach, the unperturbed wave function is assumed

to coincide with that over a flat surface. Fig. 1.6 illustrates these two approach. It can be

shown that for the long-wavelength ripplons, which are relevant for the elastic one-ripplon

scattering of SSE, both approaches give the same result for the matrix elements. However,

the adiabatic approximation fails for the short-wavelength ripplons, which are relevant for
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Figure 1.6: The difference between the Bloch (a) and adiabatic (b) approaches.
The blue curve represents the ground state probability density of a single electron, while
the black curve represents the uneven helium surface.

the inelastic two-ripplon emission processes. In particular, the adiabatic approach gives a

strong divergence of the corresponding matrix elements. Contrarily, the Bloch treatment

of the inelastic two-ripplon scattering gives an excellent agreement with the experiment [2].

1.4.3 Scattering rate of an electron

At sufficiently low temperatures below 1 K, all electrons occupy the ground Rydberg state

(n = 1). In addition, the thermal excitation of ripplons with kBT ≫ ℏΩq is not negligible.

Since ripplons are bosonic particles, we obtain

nq =
1

exp(ℏΩq/kBT )− 1
≃ kBT/ℏΩq ≫ 1, (1.56)

where nq denotes the average occupation number of the ripplon state with the wave

number q. We denote |Nr⟩ = |{nq}⟩ the state of the thermally excited ripplon system.

Referring the ripplon Hamiltonian (1.35), we obtain

ENr =
∑
q

ℏΩq(nq +
1

2
) ≃

∑
q

ℏΩqnq. (1.57)

Using the Fermi golden rule, the transition rate between the electron states |k′⟩ and

|k⟩ of in-plane motion accompanied by a single ripplon emission/absorption (one-ripplon
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scattering) takes the form

wk′k,11 =
2π

ℏ
| ⟨k, 1, Nr| Ĥ1r

int |k′, 1, N ′
r⟩ |2δ(εk + ENr − εk′ − EN ′

r
), (1.58)

where εk = ℏ2k2/2m represents the energy of electron in-plane motion and |ENr −EN ′
r
| =

ℏΩq is the energy of a ripplon with the wave vector q. Using Eq. (1.53), the explicit form

of the matrix element Ĥ1r
int is given by

⟨k, 1, Nr| Ĥ1r
int |k′, 1, N ′

r⟩ =
∑
q

Q′
q[Uq(z)]11(eiq·r)k′k ⟨Nr| b̂†−q + b̂q |N ′

r⟩

=
∑
q

Q′
q[Uq(z)]11(eiq·r)k′k(

√
nqδnq,n′

q−1 +
√
n−q + 1δn−q,n′

−q+1). (1.59)

The ripplon creation and annihilation operators act as follows:

b̂†q |· · ·nq · · ·⟩ =
√
nq + 1 |· · ·nq + 1 · · ·⟩ , (1.60)

b̂q |· · ·nq · · ·⟩ =
√
nq |· · ·nq − 1 · · ·⟩ . (1.61)

The transition rate (1.58) is therefore given by

wk′k,11 =
2π

ℏ
∑
q

|Q′
q|2[Uq(z)]

2
11[e

iq·r]2k′k[nqδnq,n′
q−1 + (n−q + 1)δn−q,n′

−q+1]·

· δ(εk +
∑
q

ℏΩqnq − εk′ −
∑
q

ℏΩqn
′
q)

=
2π

ℏ
∑
q

|Q′
q|2[Uq(z)]

2
11[e

iq·r]2k′k[nqδ(εk − εk′) + (nq + 1)δ(εk − εk′)]

=
2π

ℏ
∑
q

|Q′
q|2[Uq(z)]

2
11[e

iq·r]2k′k(2nq + 1)δ(εk − εk′). (1.62)

Note that Ωq = Ω−q, nq = n−q = nq. Owing to the dispersion relation of the ripplons,

for q ≃ k, k′ we have ℏΩq ≪ εk, εk′ . Thus, the emission/absorption of a ripplon hardly

changes the electron energy and the scattering of electron is elastic. For this reason, the

ripplon energy ℏΩq in the δ-function in Eq. (1.62) is usually neglected.
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1.5 Mobility calculations for nondegenerate electrons

(Semi-classical treatment)

For now, we restrict ourselves to the dilute gas transport behaviors for which the cor-

relations between electrons are negligible. In this case we can use the single electron

Hamiltonian (1.36). The single-electron mobility can be theoretically evaluated using

the classical Boltzmann kinetic equation approach [46, 63, 66]. We start with a brief

introduction to the Boltzmann kinetic theory.

1.5.1 Overview of the Boltzmann kinetic theory

The main goal of the kinetic theory is calculation of the transport coefficients. The

equation of motion for each particle involved in the stochastic scattering processes is

described by

me
dv
dt

= Fext + Fscatt (1.63)

where Fext is the external force exerted on the particles and Fscatt is the stochastic scat-

tering force accounting for the collisions between particles and scatterers. As mentioned

in Section 1.3.2, it is difficult to solve the equations of motion for a many-electron sys-

tem. Alternatively, it is convenient to consider the distribution function of an electron

ensemble. The distribution function f(r,p, t) accounts for the momentum distribution of

electrons in the phase space, while the scattering and the external driving continuously

transfer an electron from one k-state to another. Therefore, all the transport properties

can be evaluated if the distribution function is known. At equilibrium, the distribution

function is simply the Fermi-Dirac function. The time evolution of the distribution is

described by the Boltzmann transport equation (BTE) having the general form

df

dt
=

(
∂f

∂t

)
ext

+

(
∂f

∂t

)
diff

+

(
∂f

∂t

)
scatt

, (1.64)
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where the "ext" term corresponds to the applied external force, the "diff" term represents

the diffusion of particles, and "scatt" is the contribution due to the scattering. Expanding

df/dt in terms of the partial derivative of r,p and t, one can get the explicit form of BTE

df

dt
=
∂f

∂t
+

p

m
· ∇f + Fext · ∇pf. (1.65)

The terms on the right hand side indicate, respectively, the explicit dependence of the

distribution function on time, space, and momentum. Here, we denote Fext = dp/dt the

external force applied to the system. In most of our experiments, the force is provided

by an electric field applied parallel to the surface, with Fext = −eE||. In addition, we

assume that the electron system has a uniform density profile (∇f = 0), that is there is

no diffusion terms due to the density gradient. Therefore, Eq. (1.65) reduces to

∂f

∂t
− eE|| ·

1

ℏ
∂f

∂k
=

(
∂f

∂t

)
scatt

, with
∂f

∂k
= ∇kf. (1.66)

The relaxation time approximation is widely used to evaluate the scattering term. Let

us take f0 as the distribution function at equilibrium. In the relaxation time approxima-

tion, we represent the scattering term as

(
∂f

∂t

)
scatt

=
f0 − f

τk
= νk · (f0 − f), (1.67)

where, f0 is the Fermi distribution and νk = 1/τk is the momentum relaxation rate, which

in general can depend on the momentum of electron ℏk. We assume that the deviation

of the distribution function δf ≡ f − f0 is due to the external field. The significance of

the momentum relaxation time τk can be understood if the electric field is switched off

instantaneously. Then, the scattering term will bring the out-of-equilibrium system back

to the equilibrium state with the distribution function f0 during a characteristic time τk.
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Using the above expression, the BTE (1.66) can be written as

∂f

∂t
− eE|| ·

1

ℏ
∂f

∂k
= −νk · δf. (1.68)

Exact solutions of this equation have been proven to exist in many cases, depending on

the expressions for νk. Nevertheless, numerical methods are generally used to find an

approximate solution. In the following section, we will derive an explicit expression for

the νk for the electron-on-helium system.

For a slowly varying external field, which gives the rate of change much smaller than

the relaxation rate νk, we can use the steady-state condition, ∂f
∂t

≃ 0. In addition, for the

state close to the equilibrium we have ∂f
∂εk

≃ ∂f0
∂εk

, with εk = ℏ2k2
2me

. Thus the BTE (1.68)

can be simplified further

νk(εk) · δf ≃ (ℏk · E||)
e

me

∂f0
∂εk

= (v · eE||)
∂f0
∂εk

. (1.69)

Next, we proceed to the calculations of the momentum relaxation rate νk(εk).

1.5.2 Momentum relaxation rate of a single electron

In Section 1.4.3, we derived the in-plane transition rate wk′k from k′ to k state, assuming

that an electron occupies the ground Rydberg state and ignoring the transitions to the

higher Rydberg states. In the following, we will demonstrate how to obtain the momen-

tum relaxation rate νk for the state with the momentum ℏk accounting for all possible

scattering events. The scattering term in the BTE can be written as

(
∂f

∂t

)
scatt

= −νk · δf =
∑
k′

{f(k′)[1− f(k)]wk′k − f(k)[1− f(k′)]wkk′}, (1.70)

where [1 − f(k)] represents the probability that the state k′ is not occupied, owing to

the Pauli exclusion principle for fermions. In general, performing summation in above
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expression is rather difficult. However, it can be simplified by considering some special

cases. One of the most commonly used assumption is the elastic scattering, in which

the energy of the electrons remains unchanged after the collision. Using the fact that

an elastic transition is reversible, that is wkk′ = wk′k, Eq. (1.70) reduces to −νk · δf =∑
k′ wk′k[f(k′)− f(k)].

We could further evaluate the above expression by finding the expression of the non-

equilibrium distribution function f . In the presence of a driving field E//, the electrons

acquire an additional drift velocity vdrif. The total velocity of an electron is given by

vtot = v+vdrif, where v = ℏk
m

is the thermal velocity, which typically satisfies |v| ≫ |vdrif|.

Thus, the total kinetic energy is mev2
tot/2 ≃ εk + ℏk · vdrif and the distribution function

f can be written as

f(εk) =
1

exp[(εk − hk · vdrif − µe)/kBT ] + 1
≃ f0 − hk · vdrif

∂f0
∂εk

. (1.71)

Plugging this into Eq. (1.70) we obtain νk = −
∑

k′ wkk′(k′ − k) · k/k2 =
∑

k′ wkk′(1 −

cosφ), where φ is the angle between k′ and k. The weighting factor (1− cosφ) indicates

that the large-angle scattering events are more important in determining the transport

properties. Using the explicit expression of wkk′ given by (1.62), we obtain

νk =
2π

ℏ
∑
k′

∑
q

|Q′
q|2[Uq(z)]

2
11

(k − k′) · k
k2

(2nq + 1)δk′,k−qδ(εk − εk′)

=
2π

ℏ
∑
q

|Q′
q|2[Uq(z)]

2
11(k · q)(2nq + 1)δ(εk − εk−q). (1.72)

Note that the angle θ between k and q is related to φ by θ = φ/2+π/2, see Fig. 1.7. Thus,

Figure 1.7: Schematics of the wave vectors in a scattering process.
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we have cos θ = sin(φ/2). Replacing the summation by the integration over εq = ℏ2q2
2me

and

using |q| ≃ 2|k| sin(φ/2), we obtain

νk(εk) =
me

2πℏ3

∫ 2π

0

dφ(1− cosφ)
ℏV 2

q

2mqΩq

(2nq + 1), (1.73)

where we used Q′
q =

√
ℏ

2mqΩq
and replaced the coupling term (Uq)11 by Vq, with

Vq ≡ ⟨1|Uq(z) |1⟩ = Λq2
(

1

q2z2
− K1(qz)

qz

)
11

+ eE⊥. (1.74)

The presence of the external field E⊥ in the coupling term plays a vital role in explaining

the holding field dependence of the measured mobility of SSE. In particular, for sufficiently

strong holding fields we simply have Vq ≃ eE⊥. Plugging nq ≃ kBT
ℏΩq

≫ 1 into (1.73) and

using (1− cosφ) = q2/2k2, we obtain

νk(εk) ≃
kBT

8ℏαεk

∫ 2π

0

V 2
q dφ =

πkBT (eE⊥)
2

4ℏαεk
. (1.75)

1.5.3 Averaging over all electrons

We have so far assumed that the electron is in a well-defined state k. In a realis-

tic system, the measurable quantities, such as the current density, are the cumulative

behavior of all electrons. Thus it is important to address the appropriate averaging

procedure over all possible states. In particular, the current density can be found as

j = ens

∑
k vf(k) = ens

∑
k vδf , where v is the velocity of electrons. Using the definition

of electron conductivity σ = j/E|| and v · ℏk = 2εk, we have

σ =
e2ns

me

∑
k

(v · ℏk)∂f0
∂εk

1

νk(εk)
=
e2ns

me

∑
k

2εk
∂f0
∂εk

1

νk(εk)
, (1.76)
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Replacing
∑

k by the integration over x = εk/kBT , we obtain the conductivity and mean

scattering rate ν as

σ =
e2ns

meν
, with

1

ν
≡

∫ ∞

0

x exp(−x)
νk(kBTx)

dx. (1.77)

Here we explicitly used the Boltzmann distribution f0 ∼ exp(−εk/kBT ) of SSE. The

averaged relaxation time and mobility is therefore given by τ = 1/ν and µ = e/meν,

respectively. For sufficiently strong holding field, Vq ≃ eE⊥ we obtain a simple result

ν ≃ (eE⊥)
2

8αℏ
, µ =

e

me

8αℏ
(eE⊥)2

. (1.78)

The electron mobility is independent of temperature because the average number of rip-

plons decreases linearly with the temperature, with nq ≃ kBT
ℏΩq

, whereas the momentum

relaxation rate νk ∝ 1/εk increases with decreasing T due to ⟨εk⟩ ∝ kBT . These two

terms compensate each other [44].

In the opposite limit of weak holding fields, E⊥ → 0, the polarization term in Eq.(1.74)

dominates. In this case, we need to evaluate the integral in (1.77) numerically. The result

is shown by the dashed line (µR) in Fig. 1.8.

Figure 1.8: Mobility of electrons along the 4He surface. µR and µG denotes the
mobility due to the ripplon scattering and vapor-atom scattering, respectively. The total
mobility satisfy 1/µtot = 1/µR + 1/µG. The figure is taken from [44].
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If more than one scattering processes are participating in transport, the following

approximate rule (Mathiesen’s rule) may be used to combine their effects

1

τtot
=

∑
i

1

τi
,

1

µtot
=

∑
i

1

µi

, (1.79)

where the sum is over all different scattering processes. As the temperature increases,

the collision between electrons and helium vapor atoms becomes appreciable due to the

increasing of vapor density. The scattering rate by vapor atoms is given by [46]

νG =
3πnGAℏ
2meγ

, µG =
2eγ

3πnGAℏ
, (1.80)

where A = 4.98×10−16cm2 is the cross section of helium atom, γ is the variational ansatz

given by Eq. (1.7) and nG = (MkBT/2πℏ2)3/2 exp(−Q/kBT ) is the vapor density, with

M being the mass of helium atom and Q = 7.17 K being the vaporization energy. The

temperature dependence is shown by the dotted line (µG) in Fig. 1.8.

1.6 Mobility of the electron solid

The mobility of SSE is strongly modified when they crystallize into solid phase. This

is due to the strongly enhanced coupling of WS to the liquid surface. In this section,

we discuss the nonlinear mobility of WS in the framework of the Bragg-Cherenkov (BC)

scattering effect. It is a generalized version of the conventional single particle Cherenkov-

type emission of ripplons extended to an ordered many-particle system. This approach

was first introduced by Dykman and Rubo [68]. The Cherenkov emission is the electro-

magnetic radiation emitted by a dielectric medium when a charged particle, such as an

electron, travels through the medium with speed which exceeds the phase velocity of light

in that medium. When electrons crystallize, the WS exerts pressure on the helium surface

and creates a commensurate surface dimple lattice (DL), with lattice constant a ∝ √
ns

coinciding with the lattice constant of the WS. Compared to the conventional single elec-
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tron Cherenkov-type emission, in the presence of a lattice structure the surface waves

irradiated by moving electrons can constructively interfere, giving a substantial increase

in the depth of DL. The Bragg-Cherenkov scattering is just the result of this interference,

where the strong enhancement of the effective mass of the coupled DL-WS system slows

down its transport under a fixed driving force. Accordingly, the maximum velocity of the

coupled system is limited by the phase velocity of ripplons with the first reciprocal lattice

vector G1 = 2π/a, that is vmax
ph =

√
α/ρ(2π/a)1/2. For the hexagonal lattice structure, we

have a = (2/
√

3n2
s)

1/2, thus the maximum velocity is related to the electron density by

vmax =
√
α/ρ(8π2ns/

√
3)1/4.

Another interpretation to this phenomenon is based on the competition between the

friction (restoring) force Fres and the external driving force Fext acting on each particle.

This force balance analysis is very convenient to describe the dynamic processes. The

average friction force per electron can be evaluated as Fres = n−1
s ⟨∇rĤint⟩, where Ĥint =∑

qQ
′
qUq(z)ρq(b̂

†
−q+ b̂q) is the Hamiltonian of interaction between ripplons and WS, with

ρq =
∑

n eiq·rn being the electron density operator. The quantum-mechanical treatment

of this friction force was given by Dykman and Rubo [68], who derived an expression

Fres = − ns

ℏΩm

∑
G

G
G · v
Ω(G)

|ṼG|2ξ(G)
∣∣∣∣ Ωm

G · v − Ω(G)

∣∣∣∣1−α(G)

, with (1.81)

Ṽq ≡ Q′
q|Uq|11 exp

(
−λ2q2/4

)
and (1.82)

ξ(G) = 2 sin[πα(G)/2]Γ[1− α(G)]. (1.83)

Here, Ωm = min(ΩD, kBT/ℏ), ΩD is the Debye frequency of WS, λ2 is the mean square

electron displacement from the lattice site for zero temperature, and α(G) = kBTG2

4πmc2tns

accounts for the temperature dependency of the frictional force, with ct the transverse

sound velocity of the WS, see Eq. (1.25). Clearly, for very small drift velocities such that

G · v ≪ Ω(G), the above equation provides a small friction force and the WS is weakly

coupled to the surface dimples. The schematic drawing of the weakly coupled WS-DL sys-
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tem is given by Fig. 1.9(a). As the drift velocity increases, the frictional force rises rapidly

due to the decrease of the denominator in (1.81). When the system approaches the reso-

nance condition G · v = Ω(G), with a critical velocity vc = vmax =
√
α/ρ(8π2ns/

√
3)1/4,

the friction force diverges. Accordingly, the dimple lattice is deepened and the velocity of

the coupled system is locked at the terminal velocity vc, with a zero differential mobility

dv/dFext = 0. This schematics is shown in Fig. 1.9(b). In practice, the friction force

can not be infinitely large. It always has a maximum threshold value Fth
res, although it is

difficult to define the microscopic mechanism of this threshold which depends on many

experimental parameters. The decoupling of WS from DL will happen when the external

force exceeds the threshold force Fext > Fth
res, leading to a sudden increase of the electron

velocity. This process is schematically shown in Fig. 1.9(c) and is refereed to as the sliding

of the WS from DL.

Figure 1.9: The dynamical regimes of the WS for different external driving
field. (a) The WS is weakly coupled to the DL and v < vc. (b) Strongly coupled WS-
DL system with v = vc. The deepening of DL corresponds to the rapid increase of the
frictional force. (c) The WS is decoupled from the DL with v > vc.

This approach to the electron mobility of WS has been experimentally tested by several

groups [10, 12, 69]. In Section 3.3, we review the experimental results of the measured

electron conductivity of SSE in a microchannel device. In particular, we will show a novel

transport behavior in the nonequilibrium sliding regime.
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1.7 Transition linewidth of the excited Rydberg states

In Section 1.4.3, we derived the in-plane transition rate wk′k,11 assuming that electron

occupies the ground Rydberg state. As was shown, this is relevant for calculating the

electron mobility. Another important property relevant for our experiments and caused

by scattering of electrons is the life-time and dephasing of the excited Rydberg states. As

was discussed in Section 1.2, an electron can be excited to higher-energy Rydberg states

by resonant radiation. The decoherence of the n-th excited state is usually characterized

by the transition linewidth Γ1n. Following Ando’s treatment [65], the ripplon-limited

transition linewidth can be calculated including both the intra-subband and inter-subband

scattering of an electron from ripplons, that is Γ1n = Γintra + Γinter according to

Γ1n =
π

ℏ
∑
k′

〈
| ⟨k, n| Ĥint |k′, n⟩ − ⟨k, 1| Ĥint |k′, 1⟩ |2

〉
q
δ(εk − εk′)+,

+
2π

ℏ
∑
m̸=n

∑
k′

〈
| ⟨k, n| Ĥint |k′,m⟩ |2

〉
q
δ(εk − εk′ + Emn), (1.84)

where Emn is the energy separation between m-th and n-th Rydberg states and ⟨· · · ⟩q

represents the q-summation and the thermal averaging over ripplon systems. In partic-

ular, we have ⟨ξ̂qξ̂−q⟩q =
∑

q
ℏq

2ρΩq
(2nq + 1) ≃

∑
q
qkBT
ρΩq

. The term Γintra describes the

in-plane elastic scattering of an electron which leads to the dephasing of a superposition

state. For sufficiently strong holding fields, the polarization term in the interacting Hamil-

tonian is negligible, that is ⟨k, n| Ĥint |k′, n⟩ ≃ ⟨k, 1| Ĥint |k′, 1⟩, and Γintra nearly vanishes.

The second term Γinter describes the relaxation rate of the n-th Rydberg state due to

scattering into Rydberg states with m ̸= n. Comparing this with the nuclear magnetic

resonance (NMR) system, Γintra corresponds to the NMR dephasing rate (1/T ∗
2 ), while

Γinter corresponds to the NMR relaxation rate (1/T1).

In practice, the relaxation rate can be extracted from the spectroscopic measurements.

As discussed above, the major contribution to the transition linewidth comes form the

relaxation. Using spectroscopic notations, the relaxation time T1 is related to the intrinsic
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spectra linewidth by γ = T−1
1 . The spectroscopic measurements by Collins et.al. covered

both vapor scattering and ripplon scattering regimes and showed a clear difference between

these two regimes. At temperatures below 1 K, the ripplon scattering dominates and the

spectral linewidth was measured to be on the order of 1 MHz, see Fig. 1.10. As will

be shown later, in our experiments the measured linewidth is orders of magnitude larger,

which is due to the inhomogeneous broadening of the transition linewidth in a nonuniform

holding electric field E⊥.

Figure 1.10: The intrinsic linewidth of SSE on 4He. The closed squares and the
crossed squares show the linewidth obtained experimentally in [70] and the open circles
are the data obtained from [36]. The solid line is obtained from Ando’s theory [65]. The
figure is taken from [70].

1.8 Brief overview of qubit proposals

In this chapter, we briefly reviewed the fundamental properties of the electrons on helium

system. It was shown that many properties of this system have been explored exper-

imentally and theoretically, and by now are well-understood. In particular, the weak

interaction between SSE and environment results in a relatively long decoherence time

of electron motional states, which makes electrons on helium a promising candidate for

quantum computing. In this section, we briefly discuss the proposals and achievements

towards quantum information processing using the electron-on-helium system.
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1.8.1 Charge qubits with electrons on liquid helium

The potential for quantum computing with electrons on helium has been pointed out

by Platzman and Dykman [1], who proposed using the two lowest Rydberg states of a

trapped electron on liquid helium as a qubit. As discussed in the previous section, the

intrinsic linewidth of the resonant absorption line is in the order of 1 MHz, which promises

a relatively long relaxation time on the order of 1µs. However, the manipulation of qubit

states requires an input MW radiation with the frequency in the range of hundreds of GHz,

which makes it inconvenient to integrate the input MW radiation with the conventional

coaxial transmission lines and the on-chip stripline technology. In addition, the lack of

sensitive readout mechanism for the Rydberg states also prevented to have much progress

in this direction so far.

Another promising proposal is to use the lateral quantized states of the electron motion

parallel to the helium surface as qubit states [5, 7]. These lateral states can be robustly

controlled using the well-developed circuit quantum electrodynamics architecture. The

circuit quantum electrodynamics (circuit QED) studies the light-matter interaction us-

ing microwave photons, which can be regarded as an all-electrical realization of cavity

QED in the microwave regime. In this platform, the single electron trap is integrated to

an on-chip transmission line structure. The lateral motional state of a trapped electron

can be engineered to have transition frequency of a few GHz, thus can interact with the

MW photons of the transmission line resonators. Such a hybrid system has significant

advantage because many parameters, such as photon lifetime, transition frequency and

electron-photon coupling strengths, can be fully controlled using conventional nanofabri-

cation and telecommunication techniques.

The coupling between a single electron on superfluid helium and a transmission line

resonator has been first demonstrated by Koolstra et al. [7], with the measured coupling

strength about 4.8 MHz. A similar experiment has been done recently with SSE on the

surface of solid neon by Zhou et al. [6], who reported the lifetime of the excited lateral
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Figure 1.11: On-chip circuit QED implementation with a single electron trap
(a) Optical micrograph, (b) schematic of the device and (c) false-colored SEM picture.
(d) Schematic cross-sectional view of the electron trap with MW field distribution. The
figure is taken from [7].

states and the decoherence time to be T1 = 15µs and T2 ≳ 200 ns, respectively. The

circuit QED setup for these two experiments is shown in Fig. 1.11, where the electron

is trapped in the green shaded trap and coupled to the MW photon provided by the

superconducting quarter wave resonator (red shaded area).

1.8.2 Spin qubits

In addition to the motional degrees of freedom, the electron carries a spin degree of

freedom. Spin coherence is generally limited by the interaction with nuclear spins in the

substrate material. Since the total nuclear spin of the 4He atom is zero, the decoherence

rate of SSE on liquid 4He is many orders of magnitude smaller than in most traditional



Electrons on superfluid helium overview 43

semiconductor 2DEG systems and is expected to exceed seconds [5]. The first proposal

for spin-based qubits using electrons on helium was given by Lyon [3]. In this work, it was

proposed to readout the individual electron spins by comparing the unknown spin with a

known one, as was demonstrated in a double quantum well [71]. When two electrons are

confined in a small volume, their wave function can overlap, and the exchange interaction

leads to a singlet-triplet splitting, which allows a complete spin measurement. However,

owing to the strong Coulomb repulsion between SSE on liquid helium, the average distance

between electrons is too large to have the exchange interaction between them. Therefore,

the above method is not applicable.

Figure 1.12: A schematic diagram of a possible gate electrode arrangement for a quan-
tum computer. The light and dark gray regions are conducting gates held at different
potentials arranged as a three phase CCD, as described in the text. The figure is taken
from [3].

In addition to the readout, a charge-coupled device (CCD) configuration was also

proposed in Ref. [3] to accomplish fast transport of electrons between the interaction and

storage regions. As shown schematically in Fig. 1.12, the light and dark gray areas are the

pixel gates that are arranged like those of a conventional three-phase CCD, and electrons

can be rapidly transferred between these gates. The black horizontal lines are negatively

biased to avoid cross-talk between horizontal channels. It is clear that a highly parallel

and scalable architecture for a many-qubit system is possible with this configuration.
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Spin-orbit coupling

In addition to the direct singlet-triplet splitting proposed by Lyon, the spin state readout

can also be mediated by the orbital states. Schuster et al. suggested that the coupling

between spin states and orbital states allows manipulation and readout of the individual

spins [5]. As shown in Fig. 1.13(b), a spin-quantization axis is established using a magnetic

field along the x-axis. In the presence of a nonuniform magnetic field Bz, the in-plane

motional state is coupled to the spin state by a magnetic field gradient along x-axis

(∂Bz/∂x), and the coupling Hamiltonian is given by Hs = −2µBszx∂Bz/∂x, where µB

represents the Bohr magneton. This spin-orbit interaction can significantly enhance the

coupling between the MW photons and spins, whereas the bare coupling of MW photons

to the electron spin is very weak.

Figure 1.13: Circuit QED architecture with single electron trap for spin qubit
(a) The top view of the transmission line resonator (blue areas) and the single electron
trap (purple area). (b) Cross-sectional view of the electron trap with energy levels and
wave functions of electron motional states. The figure is taken from [5].

Similarly, the spin state can also be coupled to the Rydberg states in a controllable

way with the help of a magnetic field gradient along the vertical direction (∂Bz/∂z) [4].

As shown in Fig. 1.14, the transition of spin-up state from |n = 1, ↑⟩ to |n = 2, ↑⟩ can be

excited by microwaves with frequency ω+, meanwhile the transition of spin-down state

from |n = 1, ↓⟩ to |n = 2, ↓⟩ corresponding to a different frequency ω−. The separation

of the Rydberg transition frequency between two spin states is proportional to the field

gradient, with ω− − ω+ = 2µB[Bz(z2)− Bz(z1)]/ℏ ≃ 2µB

h
∂Bz

∂z
(z2 − z1). Thus, detection of
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the excitation of the Rydberg state allows us to detect the spin state.

Figure 1.14: Energy spectrum of the spin-orbit coupled states of electrons bound to the
surface of liquid helium.

In order to distinguish the spin state, the difference in Zeeman splitting must be larger

than the transition linewidth (see Section 1.7). Thus, the magnetic field gradient must

be sufficiently strong. Fig. 1.15 shows the distribution of the stray magnetic field across

an electron trap calculated using COMSOL Multiphysics. Here, the central cylinder

represents a 400-nm-long Cobalt micromagnet with radius r = 50 nm, which provides a

stray magnetic field with the vertical component Bz and radial component Br. Owing to

the axial symmetry, we have |Bx| = |By| = Br. The electrodes (blue shaded area) on both

side of the micro-magnet provide the in-plane potential ϕ(x) for electron confinement. The

average positions of the ground state and the first excited Rydberg state are indicated by

red dots. Typically, the gradient of the magnetic field near the helium surface is ∂Bz/∂z ≈

−0.43T/µm and distance between the ground state and first excited Rydberg state is

∆z ≈ 35 nm. This provides the separation of the Rydberg transition frequency between

spin-up and spin-down states around (ω− − ω+)/2π = 300 MHz, which is significantly

larger than the intrinsic linewidth of the Rydberg states at low temperatures, see Fig. 1.10.

These coupled spin-orbit states represent a potentially new way for probing the spin degree

of freedom of electrons on liquid helium.

In summary, we have discussed various proposals for quantum information processing

using both motional states and spin states of electrons bound to the surface of liquid

helium. This PhD project is motivated by the possibility to realize the spin-orbit coupling
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Figure 1.15: COMSOL simulation of the magnetic field distribution in a single
electron trap. Left panel: Annotated cross-sectional view of a single electron trap with
magnetic field distribution. Right panel: Zoomed-in images with the contour plots of the
magnetic field distribution around the micromagnet, Bz (left) and Bx (right) components
are shown. The average positions of the ground and first excited Rydberg states are
denoted by red dots.

between the spin states of SSE and their Rydberg states. Starting from the next chapter,

we discuss the realization of Rydberg state detection of SSE confined in a microchannel

device, which might provide useful platform for such realization.



Chapter 2

Experimental methods

The implementation of electrons-on-helium experiments requires a careful design of the

experimental setup. This chapter will describe the devices employed in our experiments,

followed by an analysis of the electric field distribution in the devices and the resulting

density distribution of electrons. This will be of a great importance for understanding

the results of the transport measurements and Rydberg states detection presented in later

chapters. In addition to the device geometry, the properties of the liquid helium substrate

are also essential for operation of the devices. Therefore, we will discuss the properties of

superfluid helium film and its effect on the electric field and electron density distribution

in our devices.

This chapter is organized as follows: In Section 2.1, we introduce a capacitively cou-

pled setup known as the Sommer-Tanner method. We discuss the underlying physics

and the lumped circuit model for this method. In Section 2.2, we discuss two basic ge-

ometries of our experimental devices. Additionally, a basic procedure of the fabrication

of the microchannel devices is presented. Analytical estimations of the density profile of

SSE and holding electric field are given using a parallel-plate capacitor approximation

which assumes a flat helium surface. This is followed by Section 2.3, where we discuss the

properties of superfluid helium film. Finally, Section 2.4 provides description of the elec-

trostatic simulations of the experimental device using the finite-element method (FEM),

47
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and taking into account the properties of superfluid helium substrate.

2.1 The Sommer-Tanner (ST) methods

The Sommer-Tanner detection method has been wildly used for measuring the transport

properties of electrons on liquid helium system since the early 1970s. This method was

developed by W. Sommer and D. Tanner for the first electron mobility measurements

[22]. The basic parallel configuration is shown schematically in Fig. 2.1. This method

is based on the phase-sensitive detection of SSE capacitively coupled to the electrodes

submerged under the liquid helium surface. Usually, the ST electrodes are surrounded by

a guard ring electrode biased at ground or negative potential relative to other electrodes,

which helps to confine the electrons in the measurement region. One of the ST electrodes

(drive) is driven by an AC voltage with the amplitude of a few mV and frequency in

the audio-frequency range (1-100 kHz). This leads to redistribution of SSE and creates

a transport current. This current I is measured in a contactless way by detecting image

current induced in the second ST electrode (sense) using a standard lock-in amplifier.

Figure 2.1: The Sommer-Tanner configuration. (a) SSE (green dots) capacitively-
coupled to drive and sense electrodes modeled as a combination of two capacitors and a
resistor connected in series. The capacitance is purely geometric and the resistor models
the finite mobility of SSE, as described in the text. (b) The equivalent lumped element
circuit of the setup in (a).

The equivalent lumped circuit model of this ST method is shown in Fig. 2.1(b). The

capacitance C represents the coupling between SSE and ST electrodes, while the charged
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surface resistance R mostly comes from the finite mobility of the SSE. According to this

lumped circuit model, the total series impedance is given by Z = R+ 2
jωC

. The response

current I can be written as

I =
Vd

Z
=

Vd

R + 2/jωC
=

Rω2C2Vd

4 +R2ω2C2
+ j

2ωCVd

4 +R2ω2C2
, (2.1)

where the first term corresponds to the in-phase component Ix of current with respect to

the driving voltage Vd and the second term is the quadrature component Iy. In the limit

of a perfect conductor, with R = 0, the coupling between two ST electrodes is purely

capacitive and the current has a 90◦ phase delay relative to Vd. For finite resistance, the

phase shift between I and Vd is given by tanφ = Iy/Ix = 2/ωRC. Accordingly, we obtain

a semi-circle trajectory on the complex Ix vs. Iy plane by varying the resistance R form

zero to infinity, see Fig. 2.2. The solid lines are obtained by varying R at different fixed

values of C = 0.4, 1 and 1.6 pF, respectively.

Figure 2.2: The trajectories of I in the complex plane. Here, we fixed Vd = 10mV

and ω/2π = 20 kHz. Color lines: Varying R form zero to infinity, with C = 0.4 pF, 1 pF
and 1.6 pF.

Eq. (2.1) provides the simplest version of the lumped circuit model. In practice, this

model can be modified depending on the device geometry. In Section 3.2.1, we will revise

this circuit model to take into account the geometry of our microchannel devices.
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2.2 Device geometry and electrostatics

This section discusses two conventional setups to study the transport properties, as well

as the Rydberg state transitions, namely, (1) the Corbino disk and (2) the microchan-

nel device. It is instructive to describe the Corbino setup first because this geometry

represents a simple parallel-plate capacitor.

2.2.1 Corbino disk device

The traditional Corbino disk device is formed by a set of concentric electrodes submerged

under the liquid helium, see Fig. 2.3, which are used for the ST measurements. In prac-

tice, we apply driving voltage on the central electrode and detect the radial current of

SSE at the outer ring, while the outermost electrode is negatively biased as a guard ring.

This geometry has some advantages for the conductivity measurements in the presence of

magnetic field applied perpendicular to the helium surface. In the conventional rectangu-

lar (Hall bar) geometry, the Hall effect produces a transverse electric field. While in the

Corbino disk device, owing to the axial symmetry of a circular geometry, the transverse

field is zero and the driving electric field has only the radial component Er, which relates

to the measured radial current density jr, with jr = σxxEr, where σxx is the diagonal

conductivity.

For the purpose of the Rydberg states detection, another set of electrodes with the

same configuration is placed symmetrically on the top forming a parallel-plate capaci-

tor with the bottom structure, see Fig. 2.3. The liquid level is placed between the top

and bottom electrodes approximately parallel to the capacitor plates. The separation D

between the top and bottom plates is chosen no less than 2 mm in order to avoid the

capillary filling of the whole space between the plates by the liquid helium.

In what follows, we will ignore the distortion of the electric field near the capacitor

edges and define Eb = E⊥ + |Esse| and Et = E⊥ − |Esse| to be the electric field below and

above the liquid surface, respectively. Here E⊥ is the electric field exerted on SSE and
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Figure 2.3: A schematic drawing of the Corbino disk device. The top and
bottom electrodes are separated by a distance D, while d is the liquid level above the
bottom plate. Eb and Et represent the electric field below and above the charged layer,
respectively.

|Esse| = 2πens is the electric field due to SSE. The voltages applied to the plates and the

electric field between the plates are related by Vb − Vt = Ebd+Et(D− d), where d is the

depth of the liquid helium, see Fig. 2.3. The holding electric field E⊥ exerted on the SSE

is therefore given by

E⊥ =
Eb + Et

2
=
Vb − Vt

D
+ 2πens

D − 2d

D
. (2.2)

Thus, the holding electric field E⊥ is the sum of the external field Eext
⊥ = (Vb−Vt)/D due

to the applied voltages and the field Eima
⊥ = 2πens(1 − 2d/D) due to the image charges

induced on both capacitor plates by SSE. Note that when the parallel-plate capacitor

is half-filled with helium (d = D/2), the amount of image changes induced in the top

and bottom plates are equal, thus Eima
⊥ = 0. In this case, the holding field becomes

independent of the electron density and is completely determined by the applied voltages,

that is E⊥ = (Vb−Vt)/D. This is very convenient when performing experiments to observe

the transition between the Rydberg states of SSE. In such experiments, the microwave

frequency is usually fixed, while the transition frequency of the Rydberg states is tuned in
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resonance by using the Stark shift of the Rydberg levels. Thus, in a half-filled setup the

Stark shift is determined only by the applied voltages and independents of the electron

density.

2.2.2 Microchannel device

The microchannel device offers a very high level of control of SSE, in particular their

density and in-plane transport properties. The fabrication of such devices is compatible

with modern lithography technologies and considerable efforts were made in developing

such structured channel devices [8–10, 12, 69, 72–75].

Figure 2.4: (a) Schematic drawing of the microchannel device used in our experiments.
By applying proper biasing voltages to the top and bottom electrodes, the electrons are
confined in a set of 4µm-deep parallel troughs. (b) The annotated optical microscope and
SEM images (inset) of the microchannel device. In the SEM image on the right, the top
electrodes are shaded in the same dark orange color as they were in the optical microscope
image, while the bottom electrode is kept in gray scale.

The optical microscope and the scanning electron microscope (SEM) images of the

microchannel device employed in most of our experiments are shown in Fig. 2.4. Our

typical device consists of two identical arrays of 20-µm wide and 700-µm long microchan-

nels connected in parallel, which serve as the left and right electron reservoirs (LR and

RR, respectively). The two reservoirs are connected by a single 20-µm wide and 100-µm

long central channel. The whole structure is composed of two thin patterned gold layers

separated by an insulating layer of hard-baked photoresist with a thickness of d = 4 µm,
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which defines the depth of the microchannels. The bottom gold layer (light orange in

the optical microscope image) consists of three electrodes which define the bottoms of

the two reservoirs and the central channel. These electrodes are separated by 1 µm wide

gaps, as can be seen in the inset of Fig. 2.4 which shows the SEM image of a magnified

portion at the central channel adjacent to the left reservoir. The corresponding electrical

potentials applied to the bottom electrodes are denoted as VLR, VRR and Vch. The top

gold layer (dark orange in the optical microscope image) consists of two electrodes, the

split-gate and guard electrodes. The split-gate electrode is aligned along the sides of the

central channel. Together with the bottom electrode of the central channel it serves to

control the density of SSE in the central channel by adjusting the electrostatic potential

at the surface of liquid in the channel. Similarly, the guard electrode is aligned along the

microchannels of each reservoir and serves to confine electrons inside the microchannels.

The corresponding electrical potentials applied to the electrodes of the top gold layer are

denoted as Vga and Vgu.

Charging of device with electrons

The fabricated device is mounted on a printed circuit board (PCB) placed inside a leak-

tight copper cell (see Fig. 2.5) and then cooled down to 150 mK at the mixing chamber

of a dilution refrigerator. Liquid helium-4 is condensed into the sample cell and fills

microchannels by the capillary action. After all channels are adequately filled with liquid

helium, we apply a positive bias voltage VLR/RR > 0 to the bottom reservoir electrodes,

while the guard electrode is kept at the potential of the grounded sample cell, that is

Vgu = 0.

Free electrons are produced inside the cell by the thermal emission from a tungsten

filament and charge the surface of liquid filling the microchannels. Here, we can apply

the same analysis as for the parallel-plate capacitor model shown in Section 2.2.1. For

notation consistency, we will keep Vb and Vt notations for the bottom reservoir VLR/RR

and top guard Vgu, respectively. One naturally expects that the SSE attain the maximum
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Figure 2.5: (a) Side view of the sample cell, with the dimensions of each components.
(b) Top view of the microchannel device mounted on the PCB. (c) Schematic drawing of
the sample cell.

density nsat
s when the potential of charged surface Ve equals to that of the top electrodes,

that is Ve = Vt = 0. The vertical electric field below and above the helium surface

is therefore given by Eb = Vb/d = 4πensat
s and Et = 0, respectively. In practice, the

experimentally measured SSE potential Ve always shows a positive offset from zero, which

reveals that the vertical component of the electric field above the liquid surface is not

fully screened by SSE and the effective width of the electron layer Weff is always smaller

than the channel width W , see Fig. 2.6. In addition, we note that the potential of the

charged surface Ve can vary for different experiments even though the electrode voltages

are fixed.

After the reservoirs are charged with SSE, the electrons can be introduced into the

central channel connecting the two reservoirs by varying the voltages applied to the chan-

nel and gate electrodes. When the potential at the uncharged liquid surface in the central

channel equals to Ve, electrons start to fill the surface of liquid in the central channel. We

can find the relation between the uncharged surface potential Vu, the top gate voltage Vga
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Figure 2.6: A schematic drawing of the microchannel device filled with SSE, as described
in the text.

and the bottom channel voltage Vch from a general capacitance model, see Fig. 2.7(a). By

the general definition, the capacitance of a conductor is equal to C = q/∆V , there ∆V

is the change of the electrical potential of the conductor when a charge q is brought to it

from infinity. Thus, we have

Cga(Vu − Vga) = +q, and, Cch(Vu − Vch) = −q,

⇒ Vu =
Cch

Ctot
Vch +

Cga

Ctot
Vga ≡ c1Vch + c2Vga. (2.3)

Here, we define Ctot = Cch + Cga, c1 = Cch/Ctot and c2 = Cga/Ctot. Thus, we have

c1+c2 = 1. When the surface is charged by electrons with the total charge Q and the SSE

potential is fixed at Ve, by the definition of capacitance we have |Q| = ensS = Ctot(Vu−Ve),

where S is the surface area of central channel (see Fig. 2.7(b)). Note that the total number

of positive image charges q′ and q′′ induced in the bottom and top electrodes should be

equal to the total charge of electrons, that is |q′ + q′′| = |Q|. If we assume that the Cch is

given by the parallel-plate capacitance model, that is Cch = S/4πd, it is straightforward

to obtain the electron density in the center channel

ns =
1

4πec1d
(c1Vch + c2Vga − Ve). (2.4)

Note that for Vga = Ve = 0 this expression recovers the previously considered case of the

saturated electron density, ns = nsat
s .
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Figure 2.7: General capacitance model of the microchannel device without (a) and with
a charged layer (b), as described in the text.

In order to establish an approximate relationship between the pressing (holding)

electric field E⊥ acting on SSE and the applied biasing voltages, we apply the simple

relation Eb = E⊥ + |Esse| and assume a uniform electron density distribution, with

|Esse| = 2πens. Similar to the parallel-plate capacitor setup considered in Section 2.2.1,

we have E⊥ = (Vch−Ve)/d−2πens. Using Eq. (2.4), we obtain an approximate analytical

relation between E⊥ and applied voltages

E⊥ =
Vch

2d
− Ve

d

(
1− 1

2c1

)
− c2

2c1d
Vga. (2.5)

Note that the parallel-plate capacitance approximation used above does not allow us to

work out the actual distribution of the electrical potential and the electron density across

the channel. The electrical potential distribution below and above the helium surface can

be found numerically by the finite element modeling (FEM) using COMSOL Multiphysics,

see Section 2.4 for details.

2.3 Properties of superfluid helium film

The physics of superfluid helium is of great importance for understanding the system’s

stability and its electrostatic properties. Therefore, this section provides a brief review of

some relevant properties of the superfluid helium. Starting with a discussion of the thin

film dynamics, the profile of the helium film formed in the microchannels are discussed in
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Section 2.3.1. This is particularly important for the Rydberg states detection presented

in later chapters. In Section 2.3.2, the occurrence of the hydrodynamical instabilities is

discussed, as well as a number of methods which have been developed to partially suppress

this instability.

2.3.1 Film profile

It is well-known that the 4He liquid undergoes a phase transition to the superfluid state

at the critical temperature Tλ ≃ 2.18 K. In our experiments, the bulk superfluid 4He is

condensed into the cell and the liquid surface level is placed slightly below the surface of

PCB. Owing to its superfluity, the liquid climbs the pillars and covers the PCB with a thin

film due to the Van der Waals attraction between helium atoms and the solid substrate,

which balances the gravitational force. The coating film thickness h0 at height h above

the bulk level can be estimated from an expression for the chemical potential of the thin

film µf [76]

µf = µ0 + ρgh− αv

h30
, (2.6)

where µ0 is the chemical potential of the bulk helium, ρgh is the gravitational energy

(ρ = 0.145 g/cm3 is the mass density of liquid helium), and the third term comes from

the van der Waals interaction, with αv being the van der Waals constant of the substrate.

In thermal equilibrium we have µf = µ0, therefore the film thickness is given by h0 =

(αv/ρgh)
1/3. For example, for a superfluid film on a silicon substrate at h = 10 mm we

obtain h0 = 30 nm [77].

In the case of superfluid helium filling the microchannels, the liquid depth does not

follow the above expression for h0. Instead, the channels are filled by liquid owing to the

capillary force, provided that the capillary curvature radius is larger than channel width

W . In the absence of the SSE, the capillary radius Rc is determined by surface tension and

gravity, which is analogous to the rising of liquid in a capillary tube (Jurin’s law), with

Rc(h) = α/ρgh, where α = 0.378 erg/cm2 is the surface tension of the superfluid helium
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at the interface with vacuum. The schematic picture in the left panel of Fig. 2.8 shows the

typical device geometry used in our experiments. Here, the depression of liquid surface

d0 is the distance between the lowest point of the deformed surface and the surface of the

thin film above the guard (with the depth h0) and is given by d0 = Rc −
√
R2

c − (W/2)2.

The calculated capillary radius of curvature and the liquid surface depression for this

device geometry are given in the right panel of Fig. 2.8.

Figure 2.8: Left panel: Profile of the helium film in the microchannel device for un-
charged surface of liquid. Right panel: Capillary radius of curvature Rc as a function of
the bulk helium level relative to the device surface (blue line). Rc diverges as the bulk
helium level fills up. Surface depression d0 at the center of the channel versus bulk helium
level is given by the orange line.

For a surface of liquid charged with SSE at density ns, an additional term due to the

electrostatic force is introduced into the curvature radius, according to

Rc(h) =
α

ρgh+ ensE⊥
, (2.7)

where the second term in the denominator represents the pressure due to the charge

layer interacting with the holding filed E⊥. For simplicity, let us consider a uniform

saturated electron density nsat
s , then E⊥ = 2πensat

s . Typically in our experiments the

saturated electron density is the order of 108 cm2 and the bulk liquid level h is up to a

few millimeters below PCB. The calculated radius of curvature Rc as a function of h for
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different electron densities nsat
s under the saturation condition is shown Fig. 2.9.

Figure 2.9: Capillary radius of curvature Rc as a function of the bulk helium level
relative to the device surface h for saturated electron densities nsat

s .

2.3.2 Hydrodynamical instability

In relation to our experiments, it is also instructive to discuss the stability of the charged

liquid helium surface in the limit of high densities of SSE [28, 39, 40, 77, 78]. The high

density limit is interesting in relation to a possibility to reach the regime of the degenerate

2DES on the surface of liquid helium, as was discussed in Section 1.3.1.

Now, let us consider a charged liquid film having the thickness d which is much greater

than the inter-electron distance. In Section 1.4.1, we already discussed the hydrodynami-

cal properties of the liquid helium without SSE and the dynamics of surface deformation

ξ given by the Euler equation (1.26). When the surface of liquid helium is charged with

SSE, there is an additional pressure 4πn2
se

2∇ξ added to the liquid surface, arising from

the mutual repulsion between electrons. Accordingly, the Euler equation in the presence

of SSE can be written as ρdv
dt

= −ρgξ + α∇2ξ − 4πn2
se

2∇ξ. Similarly to Section 1.4.1,

taking the time derivative of the Euler equation and replacing the time derivative of ξ
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with ∂Φ/∂z, we obtain

ρg
∂Φ

∂z
+ ρ

∂2Φ

∂t2
+ 4πn2

se
2∇

(
∂Φ

∂z

)
− α∇2

(
∂Φ

∂z

)
= 0, (2.8)

and using the same trial solution Φ ∼ e−iΩteqzf(r), we obtain Ω2 = gq+αq3/ρ−4πn2
se

2q2.

The condition for the surface to be stable is given by Ω2 > 0, which has to be valid

for any value of q. This is equivalent to the condition (2πn2
se

2)2 − ρgα ≤ 0 which gives a

critical density nmax
s = (ρgα)1/4/(2πe2)1/2 = 2.25 × 109 cm−2 for liquid 4He below 1.4 K.

This expression is in good agreement with the experimental results on bulk helium [79].

Note that the predicted quantum melting and the formation of degenerate Fermi liquid

happens at the electron density ranging from 1012 to 1013 cm−2. Therefore, the regime of

degenerate Fermi liquid can not be reached with SSE on the bulk liquid helium.

The simplest way to enhance stability is to decrease the film thickness. For a suffi-

ciently thin film, there is a strong contribution from the van der Waals interaction between

the thin film and substrate. The corresponding pressure term is given by (3αv/d
4)ξ, which

varies as the inverse fourth power of the film thickness. Thus the conditions for a sta-

ble surface becomes (2πn2
se

2)2 − 3αv/d
4 ≤ 0. This significantly increases the stability of

the charged film. However, the experimentally measured maximum charge density was

distinctly larger than the anticipated value [77]. This is due to the additional pressure

on the film, where the surface charge significantly modifies the film thickness according

to h′0 = h0(1 +
ensE⊥
ρgh

)−1/3. Eventually, SSE tunnel into the solid substrate through the

helium thin films, which prevents to reach the divergence regime.

Another method to suppress the instability is to utilize a fractionated geometry as

was suggested by William [80], for example, using a microchannel device. The channel

confinement introduces a low cutoff of the allowed wave vectors of the capillary waves with

a minimum value of qmin = π/W . For a 10 µm-wide channel, the hydrodynamic instability

will occur at a critical electron density ns = 2.1× 1010 cm−2, which is significantly larger

than the critical density on the bulk liquid. The advantage of this method is that the
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electron mobility remains relatively high, while it is significantly decreased for SSE on

thin helium films due to the solid substrate roughness.

Finally, to achieve higher electron density, solid Hydrogen and solid Neon have also

been considered as a substrate for SSE. To achieve high electron density, the solid-

state substrates have been investigated by several groups and the electron density up

to 1012 cm−2 had been reported [81–85].

2.4 Electrostatic simulations

In the previous section, we provided a simple estimation of the electron density using the

parallel-plate capacitance approximation, see Eq. (2.4). However, for the detection of the

Rydberg states of SSE in a microchannel device it is important to precisely determine

the holding electric field E⊥ acting on SSE, as well as the electron density distribution

in the channel. This can be done by a numerical solution of the Poisson equation using

FEM. This section presents some results of such numerical solutions obtained using the

COMSOL multiphysics software.

Below, we present such solutions for two cases. The first case is that of a flat surface

of liquid in the channel, where we ignore the surface curvature due to the surface tension.

The second case extends the numerical solution to a curved surface.

2.4.1 Flat helium surface

If the bulk helium level is sufficiently high, corresponding to a large capillary radius, one

could use the flat surface approximation. We start from the electrical potential profile

across the microchannel device without a charged layer. A cross-sectional view of the

channel geometry is presented in Fig. 2.10(a). The black lines outline the channel edge

and the liquid level. The bottom electrode (bold orange lines) extends over the x-axis.

Two 10µm-wide and 4µm-high insulating channel walls (with the dielectric constant

ϵr = 7.5) are placed symmetrically about x = 0, while the space between channel walls is
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assumed to be filled with superfluid helium. The helium level coincides with the channel

height and the helium surface is assumed to be flat. Two top electrodes (bold orange lines)

are placed on top of the channel walls. The space above the helium surface is vacuum.

Figure 2.10: (a) Cross-sectional potential profile. The black lines outline the edges of
the device. The helium level is located at z = 4µm. Bold orange lines represents the top
and bottom electrodes. (b) Potential profile along the helium surface for different bottom
biasing voltage Vb, with Vt set to 0. Assuming the lowest point of the potential profile
ϕ(x = 0) is equal to Vu, one gets c1 ≃ 0.75 and c2 ≃ 0.25 from equation Vu = c1Vb + c2Vt.

Potential profile without SSE

First, we check the potential profile without electrons. We assume that the bottom elec-

trode is at the potential Vb > 0, while the top electrodes are grounded (Vt = 0). The

potential of the top boundary of the computation box was set to be floating, corresponding

to a big distance between the device and top cell walls. The resulting potential distribu-

tion across the device and along the helium surface is presented in Fig. 2.10(a) and (b),

respectively. It is clear that the applied voltages Vb and Vt provide a trapping potential for

electrons at the surface. The trapping potential profile strongly depends on the applied

voltages and channel dimensions. According to the potential profile ϕ(x) one expects that

the electron density ns is maximum at the center of the channel (x = 0) and decreases

towards the channel edges. As discussed in Section 2.2.2, the potential of the uncharged

liquid surface can be estimated using the parallel-plate capacitor approximation by the

weighted-average of the top and bottom voltages Vu = c1Vb + c2Vt, where c1 + c2 = 1.
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In our numerical simulations, the effective capacitive coupling between the SSE and the

electrodes mainly comes from the electrons located near the channel center. Estimating

Vu as the value of ϕ(x) at x = 0 we can obtain c1 ≃ 0.75 and c2 ≃ 0.25. In chapter 3, we

will compare these values with our experimentally obtained values for c1 and c2.

Potential profile in the presence of SSE

In the presence of a charged layer on the helium surface, the potential profile across

the device changes. A layer of free electrons forms an equipotential surface with a fixed

potential Ve and an effective width Weff across the channel. The width of the charged

layer can be determined from the condition that the electric field along the charged layer

vanishes, that is ∂ϕ/∂x|Weff = 0. The dependence of the effective channel width Weff on

the external bias Vb applied to the bottom electrode is shown in Fig. 2.11(a). Fig. 2.11(b)

Figure 2.11: (a) The effective width of a charged layer versus the voltage applied to the
bottom electrode Vb, while Vt is kept at 0 V. (b) Cross-sectional potential profile with a
charged layer (white line) at the SSE potentialVe = 0.2 V. The bias voltage at top and
bottom electrodes are Vt = 0 V and Vb = 1.5 V, respectively. The width of the charged
layer Weff = 18.6µm is found from the boundary condition ∂ϕ/∂x|Weff = 0.

presents the potential profile across the channel in the presence of a charged layer with

effective width Weff = 18.6µm. The charged layer is represented by the white line in

Fig. 2.11(b). Here, the SSE potential of the charged layer Ve is set to be 0.2 V, which is

one of the typical value we have in our experiments. In this case, the electric filed above

the helium surface is significantly screened by the SSE, that is ∂ϕ/∂z|z>4µm ≈ 0.
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The numerical solution for the electron density and holding field distribution is ob-

tained from the boundary condition for the vertical electric field at the charged layer,

according to

∂ϕ(x)

∂z

∣∣∣∣
above

− ∂ϕ(x)

∂z

∣∣∣∣
below

= −4πens(x) and (2.9)

1

2

(
∂ϕ(x)

∂z

∣∣∣∣
above

+
∂ϕ(x)

∂z

∣∣∣∣
below

)
= E⊥(x) . (2.10)

The corresponding density profile and holding field distribution are shown in Fig. 2.12(a)

and (b), respectively. The dashed lines show the results of the analytical approach given

by Eq. (2.4) and (2.5).

Figure 2.12: Cross-sectional profile of electron density (a) and holding field (b) obtained
numerically assuming the flat helium surface for different values of Vb. In calculations,
we assume Ve = 0.2 V and Vt = 0 V. The dashed lines are the analytical results obtained
from Eq. (2.4) and (2.5).

2.4.2 Curved helium surface

This section investigates the effect of a curved helium surface on the results of our nu-

merical simulations. As before, we represent the charged layer on a curved surface as

an equipotential surface (at potential Ve) described by the parametrized coordinates

(x, z) = (s,−∆z(s)), where the parameter s ∈ [−Weff/2,Weff/2], z = d0−(Rc−
√
R2

c − s2),

and d0 is the level of depression introduced in Section 2.3.2. As before, the width of the
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charged layer Weff is determined by the condition of zero electric field tangential to the

charged liquid surface. The boundary condition for the electric field perpendicular to the

charged surface are now rewritten as

(∇n⃗ϕ(x, z)
∣∣
above −∇n⃗ϕ(x, z)

∣∣
below) = −4πens(x, z) and (2.11)

1

2
(∇n⃗ϕ(x, z)

∣∣
above +∇n⃗ϕ(x, z)

∣∣
below) = E⊥(x, z) , (2.12)

where n⃗ is normal to the surface. The results of the calculations using COMSOL for the

electron density (a) and holding field (b) for a curved surface with Rc = 100µm are shown

in Fig. 2.13. Comparison with the results shown in Fig. 2.12 for a flat surface shows that,

Figure 2.13: Cross-sectional profile of electron density (a) and holding field (b) for the
curved helium surface, with Rc = 100µm and different values of Vb. The other conditions
are the same for Fig. 2.12. The dashed lines are the results obtained from the analytical
approximation as was described for Fig. 2.12. (c) Effective width versus Vb under different
Rc for a flat surface (solid line with open circles) and curved surface with Rc = 100µm

(dashed line with open circles). (d,e) The holding field (d) and electron density (e) versus
the capillary radius curvature Rc for different values of Vb.
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both ns and E⊥ are somewhat larger for a curved surface. This is because the helium level

in the channel is depressed, which brings SSE closer to the bottom electrode. The smaller

distance from the bottom electrode also modifies the potential profile provided by the

electrodes, which in turn changes the effective channel width. Fig. 2.13(c) compares the

effective width of charged layer for curved and flat surface profiles under different biasing.

In addition, the calculated ns and E⊥ for different values of Rc are shown in Fig. 2.13(d)

and (e). As expected, the density and holding field increases with decreasing Rc.

A direct comparison of the numerical results for ns and E⊥ with the experiment is

complicated by the fact that the radius of curvature Rc of the liquid surface is expected

to be different for different values of Vb. Indeed, according to Eq. (2.7) the radius of

curvature depends both on the bulk helium level with respect to the device (see Fig. 2.9)

and the pressing field. Therefore, in a typical experiment where the liquid level is usually

fixed, the radius of curvature will vary for different Vb. To find the variation of Rc with

Vb from our numerical calculations by taking into account Eq. (2.7), we performed the

following procedure.

First, we assume a certain value of Rc for a particular value of Vb and calculate the

bulk helium level h(0) from Eq. (2.7). Here, we take the values of ns and E⊥ at the

center of the channel (x = 0) from our numerical calculations, see Fig. 2.13(a, b). With

a fixed value of h = h(0) and using Eq. (2.7) we can recalculate the radius of curvature

R′
c as a function of ns, E⊥, and therefore Rc, using the calculated dependence ns(Rc) and

E⊥(Rc) for each given value of Vb, see Fig. 2.13(d, e). The result is shown in Fig. 2.14.

Intersection of this graph with R′
c = Rc (black line) gives the curvature radius for a fixed

value of h = h(0).

As an example, Table 2.1 shows the calculated values of Rc, ns(x = 0) and E⊥(x = 0)

for several values of Vb used in the calculations presented in Fig. 2.13. Here, we assumed

the radius of curvature Rc = 100µm at Vb = 0.5 V, which corresponds to h(0) = 2.64 mm.

As expected, the radius of curvature significantly decreases with increasing ns and E⊥

due to the pressure exerted on the surface by the surface charge. Note that this limits
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Figure 2.14: Black line: R′
c = Rc. Colored lines: Calculated R′

c at the middle of the
channel using the data in Figure 2.13 (d,e), the crosses denotes the points R′

c = Rc, as
described in the text.

the maximum density which can be accumulated in the surface of liquid in a channel. In

particular, SSE will be lost when the corresponding depression of the surface will exceed

the channel depth. This prevents to reach the quantum degeneracy regime discussed in

Chapter 1.

Vb (V) Rc (µm) ns(x = 0) (cm−2) E⊥(x = 0) (V/cm)
0.5 100 4.5× 108 462.1
0.7 98.5 7.75× 108 740.9
1.0 94.8 13.1× 108 1178.7
1.2 91.6 16.8× 108 1464.4
1.5 85.7 22.45× 108 1930.2

Table 2.1: Calibrated surface curvature for a fixed bulk helium level h = 2.64mm.



Chapter 3

Transport measurements of SSE on

superfluid helium in the microchannel

device

In Chapter 1, we reviewed the Boltzmann transport theory based on a microscopic model

of the electron-ripplon interaction. It was shown that the electron mobility strongly

depends on several external parameters, such as the temperature T , holding electric field

E⊥, and the external driving field Vd. In this chapter, we discuss the results of our

transport measurements of SSE using a microchannel device similar to those described

in Chapter 2. In particular, we will focus on the dependence of the transport behavior

of SSE on the above mentioned parameters and make comparison with the experiments

reported earlier.

This chapter is organized as follows. In Section 3.1, we give a brief overview of some

early experimental achievements. From Section 3.2, we focus on our experiments using

microchannel devices and discuss the dependence of the measured electron current on T ,

E⊥ and Vd. In particular, in Section 3.3.2 we discuss the measured time-averaged I-V

characteristics of SSE and show that they are similar to the transport behavior reported

in some earlier experiments, where this behavior was attributed to the formation of an

68
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exotic stripe phase of WS. Finally, in Section 3.4 we provide a correct explanation of the

observed behavior based on the results of our time-resolved transport measurements.

3.1 Overview of the earlier transport experiments with

SSE on helium

The first direct mobility measurements of electrons on helium have been reported in 1971

by Sommer and Tanner using a capacitively coupled method discussed in Chapter 2 [22].

Since then, the capacitively coupled method served as a main instrument for the transport

measurement in a variety of electrons-on-helium experiments [33, 34, 86–88]. Using this

method, Sommer and Tanner measured the dependency of the electron mobility on the

ambient temperature. It was found that in the temperature range 0.8-1.5 K, the mobility

increased with decreasing temperature. Theoretical calculations of the mobility of SSE

were performed by Saitoh [46], who showed that the results obtained by Sommer and

Tanner can be explained by the scattering of SSE from the vapor atoms, see Eq. (1.80).

As the temperature decreases, the vapor density become extremely small and the primary

scatters are ripplons. In the ripplon scattering regime, the mobility has weak temperature

dependence and SSE have very high mobility approaching µ ∼ 108 cm2/V · s. More

accurate mobility measurements were performed by Mehrotra et al. [33], who showed

that the measured mobility had a strong dependence on the holding electric field E⊥,

therefore the electron densities ns, which is proportional to E⊥. In the low density region,

the measured mobility was found to be in good agreement with the theoretical calculations

using the semi-classical treatment discussed in Section 1.5. For relatively high electron

densities, the conventional semi-classical treatment was unable to completely account for

the observed mobility. Moreover, at sufficiently low temperatures the mobility dropped

due to the WSlization, as described in Section 1.6.

The earlier experiments discussed above were performed with SSE on the bulk helium

using a set of macroscopic electrodes for capacitive coupling measurements. Since the
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size of these devices is typically in a millimeter range, a precise control of SSE on a

microscopic scale is rather difficult. With the development of the lithography techniques

one can easily fabricate the electrode structures on a much smaller scale, which can

provide a more precise control of SSE down to a few thousand of electrons, or even

a single electron [89]. In addition to this, one can also achieve much higher electron

densities in the micro-fabricated devices comparing to the bulk helium setups because the

hydrodynamical instability of the liquid helium surface can be significantly suppressed by

the confining geometry, as discussed in Section 2.3.2.

The microchannel device is a very convenient setup for the transport measurements

in SSE on superfluid helium. Employment of such devices opened possibilities to ob-

serve some novel features associated with the transport and phase transitions in SSE at

high densities. Examples include the structural transition of a quasi-1D electron crys-

tal [13, 90], the damping effect of a finite-size WS [69], and the stick-slip motion of WS

[10, 91, 92]. The first microchannel device has been reported by Glasson et al. in 2001 [8],

the schematics of this device is shown in Fig. 3.1(a). In this device all reservoir channels

were arranged perpendicular to the central channel. Note that there is another frequently

used configuration, in which all channels are aligned in parallel. Such a parallel geometry

is used in the experiment described in this thesis, see Fig. 2.4. The electrical properties of

SSE measured by Glasson et al. in the microchannel setup (see Fig. 3.1(a)) are shown in

Fig. 3.1(b, c). A lumped circuit analysis discussed in Section 3.2.1 was used to retrieve the

resistance R and driving electric field E from the measured current of SSE. As shown in

Fig. 3.1(b), a sharp increase of the resistance at temperatures below the melting temper-

ature Tm signifies the Wigner crystallization. In Fig. 3.1(c), the measured field-velocity

characteristics of WS are shown. The abrupt increase of the driving filed corresponds to

the strong coupling between WS and DL due to the BC effect, as is expected from the

Dykman-Rubo theory (see Section 1.6), while the subsequently driving field oscillations

versus electron velocity v were attributed by Glasson et al. to a nonequilibrium transition

of the SSE to a novel dynamically ordered phase of current filaments aligned along the
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channels [8]. This unusual transport behavior will be the subject of our experimental

work and is discussed in more details in Section 3.3 and 3.4.

Figure 3.1: The first experiment using microchannel device. (a) A schematic
view of the device. The channels have 1.5µm in height and 10µm in width. Here, the
reservoir channels are arranged perpendicular to the central channel. (b) The electron
resistance as a function of temperature for different electron densities. (□) corresponds
to the resistance at ns = 5.1 × 108 cm−2 and T > 0.8 K. The resistance below 0.8 K for
16 (△), 31 (⋄), and 64 (▽) m/s, for ns = 3.5 × 108 cm−2 (Tm = 0.42 K). The solid line
shows the theoretical calculation. (c) The force-velocity characteristics of the device for
biasing voltages of 1.8 (data I), 1.2 (II), and 0.8 V (III). The figure is taken from Ref. [8].

3.2 Transport measurements of SSE confined in the mi-

crochannel device with the parallel channel config-

uration

Starting from this section, we present the results of our transport measurements with SSE

confined in the microchannel device described in Chapter 2.
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3.2.1 Equivalent circuit analysis of the microchannel device

First, we review the basic ST measurement and the equivalent circuit model in the parallel

microchannel configuration. Similar analysis can also be applied to the perpendicular

geometry used in the experiment by Glasson et al. [8]. As shown in Fig. 3.2(a), the

majority of SSE are confined in two sets of parallel reservoir microchannels, and are

capacitively coupled to both bottom reservoir electrodes and the top guard electrode,

with the corresponding coupling capacitance denoted by C1 and C2, respectively. The

charged surface resistance Rch mostly comes from SSE in the central channel, because the

surface area of the reservoirs is several orders of magnitude higher than that of the central

channel. Accordingly, the equivalent lumped element circuit model is shown in Fig. 3.2(b).

Figure 3.2: (a) A schematic drawing of the microchannel device. The coupling between
the SSE and LR/RR electrodes are denoted by C1, whereas C2 represents the coupling to
guard electrode. (b) The corresponding lumped circuit model.

Using the standard lumped-circuit analysis discussed in Section 2.1, the response current

I can be rewritten as

I = Ich
C1

C0

=
Rchω

2C2
1

4 +R2
chω

2C2
0

Vd + j
2ωC2

1

4C0 +R2
chω

2C3
0

Vd. (3.1)

where, ω and Vd is the frequency and amplitude of the applied driving voltage, respec-

tively. Here, we denote C0 = C1 + C2, C1/C0 = c1 and C2/C0 = c2, see Fig. 2.7(b)

and Eq. (2.3). Note that, for c2 ≪ c1 this model recovers the simplest version given by

Eq. (2.1). Accordingly, one can rewrite the Rch in terms of the in-phase Ix and quadrature
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components Iy of the measured current I, that is

Rch =
2Ix
ωC0Iy

with C0 =
2Imax

y

c21ωVd
. (3.2)

Here, Imax
y represents the maximum current obtained from Eq. (3.1), at Rch = 0, which

represents the pure capacitive coupling. On the other hand, we can express the driving

electric field acting along the central channel as E = RchI/L, where RchI is the voltage

drop across the resistor Rch and L is the length of the central channel. According to

Eq. (3.2), it is clear that

E =
RchI

L
=
c21Vd

L

IxI

IyImax
y

=
c21Vd cos θ

L
, (3.3)

where θ is the phase difference between the measured current I and driving voltage Vd.

3.2.2 Temperature dependence of the electron transport

Next, we discuss the temperature dependence of the measured transport current I. As dis-

cussed in Section 1.5, the resistivity of SSE in the central channel is inversely proportional

to the electron mobility µ according to

Rch =
L

Weff

1

ensµ(T )
, (3.4)

Thus, Ix and Iy, which depends parametrically on Rch, can be varied in experiment

by changing the temperature T . Two examples of the Iy versus Ix plots obtained by

decreasing the temperature are shown in Fig. 3.3(a, b). The data were obtained using

(a) Vd = 5mV, ω/2π = 99 kHz and Vch = 0.5 V, (b) Vd = 10mV, ω/2π = 20 kHz

and Vch = 1 V. Note that all AC parameters are given in rms unit. The black dashed

lines represent the fitting using Eq. (3.1), while the jet color dots represent the current

components measured by a lock-in amplifier. In addition, the resistivity of SSE in the

central channel and the electron mobility µ are extracted from the measured current I
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according to the relation (3.2) and (3.4), and the corresponding plots for the current traces

given in Fig. 3.3(a) and (b) are shown in Fig. 3.4.

Note that with decreasing T electrons crystallize into the solid phase, which can result

in a rather complicated current response. An example is shown in Fig. 3.3(b), where the

current trajectory abruptly reverses direction (indicated by arrow) during the cooling of

the SSE at T = 0.7 K. From the COMSOL simulation, the electron density in the central

channel is estimated to be about 11× 108 cm−2 giving the transition temperature about

0.7 K. It is clear that the abrupt change in current trajectory is due to the phase transition

of SSE to the crystalline phase. Similarly, an abrupt decrease of the electron mobility

is also observed in Fig. 3.4(d) at the transition temperature around 0.7 K. On the other

hand, in Fig. 3.3(a), the estimated electron density is 4× 108 cm−2, corresponding to the

transition temperature about T = 0.4 K. However, we cannot observe any striking change

in the current below 0.4 K.

Figure 3.3: The resistive component (Ix) and capacitive (Iy) components of
the measured current I obtained upon cooling SSE. The data are obtained at
Vd = 5mV, ω/2π = 99 kHz and Vch = 0.5 V for (a) and Vd = 10mV, ω/2π = 20 kHz

and Vch = 1 V for (b). The arrows indicate the change of current components during the
cooling of SSE and the dashed line represents the fitting using the lumped-circuit model.

The difference between these two results comes from the nonlinear dynamics of WS

transport, which is sensitive to the external driving voltage. As it will be shown in
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Figure 3.4: The resistance and the mobility extracted from the measured
current I obtained upon cooling SSE. (a, b) The resistance extracted from the
measured current I showed in Fig. 3.3(a) and (b), using the relation (3.2). (c, d) The
corresponding electron mobility obtained from the resistance (a, b), using a simplified
relation (3.4).

Fig. 3.6(a), we can separate the transport process of WS into three distinct regimes, that

is, the linear regime, the BC plateau and the sliding regime. For the low channel voltage

Vch = 0.5 V in Fig. 3.3(a), which corresponds to the pressing electric field E⊥ = 450

V/cm, the transport of WS is in the linear regime. Accordingly, there is no significant

difference in the transport of SSE in the liquid and solid phases, the mobility of such a

system is then dominated by the ripplon scattering process. One can see in Fig. 3.4(c),

the mobility extracted from the simple relation (3.4) shows similar trend with the theory,

see Fig. 1.8. Note that in practice, our calculated mobility is several times lower than

expected, this mismatch may due to the fact that the holding filed profile are not uniform

across the channel, which leads to a change of electron mobility in different position of the

channel. For this reason, the relation (3.4) used to extract the mobility is over simplified,

nevertheless, it provide us a qualitatively estimation of the mobility within the same order

of magnitude of the theory.

Contrarily, for high channel voltage Vch = 1 V in Fig. 3.3(b), which corresponds to

the pressing electric field E⊥ = 1100 V/cm, the transport of WS is strongly nonlinear,

which leads to a significant difference in the electron transport for the liquid and solid
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phases. In particular, in the BC scattering regime of the WS transport, the mobility

of WS decrease with decreasing T because the damping of resonantly emitted ripplons

comprising DL also decreases with T . As a result, WS is coupled more strongly to DL.

This qualitatively explains the reversal of the current in the WS phase in Fig. 3.3(b) and

the abrupt decrease of the mobility in Fig. 3.4(d).

3.2.3 Dependence of the transport of SSE in the central channel

on the confining potential

In order to characterize the performance of the microchannel device, we typically mea-

sure the dependence of the transport current through the central channel on the applied

voltages Vch and Vga, which determine the confinement of SSE in the central channel, thus

affect the electron density ns and effective width Weff of the electron system. Fig. 3.5

shows the magnitude (a) and phase (b) of the current I measured for different values of

Vch and Vga at T = 150 mK. The data were obtained using the amplitude of the driving

voltage Vd = 5 mV and the driving frequency ω/2π = 20 kHz. As discussed in Section

2.2.2, the surface area of the two reservoirs is thousand times larger than that of the

center channel, thus one can assume that the potential of the charged surface Ve is fixed

and our device acts essentially as a field-effect transistor, where conductance between the

two reservoirs is controlled by ns and Weff of SSE in the central channel, see Eq. (3.4),

therefore by the voltages Vch and Vga. The conductance threshold is determined by the

condition c1Vch + c2Vga = Ve. Using this equation, it is straightforward to obtain c1 ≃ 0.8,

c2 ≃ 0.2 and Ve = 0.24 V from the red line in Fig. 3.5(a). This result agrees well with the

values c1 ≃ 0.75 and c2 ≃ 0.25 obtained from the COMSOL simulations. For an opened

central channel (αVch+βVga > Ve), the central channel resistance varies with both Vch and

Vga. As an example, the magenta solid line in Fig. 3.5(a) shows the variation of the current

measured for different values of Vch at a fixed value of Vga = 0. Above the conductance

threshold, the current magnitude rapidly increases with increasing Vch as electrons start
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Figure 3.5: 2D scan of the current magnitude I (a) and phase (b) versus Vch and Vga

Data were taken at T = 150 mK in a 4µm deep and 20µm wide channel device, with
Vd = 5mV and ω/2π = 20 kHz. Magenta line: the variation of the current measured
for different values of Vch at a fixed value of Vga = 0. Red line: conductance threshold
determined by the condition c1Vch + c2Vga = Ve, one can get c1 ≃ 0.8, c2 ≃ 0.2 and
Ve = 0.24 V.

filling the central channel. For higher values of Vch ≳ 0.5 V, the current magnitude de-

creases due to formation of WS and its dynamical pinning to DL, as described in Section

1.6. However, in contrast to the conductance threshold, it is difficult to determine the

phase boundary between electron liquid and WS precisely from such measurements. As

will be shown in Section 3.4, the decoupling of WS from DL can occur at different times

during the driving cycle, depending on a number of parameters including the bias volt-

ages and driving voltage amplitude. This gives rise to the complicated current response

to variations in Vch and Vga close to the phase boundary.

3.3 Unusual transport behavior of WS in response to

the driving voltage Vd

This section provides a detailed discussion of the transport behavior of WS in the central

channel in response to the driving voltage Vd. As discussed earlier, by varying the driving

voltage amplitude Vd several nonlinear phenomena related to different dynamical regimes
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of WS can be observed, such as the BC plateau and the sliding of WS. Moreover, an

unusual transport behavior was observed in the earlier experiments by Glasson et al., see

Fig. 3.1, which was interpreted as a dynamical phase transition of WS into an exotic stripe

phase. It will be shown that a similar phenomenon is observed in our experiments. Before

presenting these experimental results, we first present the nonlinear I-V characteristics

of WS measured using our microchannel devices with parallel channel configuration.

3.3.1 I-V characteristics of WS

One of the most remarkable difference between the transport behavior of SSE in liquid

and solid phases is the saturation of current with the increasing driving voltage, which is

associated with the BC plateau in I-V curves. Fig. 3.6 shows a typical measured current

I as a function of the driving voltage Vd for electrons in liquid (red symbols) and solid

(blue symbols) phases. For SSE in liquid phase, the coupling between the electrons and

ripplons is independent of the external driving field, leading to a linear dependence on the

driving voltage Vd. Contrarily, for SSE in solid phase, the coupling between the electron

crystal and dimple lattice formed by the resonantly emitted ripplons increases with the

driving field, as described in Section 1.6. The three distinct regimes of the nonlinear WS

transport, the linear regime, the BC plateau and the sliding regime are highlighted by

three shaded areas in Fig. 3.6(a). Note that the current plateau in the BC scattering

regime is given by

IBC = ensvmaxWeff = eWeff

(
α

ρ

)1/2(
8π2

√
3

)1/4

n5/4
s , (3.5)

which is independent of the driving frequency. This is demonstrated in Fig. 3.6(b), which

shows the I-V curves taken for three different driving frequencies. On the other hand, the

threshold voltage for sliding of WS from DL is very sensitive to the driving frequency. In

Ref. [93], the threshold sliding voltages were measured using a Corbino disk device in the

presence of magnetic filed perpendicular to the helium surface and an empirical formula
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Figure 3.6: Measured I-V characteristics of SSE. (a) Red symbols: linear I-V
dependence for electron liquid. Blue symbols: Nonlinear I-V curve for electron solid.
The black dashed line indicates the BC plateau and the shaded areas represent the WS in
different dynamical regimes. (b) I-V characteristics of SSE under three different driving
frequencies. The brown dashed line indicates the BC plateau. The color arrows indicate
the threshold voltage of sliding, which depends on the driving frequency.

for the sliding voltage Vth was given as

Vth ∝ n
3/2
s E⊥

ωB0.8
, (3.6)

which shows an inverse linear dependence on the driving frequency. This roughly agrees

with our data taken for SSE in a microchannel device. However, we note that a theoretical

model of sliding which could be capable to describe the empirical dependence of Vth on

various parameters given by Eq. (3.6) is not developed yet. In Section 3.4, using the

time-resolved measurements we will show that the measured frequency dependence of Vth

may be related to the rate of change of the applied sinusoidal driving force within each

AC cycle.

3.3.2 Multi-step structure of I-V curves

In most of the experiments reported earlier, the I-V characteristics for WS showed a single

plateau. However, the I-V curves measured in our device exhibited a more complicated

multi-step structure, as shown in Fig. 3.7(a). This figure shows the I-V curves for different
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values of the channel voltage Vch, which determines the density of SSE in the central

channel. Fig. 3.7(b) shows the corresponding phase differences between the measured

current I and driving voltage Vd. It is instructive to discuss the observed variation of

phase in the framework of the lumped circuit model given by Fig. 3.2(b). As expected,

SSE in the liquid phase (Vch = 0.6 V) exhibit the linear transport with a constant phase

(θ ≈ 90◦), which indicates that SSE is moving out of phase with the driving voltage.

This corresponds to a nearly pure capacitive coupling corresponding to negligible Rch.

Contrarily, for higher biasing voltages the current is nonlinear and exhibits a series of flat

plateaus and abrupt rises in the I-V curves, which might suggest a different dynamical

state of the sliding electron system. Such a step-like structure becomes more pronounced

with increasing Vch and exhibits longer plateaus with varying Vd. The colored dashed

lines indicate the first-plateaus, which can be identified with the conventional BC plateaus

described by Eq. (3.5). From this expression, one can obtain electron densities ns = 5.4,

8.2 and 13× 108 cm−2, which are in good agreement with the densities obtained from the

COMSOL simulations. It should also be noted that the BC plateau in (a) corresponds

to the drop of phase in (b), which means the coupled system tends to move in phase as

the driving voltage increases. This is also well-understand in terms of the lumped circuit

model. Since the coupling between the WS and DL is enhanced, Rch also rises leading to

a resistive coupling with θ < 90◦. Finally, for sufficiently strong Vd, the strongly coupled

system eventually decouples, the WS then move out of phase with the driving voltage,

leading to a increase of θ.

It is instructive to represent these data in the form of the field-velocity characteristics,

similar to the ones shown in Fig. 3.1(c). Using the expression E = c21Vd cos θ/L (see

Eq. (3.3)), where the value of θ is given by Fig. 3.7(b) and L = 100µm is the length of

the central channel, the resulting field-current characteristics for different values of Vch

are shown in Fig. 3.8. Clearly, the sharp increase corresponds to the BC plateau, where

the coupled WS-DL system tends to move with a constant velocity. It is also clear that

the multi-step structure of the I-V curves shown in Fig. 3.7(a) results from the oscillating



Transport measurements of SSE on superfluid helium in the microchannel
device 81

Figure 3.7: The multi-plateau behavior under different biasing voltages.
(a) Current magnitude I versus driving voltage Vd obtained at T = 150 mK, and several
values of the channel voltage Vch = 0.6 , 0, 0.8 , 1.0 , and 1.2 V. The dashed lines indicate
the BC plateaus corresponding to electron densities ns = 5.4, 8.2 and 13 × 108 cm−2, as
described in the text. (b) The corresponding phase differences between the measured
current I and driving voltage Vd.

behavior of the corresponding field-current characteristics.

Remarkably, our result is very similar to the field-velocity dependence reported by

Glasson et al., see Fig. 3.1(b), who interpreted the periodic oscillations as an evidence

of a dynamical phase transition in a quasi-1D system with discrete rows of electrons

(current filaments) [8]. According to this interpretation, the total number of electron

rows Ny across the channel is fixed since the confining potential does not change. Instead,

the dynamical order of each row is changed by increasing the driving field. Each row

can be either dynamically pinned to the ripplons at a velocity v1 of the DL or decoupled

from the DL and move at a velocity v2, with v2 ≫ v1. It was suggested that the pinned

phase appears in the center of the channel, whereas the sliding phase is near the edge of

the channel. The measured velocity in the central channel is the sum of the velocities of

each discrete row. The average velocity v is then given by v = αv1 + (1 − α)v2, where

α ≡ Npin
y /Ny represents the fractions of rows that are pinned to DL across the channel.

The driving field E as a function of v is also affected by the formation of the discrete

sliding rows. As the average electron velocity (measured current) increases by adding a
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Figure 3.8: Corresponding plots of the field-current characteristics for each value of
the channel voltage used in Fig. 3.7. The in-plane driving electric field E acting on the
electrons is extracted from the data shown in Fig. 3.7, as described in the text.

sliding row, the E(v) curve “switches” between discrete values as suggested by the solid

lines in Fig. 3.1(b). As a result, Glasson et al. concluded that the appearance of discrete

sliding rows results in the oscillations of the driving field, which are equally spaced in

electron velocity.

It is worth to mention the difference between the geometries of our device and the

device used by Glasson et al. [8]. In our device, the microchannel arrays which comprise

the two reservoirs are aligned parallel to the central channel, whereas in the device used

by Glasson et al. the microchannels of the two reservoirs were aligned perpendicular to

the central channel. Both of the parallel and perpendicular configurations were tested

in the experiments reported by Ikegami et al. (see Fig. 3.9), who observed step-like I-V

curves only for the perpendicular configuration similar to that of Ref. [8], while no such

behavior was observed for the parallel channel geometry similar to ours [9]. Thus, the

authors concluded that, since the observed effect depended on the device geometry, it

was not associated with electron motion in the central channel. Instead, Ikegami et al.

attribute the effect to the transport behavior of electrons in the reservoirs. Nevertheless,

in our device we observe exactly the same behavior of the field-velocity characteristics as

reported in Ref. [8], which demonstrates that the effect is geometry-independent.
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Figure 3.9: (a) The SEM picture of the devices used in Ikegami’s experiments. Top:
parallel configuration. Bottom: perpendicular configuration. (b) The obtained drift ve-
locity v as a function of driving voltage Vin using the bottom device in (a). The dashed
line represents the calculated drift velocity limited by the BC effect. Inset: The driving
field E|| versus v. The figure is reproduced from Ref. [9].

Contrarily to the explanation given by Glasson et al., we provide another explanation

for the observed field-velocity characteristics and confirm it in experiment. In particu-

lar, we show that the oscillating field-current characteristics originate from a repeated

dynamical decoupling (slipping) and recoupling (sticking) of the whole WS from/to DL.

Our experiment and explanation are presented in the next section.

3.4 Time-resolved transport measurements

In the previous sections, we demonstrated the transport measurements based on the time-

averaged lock-in response. Since the sinusoidal driving electric field acting on the surface

electrons alternates with the frequency of tens of kHz, while the intrinsic frequency of the

electron-dimple system is typically on the order of tens to hundreds of MHz (the frequency

of resonant ripplons), the exact details of the system dynamics are hidden in the current

response measured with a lock-in amplifier. Therefore, it is desirable to investigate the

time-resolved response of the system during one cycle. In this section, we describe the

time-resolved transport measurements to track the real-time dynamics of electrons at

each point of the nonlinear I-V curve obtained from the time-averaged lock-in response.
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Based on these results, we demonstrate that the unusual multiple plateaus observed in I

-V curves is a consequence of the stick-slip motion of a uniform WS.

The first time-resolved transport measurements of surface electrons in a microchan-

nel device were reported by Rees et al., where electrons were driven by a linear voltage

ramp [10]. Motivated by this work, we performed similar time-resolved transport measure-

ments for electrons in the same microchannel device as discussed in the previous section

under an AC sinusoidal driving. A time-resolved current response over several cycles of

the AC driving was measured using a room-temperature fast current preamplifier (Femto

DHPACA-100) connected to the RR electrode by a semi-rigid Nb/stainless-steel coaxial

cable with the total capacitance of approximately 300 pF. This parasitic capacitance to-

gether with the input impedance of the preamplifier formed a low-pass filter which limited

the bandwidth of the measurement circuit to about 1 MHz. The time-resolved current

traces were recorded by a digital storage oscilloscope (LeCroy 625Zi) and averaged over

several thousand cycles to improve the signal-to-noise ratio. A small current component

due to the crosstalk between the bottom electrodes was separately measured and sub-

tracted from the averaged traces. Fig. 3.10 schematically show the difference between the

time-averaged and time-resolved setups.

Figure 3.10: The measurement setup for the conventional time-averaged (lock-in)
method (a) and the time-resolved method (b).



Transport measurements of SSE on superfluid helium in the microchannel
device 85

3.4.1 Time-resolved current response in different regimes of WS

transport

We first compare the time-resolved response for different regimes on the I-V curve, as

shown in Fig. 3.7(a). For small driving voltage Vd = 5 mV, WS is in the linear transport

regime. Correspondingly, the output current is sinusoidal (blue line in Fig. 3.11(b)). For

higher driving voltages Vd = 10 mV the transport of WS is in the BC scattering regime

corresponding to a plateau in the time-averaged I-V curve, see Fig. 3.11(a). Correspond-

ingly, the current saturates at a maximum value given by IBC during each driving cycle,

which results in a nearly rectangular shape of the time-resolved current response (orange

line in Fig. 3.11(b)). Finally, at sufficiently high driving voltage Vd = 15 and 20 mV,

WS decouples from DL, which results in a significant increase of the current magnitude

shown in Fig. 3.11(a). In the corresponding time-resolved current trace (yellow and green

line in Fig. 3.11(b)), we observe an abrupt rise of current which occurs around the peak

value of the AC driving electric field, representing a sudden increase of the drift velocity

of WS. Soon after this rise the current decreases back to the plateau value IBC, thus

producing a narrow spike of current in the time-resolved response. Clearly, this spike

cannot be resolved by the conventional time-averaged measurements. Similar behavior

was observed in Ref. [10] for electrons driven by a linear voltage ramp. This has a sim-

ple phenomenological explanation. As the WS slides from the dimples and the current

through the central channel increases, the electrons are transferred rapidly between the

two reservoirs, thus decreasing the potential difference between the two opposite ends of

the microchannel. As a result, the driving electric field acting on the electrons in the

central channel rapidly decreases. It is reasonable to suggest that electrons in the sliding

state retain their long-range crystalline order due to the very strong Coulomb interac-

tion, although some heating effects might occur immediately after the sliding onset [91].

Therefore, when the driving field falls below the sliding threshold, WS re-enters the BC

scattering regime. Accordingly, the electron system is pinned again by the commensurate
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DL and the current magnitude returns to the plateau value IBC. The WS undergoes a

stick-slip motion due to dynamical decoupling from, and recoupling to, the commensurate

DL [10].

Figure 3.11: (a) Time-averaged I-V curve. (b) Typical time-resolved current response
to a sinusoidal driving. The color arrows on the I-V curve for Vch = 1.2 V indicates four
different values of Vd for which real-time traces are presented in (b).

3.4.2 Repetitive stick-slip process

Upon establishing the correspondence between the time-averaged and time-resolved mea-

surement results, we now examine the time-resolved current traces corresponding to the

multi-step I-V curves shown in Fig. 3.12(a). Fig. 3.12(b) show examples of such current

traces obtained at T = 150 mK and the channel voltage Vch = 0.8 V for four different

driving voltage amplitudes Vd = 5, 10, 15 and 20 mV. Note that under this channel

voltage, the electron density, holding electric field and effective channel width are all re-

duced compared to those at Vch = 1.2 V. Thus, the BC plateau, as well as the WS-DL

decoupling threshold force, are significantly reduced. The stick-slip process can happen

earlier during the first quarter-cycle and there is sufficient time to repeat the same pro-

cess until Vd(t) enters the second quarter-cycle. For Vd = 5 mV, the system already

enters the BC scattering regime, correspondingly the current is saturated at a plateau

value IBC and the time-resolved current response has a rectangular shape as described

above. For Vd = 10 mV, which corresponds to the third step in the time-averaged curve
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(see Fig. 3.12(b)), the time-resolved current trace reveals two stick-slip peaks of current

due to a repeated decoupling-recoupling process. For still larger values of Vd = 15 and

20 mV, the time-averaged I-V curve is almost linear. Remarkably, the corresponding

time-resolved current traces clearly show repetitive stick-slip motion of WS, which un-

dergoes three and four cycles of the decoupling-recoupling process during one AC driving

cycle. We can intuitively assume that the peak amplitude is proportional to the rate of

change of the driving field (dVd/dt). It should also be noted that in previous section (see

Fig. 3.6(b)), we presented a frequency dependence of the voltage threshold, that is the

sliding threshold decreases as the driving frequency increases. This phenomenon may also

relate to the rate of change of the driving field. Since higher frequency corresponds to

the larger value of dVd/dt, the driving voltage can attain the critical value within a very

short time and lead to the decoupling of the WS and DL.

Figure 3.12: (a) Time-averaged I-V curve. (b) Typical time-resolved current response
to a sinusoidal driving. The color arrows on the I-V curve for Vch = 0.8 V indicates four
different values of Vd for which real-time traces are presented in (b).

3.4.3 Discussion

Our time-resolved current measurements provide compelling evidence that the unusual

transport behavior of the WS reported by Glasson et al. and interpreted as evidence

for a nonequilibrium phase transition in a driven electron system in fact arises from
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the dynamical interaction of the electron lattice with the surface dimples on the liquid

substrate. For higher values of Vch, which correspond to both higher electron densities

and larger pressing electric fields, we expect stronger coupling between the electrons and

dimples. In turn, we expect that the sliding of WS from DL should occur at higher

driving field thresholds, see Eq. (3.6). The density can be estimated from the value of

the plateau current IBC using the expression given by Eq. (3.5). As an example, three

values of IBC corresponding to plateaus on the I-V curves for Vch = 0.8, 1.0 and 1.2 V

are indicated in Fig. 3.7(a) by dashed lines, from which we estimate the corresponding

density ns = 5.4, 8.2 and 13 × 108 cm−2, respectively. Note that these values agree

reasonably well with estimated values of ns using Eq. (2.4) and COMSOL simulation.

For the largest value of Vch = 1.2 V used in our experiment, we observe a plateau and

a rise in current similar to the conventional results [12, 93, 94]. Nevertheless, there is

an indication of a second plateau at sufficiently large driving voltages Vd ≳ 20 mV (see

Fig. 3.11(a)), and it is therefore possible that the second sliding event would occur at still

higher Vd. The repetitive pinning-sliding becomes clearly evident at lower values of Vch

where the coupling between the electrons and dimples is weaker. We note that multiple

decoupling was also observed in Ref. [10] by increasing temperature T towards the value

Tm = e2
√
πns/(kBΓ) (here Γ ≈ 137 is the plasma parameter discussed in Section 1.3.1)

corresponding to the melting temperature of the WS. This agrees with our result because

the coupling strength and decoupling threshold will also decrease with increasing T [93].

Interestingly, the melting temperature of 150 mK would correspond to an electron density

ns = 0.5×108 cm−2, which is significantly lower than the estimated density for Vch ≳ 0.6 V.

This suggests that the electron system is already in the solid phase at Vch = 0.6 V, despite

its linear response across the range of driving voltages used in the experiment. This could

be due to a continuous and rapidly repeated coupling-decoupling process, in the limit

of which the WS is essentially decoupled from the heavy DL and thus exhibits a high

mobility comparable to that of electrons in the liquid phase.

We note that the step-like structure of the I-V curves has not been clearly observed
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in a similar experiments using microchannel device with channel depth of 1.6µm [69].

Contrarily, all our microchannel devices with depth of 4µm exhibited this effect very

clearly. This is in agreement with our earlier discussion of the effect of the pressing electric

field acting on the electrons. Indeed, in the channel of smaller depth electrons experience

a significantly stronger pressing electric field, which enhances the coupling of electrons to

the dimples and suppresses their repetitive stick-slip motion. This argument might also

explain why this effect was not observed by Ikegami et al. who used a microchannel device

with the channel depth of 1.7µm, see Fig. 3.9. Also note that, besides the pressing electric

field, the appearance of multiple stick-slip motion is susceptible to other experimental

parameters, such as proximity to the Wigner solid transition, as discussed earlier.

Finally, it is instructive to discuss the timescale of the observed stick-slip transitions,

which is relevant to the timescale of the field redistribution, as well as the characteristic

frequency of the DL formation. As described above, the redistribution of electrons be-

tween the two reservoirs can affect the driving electric field acting on the electrons in the

central channel. The typical rate of this process is given by (RchC)
−1, where C = 0.6 pF

is the capacitance between electrons and reservoir electrodes. For a typical resistance

Rch = 700 kΩ of the WS in the sliding state, we estimate the corresponding frequency to

be 2.4 MHz. Another relevant process is the characteristic inverse time of the DL forma-

tion, which is close to the frequency of the resonant ripplons ∼
√
σ/ρn

3/4
s . For the typical

electron densities achieved in our experiment, this frequency is in a range 10 to 100 MHz.

Both of these time scales is significantly smaller than the bandwidth of our experimental

setup (about 1 MHz), which is mainly due to the bandwidth of our current preamplifier

and the low-pass filter formed by its input impedance and the connecting cable, as dis-

cussed earlier. Thus we conclude that the observed stick-slip peaks in our time-resolved

current traces are broadened by our experimental setup. As a future improvement of our

method, we can consider employment of a cryogenic fast current preamplifier which would

allow the length of the connecting cable to be decreased significantly, thus improving the

response time of our detection circuit.
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3.5 Summary

In this chapter, we described our experimental studies of the transport of SSE confined

in the microchannel device. In particular, we found an unusual plateau effect when the

system is driven out equilibrium. This unusual transport effect was investigated using

different methods. First, we confirmed that the effect is intrinsic and independent of the

device geometry. Second, by employing time-resolved measurements we showed that the

observed effect is due to the dynamical interaction of the electron crystal with the surface

excitations of the liquid substrate.



Chapter 4

Rydberg resonance detection for SSE

confined in microchannel devices

In this chapter, we present a new method of the Rydberg resonance detection in SSE

confined in microchannel devices. The conventional method to detect the Rydberg res-

onance in a bulk SSE sample containing a large number of electrons (107 − 109) is to

observe the corresponding change in the transmitted power of the resonant microwave

(MW) radiation due to its absorption by the excited electrons [35]. For the typical den-

sity of electrons ns ∼ 108 cm−2, a single microchannel employed in our experiment would

contain on the order of 103 electrons, which makes the microwave absorption detection

impossible. A new method of the Rydberg resonance detection was developed recently,

which is based on the measurement of the image-current induced by the excited SSE in a

conducting electrode capacitively coupled to the electrons [4]. While it was argued that

this method can be potentially scaled down to the detection of the Rydberg excitation

of a single electron, the currently achieved sensitivity of this method is not sufficient to

detect the resonance of SSE in a single microchannel. As an alternative, we used the

conductive detection of the Rydberg resonance by observing a change in the current of

SSE driven along the microchannel, which is induced by the heating of electrons due to

the resonant MW absorption [95]. In particular, in order to increase sensitivity of the

91
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conductive detection we employed SSE in a solid state to exploit a large change in the

conductivity of SSE upon their transition from the solid to the liquid phase.

This chapter describes the first measurements of the Rydberg resonance in SSE con-

fined in the microchannel device. In particular, we use the conductive detection for SSE

in a single channel and the image-charge detection method for SSE confined in an array

of microchannels. This chapter starts with a short review of the traditional absorption

measurements of SSE on a bulk liquid helium.

4.1 Review of the MW absorption measurement

The first observation of the Rydberg transition by measuring the microwave absorption

was done by Grimes et al. in 1974 [35]. Since then, the spectroscopic properties have been

extensively studied by several groups [70, 95–97]. A schematic drawing of the typical

absorption measurement setup used in OIST is shown in Fig. 4.1(a). The MW radiation

is generated by a room temperature MW source with a tunable frequency in the range

ωmw/2π = 110-170 GHz. The MW power is controlled by an attenuator from a few µW

to a few mW and is introduced from the cryostat’s top to the sample cell via a MW

guiding system. The main part of the guiding system is an overmoded (WR-28) stainless-

steel waveguide, while its short portion entering the cell is a single-mode WR-6 copper

waveguide sealed with a piece of 50-µm thick Kapton film. The benefit of an overmoded

waveguide is that it has lower power losses due to a larger cross-section. The power loss in

passing the waveguide was estimated to be -10 dB. The MW radiation passes through the

cell and is detected by an indium antimonide (InSb) bolometer mounted on the opposite

side of the cell. The MW power transmitted to the bolometer is obtained by measuring

the voltage drop across the bolometer, which is externally biased by a constant current

Idc, as shown in the inset of Fig. 4.1(a). Typically, the bolometer has the sensitivity of

10 kV/W and the time constant for the detection circuit is about 1 µs.

Inside the sample cell, a parallel-plate capacitor is used to providing a uniform pressing
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fields acting on SSE, see Fig. 4.1(b). The pressing field E⊥ is controlled by changing

Figure 4.1: (a) Block diagram of the experimental setup. Inset: Circuit diagram of the
InSb detector. The figure is reproduced from [97]. (b) The geometry of the parallel-plate
capacitor. The top and bottom electrodes are separated by a distance D. And d is the
liquid level.

the voltage applied to the capacitor plates, according to the parallel-capacitor model,

see Eq. (2.2). In particular, when the parallel capacitor is half-filled with helium (d =

D/2), the pressing field becomes independent of the electron density ns and is completely

determined by the applied voltages, that is E⊥ = (Vb −Vt)/D. To observe the transitions

of SSE between the Rydberg states, the microwave frequency is usually fixed, while the

transition frequency of the Rydberg states is Stark-tuned in resonance by sweeping Vb.

To measure the absorption signal Vsig, the applied voltage Vb is amplitude-modulated

with a frequency ωmod, that is V ′
b = Vb + A sin(ωmodt), where A is a small modulation

amplitude. The output voltage is measured by a lock-in amplifier at the modulation

frequency during the sweep of Vb, and the measured voltage is proportional to the first

derivative of the absorption signal Vsig with respect to Vb at sufficiently small modulation

amplitude A, see Fig. 4.2(a). Fig. 4.2(b) shows a representative trace of the derivative of
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the absorption signal measured for about 107 electrons. It was found that the sensitivity of

the transitional absorption measurement is not sufficient to detect the Rydberg transition

in a system which contains less than 106 electrons [97].

Figure 4.2: (a) Schematic diagram of the MW absorption measurements using the
amplitude modulation technique. (b) An experimental trace of the derivative of the
absorption signal. The figure is taking from Ref. [97].

4.2 Conductive detection of the Rydberg resonance in

SSE confined in a single microchannel

In this section, we report the first observation of the microwave-induced Rydberg reso-

nance in the SSE confined in a single 20-µm wide and 100-µm long channel. The resonance

signal from a few thousand of surface electrons is detected by observing WS melting due

to the microwave absorption. Compared with the conventional MW absorption measure-

ment described in the previous section, this method can provide higher sensitivity and

does not require expensive devices such as the InSb bolometer.

4.2.1 Method and setup

The experimental setup consists of two main parts, the MW setup and the conductivity

measurement setup. The MW setup is very similar to the conventional setup used in
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the MW absorption measurements, as described in the previous section, although the

operating frequency is in the range ωmw/2π = 400-500 GHz. The higher MW frequency

is required because SSE in a microchannel experience significantly larger pressing electric

field E⊥ than on the bulk, thus shifting the transition frequency of SSE to much higher

values. In our experiment, we kept the frequency of MW radiation fixed and tuned

the Rydberg transition frequency ω21 of SSE in the central channel via the Stark effect

by adjusting the pressing electric field E⊥ acting on SSE. Practically, this was done by

varying the voltage Vch applied to the bottom electrode of the central channel. Note that,

in addition to Vch, a strong contribution to the pressing electric field E⊥ acting on SSE

comes from the image charges induced by SSE in the conducting electrode at the bottom

of the channel, as will be described in Section 4.3. The conductivity measurements are

done by the ST method similar to that described in Chapter 3.

The nonlinear transport features of WS described in Section 3.3 suggest the possibil-

ity to detect the microwave-induced Rydberg resonance of SSE confined in the central

channel. It is well known that the resonant MW excitation of the Rydberg transition

can result in a strong overheating of the electron system due to the microwave absorption

and elastic decay of the excited electrons [95]. Suppose that at a given driving voltage Vd

the current of WS in the central channel is set at the BC plateau, see Fig. 4.3(a). The

resonant excitation of SSE will cause the heating of SSE and, at sufficiently large MW

power, melting of WS. As a result, the current of SSE through the central channel must

experience an abrupt increase by ∆I to its value corresponding to the linear transport of

SSE in the liquid phase, as indicated in Fig. 4.3(a). Alternatively, even if the applied MW

power is not sufficient to melt WS there must be an appreciable change in the transport

of WS induced by the excitation, as was previously demonstrated [98]. Such a method of

the Rydberg resonance detection by observing an abrupt change in the WS transport is

used in the experiment described here.

Due to the upper-frequency limit of our MW source, the typical values of Vch required

to tune SSE into resonance (ω21 = ωmw) were significantly lower than 1.2 V, the value
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Figure 4.3: (a,b) I-V dependence of SSE in the central channel measured without MW
radiation at T = 150 mK for different values of the channel voltage Vch and fixed gate
voltage Vga = 0.

used to obtain the nonlinear transport curve shown in Fig. 4.3(a) (the solid black line).

The useful range of Vch for the given bandwidth of our source was found to be in the

range 0.7-0.9 V. Fig. 4.3(b) shows the I-V curves of SSE in our device taken without

MW excitation for a fixed gate voltage Vga = 0 and several different values of Vch in

the above range. At Vch = 0.6 V the electron system shows the linear I-V dependence

corresponding to SSE in the liquid phase. With increasing Vch, therefore with increasing

density ns, the I-V curves start exhibiting nonlinear features, in particular a series of

plateaus followed by the abrupt rises in current. As described in the previous chapter,

this behavior is identified with the repetitive coupling and decoupling of WS to and from

the liquid surface deformations [92], which is sort of an intermediate regime between the

linear transport and strong pinning of WS in the resonant BC-emission regime. The

observed nonlinear transport of WS still makes it suitable for the proposed detection

of the Rydberg resonance by the electron heating, although with a reduced sensitivity

compared with the case discussed in relation to Fig. 4.3(b). The experimental procedure

was to apply the MW radiation at a fixed frequency ωmw and measure the abrupt change

of SSE in the central channel while sweeping the channel voltage Vch. The results of such

measurements are discussed in the next section.
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4.2.2 Results

Figures 4.4(a) and 4.4(b) show variation of the changes in the current magnitude ∆I and

phase ∆θ, respectively, with the channel voltage Vch at a fixed gate voltage Vga = 0 for

SSE exposed to radiation at different values of MW frequency. In order to obtain the

changes ∆I and ∆θ upon irradiation, the corresponding data obtained without radiation

were subtracted. The current was measured for a range of driving voltages Vd determined

by the position of BC plateau. Due to slight overheating of the experimental cell by

the MW radiation, the temperature T varied in a range from 170 to 190 mK for different

traces. An abrupt change in current I with respect to its value without radiation indicates

overheating of the electron system by the microwave absorption due to the resonant tran-

sitions between the Rydberg states. As shown in the following section, this corresponds

to the transition of SSE in the central channel from the ground state to the first excited

Rydberg state. As expected, the position of the resonance shifts towards the higher values

of Vch with increasing MW frequency due to the Stark effect.

Figure 4.4: Variation of the change in current magnitude ∆I (a) and phase ∆θ (b) with
the channel voltage for SSE under irradiation for several values of the MW frequency. The
values of ∆I were obtained from the measured current by subtracting the values of current
measured without the radiation. An abrupt change in current indicates the resonant
MW-induced transitions of SSE from the ground state to the first excited Rydberg state.
Arrows indicate resonant values of Vch = 0.7, 0.78, 0.88 and 0.9 V corresponding to the
peak values of ∆I for each MW frequency.
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The measured resonance signal exhibits large broadening and a rather complicated line

shape. The observed signal broadening, on the order of 10 GHz, is many orders of mag-

nitude larger than the intrinsic linewidth of the Rydberg transition [70], see Section 1.7.

As shown in the following section, this large broadening arises due to the inhomogeneous

broadening of the Rydberg transition of SSE in the central channel because of the vari-

ation of the pressing electric field E⊥ across the channel. It is hard to account for the

rather irregular asymmetric shape of the signal. In addition, it should be noted that the

detection method realized here does not measure the transition rate directly. Instead, it

probes the electron conductivity in response to the transition-induced heating of SSE. In

order to fully account for the shape of such conductivity response one has to consider

dependence of the electron temperature on Vch, the corresponding change in the conduc-

tivity and measured current, etc. Also note that the electron density ns in the central

channel varies with Vch.

4.2.3 Discussion

The pressing electric field E⊥ acting on SSE in the central channel is due to the image-

charges induced in the channel and gate electrodes by SSE and voltages applied to these

electrodes. An approximate relationship between the values of E⊥ and Vch was established

in Section 2.2.2 by using a simplified parallel-plate capacitor model, see Eq. (2.5). Note

that, compared to the conventional microchannel devices, our channel depth d is signifi-

cantly larger. According to Eq. (2.5) this allows us to use a larger voltage Vch to reach the

required pressing field E⊥ to tune SSE in resonance with the applied MW radiation. This

provides higher resolution for detecting the Rydberg transition by scanning the channel

voltage.

Fig. 4.5 shows the values of the pressing field E⊥ corresponding to the peak position

of the resonance signals shown in Fig. 4.4 for each microwave frequency ωmw (blue open

circles). These values are obtained from the corresponding values of Vch indicated by

arrows in Fig. 4.4 using Eq. (2.5) in Chapter 2 with d = 4 µm, Ve = 0.2 V and c1 = 0.8
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Figure 4.5: Pressing electric field E⊥ corresponding to the resonant MW frequency ω

for the transition from the ground state to the first excited Rydberg state calculated
using the infinite-barrier approximation (solid line). The blue open circles and red crosses
represent the pressing field determined from the experimental data shown in Fig. 4.4 using
the parallel-plate capacitor model with d = 4 and 3.3 µm, respectively, as described in
the text.

determined from the experimental data. For the sake of comparison, the solid line shows

the relationship between the frequency ω21 and E⊥ calculated by solving the 1D stationary

Schrodinger equation for the electron motion perpendicular to the liquid surface assuming

an infinitely large potential barrier at the liquid-vacuum interface, see Fig. 1.2(b) (blue

line). The experimental data exhibit a similar slope of the frequency-field dependence,

which indicates that the observed resonance corresponds to the MW-excited transitions

from the ground state to the first excited Rydberg state. At the same time, the values

of E⊥ estimated from the experimental data are noticeably lower than the theoretical

ones. The most probable cause for such discrepancy is the failure of the parallel-plate

capacitance approximation, where we assume a flat surface of liquid helium with the depth

d equal to the height of the channel walls. As mentioned in Section 2.3.1, the actual surface

of liquid in a microchannel is curved due to the capillary effect and pressure exerted by

SSE on the surface of liquid helium [28]. A better approximation is to consider a surface

having the round shape with the radius of curvature given by Eq. (2.7). We note that the
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exact value of h can not be measured in our experiment, therefore we did not attempt

to take into account the deviation of the surface shape from the flat one. Nevertheless,

the depression of the surface of liquid due to the curvature can be roughly taken into

account by assuming somewhat lower depth of the liquid d compared with the height of

the channel walls. For example, the red crosses in Fig. 4.5 show the values of E⊥ estimated

from the experimental data using Eq. (2.5) assuming d = 3.3 µm. Thus, we conclude that

the approximate parallel-plate model already accounts reasonably well for the obtained

experimental data.

The above model does not provide an estimation for the distribution of E⊥ across the

electron system, which is important to know in order to account for the broadening of

the Rydberg resonance line. In order to get more insight into this problem, we performed

FEM calculations of the electric potential distribution across the channel for an infinitely

long channel using the COMSOL software, as described in Section 2.4. Similar to the

parallel-plate capacitor model, in our numerical simulations we assume a flat surface of

liquid helium in the channel and model the SSE as an equipotential plane at potential

Ve. Fig. 4.6(a) shows the equilibrium density profiles across the channel calculated for

several values of Vch (these values are indicated by the arrows in Fig. 4.4). This result

shows that for the typical values of Vch used in our experiment the width of the electron

system across the channel is close to the width of the channel. Fig. 4.6(b) shows the

corresponding distribution of the pressing electric field E⊥ across the electron system.

In this simulation, we assumed the depth of the liquid in the channel d = 4 µm, which

coincides with the height of the channels walls. Note that the average values of E⊥ across

SSE for each channel voltage are fairly close to those obtained from the parallel-plate

capacitor model, see Fig. 4.5 (open circles).

As seen in Fig. 4.6(b), the simulations reveal the variation of E⊥ on the order of

30 V/cm across the electron system. This variation leads to the inhomogeneous broaden-

ing of the Rydberg transition line for the many-electron system. For a given fixed value

of the MW frequency, a portion of SSE in the channel experiencing the pressing electric
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Figure 4.6: (a) The electron density ns in the central channel versus the distance from
the center of the channel calculated for different values of the channel voltage Vch and fixed
gate voltage Vga = 0. In the simulation, the SSE are represented by an equipotential plane
at potential Ve = 0.2 V, as described in the text. (b) The corresponding cross-sectional
profile of the pressing electric field E⊥ acting on the electrons.

field with a certain resonant value E(r)
⊥ will be tuned in resonance with the radiation. The

location of this portion and the corresponding number of resonant SSE will depend on

the channel voltage Vch. As Vch is increased from a value far below the resonance, it is

reasonable to expect that SSE away from the center of the channel, which experience the

maximum E
(max)
⊥ at a given channel voltage, will be resonantly excited by the radiation,

when E
(max)
⊥ = E

(r)
⊥ . As Vch increases further, these electrons will become detuned from

the resonance, while the electrons closer to the middle of the channel will become reso-

nantly tuned. As mentioned earlier, it is difficult to account for the exact shape of the

resonant signal as SSE are swept through the resonance by the varying field E⊥. Nev-

ertheless, it is reasonable to expect that the broadening of the observed resonance lines

will be determined by the variation of E⊥ across the system. Note that the variation of

E⊥ observed in the simulations corresponds to the variation of the transition frequency

ω21 on the order 10 GHz, as determined from the slope of the theoretical line in Fig. 4.5.

This is in a reasonable agreement with the broadening of the measured resonance signals

shown in Fig. 4.4.

It is important to mention that the final goal toward building the spin qubits using
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SSE is to realize the Rydberg transition detection for a single electron. In this sense,

the conductivity method is not suitable, because this method is based on the transport

properties of a many-electron system. Nevertheless, this work is valuable because it

presents the first experimental observation of the Rydberg transition of a small number of

electrons confined in a single channel, thus demonstrating feasibility of such experiments

in microchannel devices.

4.3 Image-charge detection of the Rydberg resonance

in SSE confined in a microchannel array

Recently, a new spectroscopic method for the Rydberg states detection, the image-charge

method, has been developed and used to detect the Rydberg transition in SSE on bulk liq-

uid helium [4]. This method is based on the vertical displacement of the excited electrons,

thus it directly probes the population of the excited Rydberg states. In this section, we

describe an experiment where we adopted the image-charged detection method for SSE

confined in our microchannel device.

First, it is instructive to describe the image charge induced in the conducting plates

due to the presence of an electron on the helium surface using the parallel-plate capacitor

model, which is shown in Fig. 4.7. An electron (green dot) placed in the parallel-plate

capacitor, with a distance d above the bottom plate, will induce image charge (blue dots)

in both top and bottom plates. The amount of charge induced on the bottom and top

plates depends on the position of the electron and are given by qb = eh/D and qt = ed/D,

respectively. When the electron is shifted vertically by a distance ∆z, the corresponding

induced charges become q′b = e(h−∆z)/D and q′t = e(d+∆z)/D. As a result, the change

in the image charge in the top and bottom plates is given by ∆q = ∓e∆z/D, which

conserves the total induced image charge at two plates. This amounts to |∆q| ∼ 10−5e

for the parallel plate disk setup with D = 2 mm used in the experiment by Kawakami et

al. [4]. For a many-electron system with density ns, we can apply the same analysis and
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Figure 4.7: Schematic drawing of the image charge induced in a parallel-plate capacitor
by an electron inside the capacitor, as described in the text.

the change of the image charge is therefore given by |∆q| = nseS∆z/D. For about 108

electrons used in the experiment [4], this produced a current on the order 10 pA, which

was directly measured using a lock-in amplifier.

The ultimate goal is the image-charge detection of the Rydberg transition of a single

electron. The simplest improvement towards increasing the sensitivity of the proposed

method is immediately seen, that is increasing the change in the image charge |∆q|. As

follows from the above discussion, this can be done by decreasing the distance D between

the capacitor plates. Unfortunately, for a parallel-plate capacitor partially filled with

liquid helium this distance can not be made less than ∼ 1 mm, the capillary length

of liquid helium, otherwise the capacitance will be completely filled with the liquid by

the capillary action. For this reason, other electrode structures have to be sought, for

example, a coplanar capacitor covered with a superfluid helium film, as was suggested

in [4]. An alternative approach is to use the microchannel devices, as SSE floating on

the surface of superfluid helium inside a channel are capacitively coupled to the metal

electrodes comprising the top and bottom of the channel, therefore they are expected to

produce a change in the image charge induced at one of the electrodes equal to |∆q| =

κe∆z/d ∼ 10−2e, where κ is a numerical factor order of unity, which is determined by
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the ratio of the weighted contributions to the total capacitance between SSE and channel

electrodes. For the microchannel device used in our experiments, d = 4µm, thus, the

sensitivity of the image-charge detection method is expected to enhance thousandfold for

SSE in a microchannel device comparing with the parallel plate disk setup.

4.3.1 Measurement setup

The microchannel device used for the image-charge detection method is similar to that for

the conductivity measurements. However, since the amplitude of the image-charge current

Figure 4.8: Schematic drawing of the multi-channel device.

in our microchannel device is expected to be orders of magnitude smaller than on the bulk

liquid helium, due to a much smaller number of electrons, we employed a multi-channel

device to increase the total area occupied by SSE. In this setup, we increased the channel

length to 600 µm, and used 50 channels arranged in parallel, such that the total surface

area is enlarged by 300 times. A schematic view of the multichannel device used for the

image-charge detection is shown in Fig. 4.8. In addition, the room temperature current

amplifier was replaced by a cryogenic voltage amplifier to enhance the signal-to-noise ratio

(SNR). The electrical setup and the schematic cross-sectional view of the microchannel

are shown in Fig. 4.9.

In order to estimate the image-charge signal induced by the resonant excitation of the

Rydberg transition of SSE, we apply the same analysis as the one used for the parallel-

plate capacitor. The change of the image-charge due to the Rydberg excitation (n = 1 →
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Figure 4.9: schematic view of the microchannel setup for the image charge detection
and the equivalent lumped circuit model.

2) is then given by

∆q ≃ κρ22Sns
∆z

d
= 4πensρ22∆zC0, (4.1)

where ρ22 represents the fraction of SSE excited to the first excited states, ∆z ≃ 35 nm

is the difference in the average distance of SSE in the ground state and the first excited

Rydberg state at E⊥ = 0, and C0 ≈ κS/4πed is the geometrical capacitance of the

channel electrode, with κ = 0.8 estimated from the channel geometry. For typical values

of S = 20× 300× 50 µm2 and d = 4 µm, we have C0 ≃ 1 pF, which is comparable to that

of a parallel-plate device used in the experiment by Kawakami et al. [4].

The change of the image charge induces a current Iima in the channel electrode, which

is given by Iima = dq/dt. If the fractional occupancy ρ22 is time-dependent and varies

periodically, for example by using the pulse modulation of the MW radiation at frequency

ωmod, we have ρ22(t) = ρ
(0)
22 sin(ωmodt), thus the magnitude of the time-dependent image
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current can be written as

Iima =
dq

dt
= 4πensρ

(0)
22 ∆zωmodC0. (4.2)

For typical values of ns = 108 cm−2, the modulation frequency ωmod/2π = 100 kHz and

ρ
(0)
22 = 1%, we have Iima ≃ 10 pA. Since we are measuring the voltage drop, it is reasonable

to convert our current source to its Thevenin equivalent circuit, with the image charge

voltage Vima = Iima/ωmodC0 ≃ 16 µV. The measurement circuit is given in the inset of

Fig. 4.9. Here, Cp ≃ 20 pF is the parasitic capacitance given by a short stainless-steel

coaxial cable which connects the cell to the amplifier, and C1 = 10 nF is the capacitance of

the bias tee. C0 and Cp form a voltage divider, therefore we have Vsig = Vima
C0

C0+Cp
≃ 1 µV.

The image-charge voltage Vsig is then amplified by a cryogenic two-stage amplifier and is

detected by a standard lock-in amplifier at the reference frequency ωref = ωmod.

In this experiment, we use a two-stage amplification scheme [99]. It consists of a

homemade heterojunction bipolar transistor (HBT) amplifier and a commercially available

cryogenic amplifier (Cosmic Microwave Technologies CITLF1). The HBT amplifier is

placed in the immediate proximity to the sample cell to minimize the stray capacitance

Cp. The amplifier was thermally anchored to the still plate of the dilution fridge by a

copper link. The power dissipated by HBT was estimated to be around 100 µW for the

relevant operating range. The output of the HBT amplifier is connected to the commercial

low-noise amplifier located at the 4-K plate via a superconducting NbTi coaxial cable.

The two-stage amplifier provided a total voltage gain of the order 100.

4.3.2 Results

In this section, we present our results of the image-charge measurements for SSE confined

in the microchannel array and provide some qualitative analysis of the data.

Similar to the experiment described in Section 4.2, the resonant transition (1 → 2) is

excited by adjusting the applied voltage Vb to match the transition frequency ω21 of SSE
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and the MW frequency ωmw via the Stark shift. Here Vb is the voltage applied to both

channel and reservoir electrodes, that is VLR/RR = Vch ≡ Vb, see Fig. 4.8. The measured

voltage signals proportional to the image-charge current at the channel electrode are

shown in Fig. 4.10(a). Here the resonance peak recorded for different MW frequencies

ωmw corresponds to the resonance Rydberg transition of SSE. The resonance value of Vb

as a function of the MW frequency ωmw/2π is shown in Fig. 4.10(b) (the orange open

circles). To compare this result with the theoretically predicted Stark shift of SSE, we

numerically solved the time-independent Schrödinger equation for different values of E⊥

(see Section 1.2.2), to find the relation between the transition frequency ω21 and E⊥. The

result is shown by the blue solid line. Comparison between the experimental data and

theoretical calculation in Fig. 4.10(b) provides us with an empirical relation between E⊥

and Vb in the form E⊥ = kVb + E
(0)
⊥ , with k ∼ 600 cm−1.

The amplitude of the resonance peak depends on the MW power. According to a

simple two-level model, the fractional occupancy ρ22 of the first excited Rydberg state is

expected to increase linearly with the MW power for small powers and saturate at 50%

for very high power. Fig. 4.10(c) shows the dependence of the signal amplitude on MW

power given as a percentage of P0, where P0 is the maximum power of our MW source

before the attenuator. As expected, the peak amplitude increase with increasing power.

The power dependence is almost linear, which indicates that the excited state population

is far from the saturation.

In addition, Fig. 4.10(a) indicates that the peak amplitude varies with MW frequencies

at fixed settings of the attenuator. Note that the power output of our MW source depends

on its frequency. Fig. 4.10(d) represents the output MW power measured at the output of

our MW source. The color arrows represent the corresponding frequencies used to obtain

the data in Fig. 4.10(a). Although the minima in the power spectrum do not exactly

match the frequencies corresponding to the minimal voltage amplitude in Fig. 4.10(a),

it is reasonable to suggest that the total power loss through the overmoded waveguide

might also depend on the MW frequency.
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Figure 4.10: (a) Experimental traces of the image-charge signal versus the biasing
voltage Vb for different MW frequencies. (b) Plot of the holding electric field (the left axis)
and applied voltage Vb (the right axis) at resonance versus the transition frequency. Solid
line is the result of the theoretical calculations, while the open circles represent the position
of the measured resonance peaks in (a). (c) Experimental traces of the image-charge signal
measured at ωmw/2π = 480 GHz for different MW powers, P0 is the maximum power of
our source. Inset: The voltage signal at the peak of the resonance vs MW power. (d)
The output power of the MW radiation as a function of frequency measured by a room
temperature power meter. The color arrows represent the corresponding frequencies used
in (a).

Instead of tuning the transition frequency of SSE via adjusting the biasing voltage

Vb, one can also vary the input MW frequency to match the transition frequency ω21

at a fixed applied voltage Vb. This method is not frequently used in the conventional

absorption measurements because the MW power of the source depends on its frequency,

see Fig. 4.10(d). Nevertheless, it is convenient to use this method in our experiment

with SSE in the microchannel device. Unlike in a parallel-plate capacitor setup with

the liquid level set at the middle between two plates, see Eq.(2.2), in the microchannel
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device the pressing field E⊥ strongly depends on the image charges induced by SSE in

the bottom electrodes. Varying Vb unavoidably changes the SSE density profile across

the channel, therefore the pressing field, leading to an unexpected shift and broadening

of the lineshape. The typical results of frequency sweep measurements taking from two

different experimental runs are shown in Fig. 4.11(a, c), while the corresponding E⊥ vs

Vb dependencies obtained form these data are given in Fig. 4.11(b, d). In both cases we

find that the proportionality coefficient between E⊥ and Vb is about ∼ 600 cm−1, which

is consistent with data shown in Fig. 4.10(b).

Figure 4.11: (a, c) Experimental traces of the image-charge signal versus MW frequency
for different biasing voltage Vb. (b, d) Plot of the holding electric field (the left axis) and
applied voltage Vb (the right axis) at resonance versus the transition frequency. Solid line
is the result of the theoretical calculations, while the open circles represent the measured
resonance peaks by the frequency sweeping. The color arrows represents the corresponding
frequency used in (a) and (c).
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4.3.3 Discussion

Here, we try to analyze the linear dependence E⊥ = kVb +E
(0)
⊥ in terms of the analytical

expression for the pressing field given by Eq. (2.5). It should be noted that in this

multichannel setup we vary all the three bottom electrode voltages, VLR, VRR and Vch

simultaneously. Therefore, the potential of SSE Ve is not a fixed value but depends

on the applied voltage Vb = VLR = VRR = Vch. As discussed in Section 2.4.1, the

potential of the uncharged surface of liquid helium in the channel can be estimated as

Vu = c1Vb + c2Vt, where we have c1 = 0.8, c2 = 0.2 and Vt = 0. It is reasonable to

assume that Ve = Vu +∆Ve = c1Vb +∆Ve, where ∆Ve is the potential difference between

the charged and uncharged surface of liquid helium in the channel, and which varies for

different experimental runs depending on the total number of SSE in the device. Using

this relation, Eq. (2.5) can be written as

E⊥ =
Vb

2d
− Ve

d

(
1− 1

2c1

)
=

1− c1
d

Vb +∆Ve, (4.3)

For d = 4µm, the slop of E⊥ vs Vb is (1−c1)/d = 500 cm−1, which is slightly smaller than

the experimentally measured value 600 cm−1. In order to account for the discrepancy,

we can use the same argument as in Section 4.2, that is assuming that the real helium

level is slightly lower than the channel depth due to the surface curvature. Then, for

k = 600 cm−1, we estimate the liquid depth to be d = 3.33µm.

The experimental results presented in this section demonstrate high-level control and

tunability of SSE in a device comprised of an array of microchanels. The Rydberg energy

spectrum of SSE in such a device is well described by simple electrostatics, giving a very

good agreement with the measured image-charge spectra. This presents SSE confined in

microchannels as a promising platform for further work towards quantum-state detection

and qubit implementation with electrons on helium.
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4.4 Summary

In this chapter, we reviewed three different methods for detecting the Rydberg transition

in SSE. It turns out that the image-charge method provides the most direct way for

Rydberg states detection. The present sensitivity of this method required us to use a

multichannel device to increase the number of SSE in the device. In order to apply this

method for SSE in a single channel device, as well as achieve the single electron detection,

it is required to improve SNR of our measurement circuits. In the next and final chapter,

we describe our strategy on improving the measurement sensitivity by employing a high

quality factor RLC resonating circuit. We also show some preliminary results of an

experiment where we detect the Rydberg transition in SSE on the bulk liquid helium

using this method.



Chapter 5

Helical resonator for the image-charge

detection

The detection of a small number of charged particles is a recurring problem in the physical

science. In many systems, such as the trapped ions and electrons in the semiconductor

quantum dots, the charged particles are detected via a small current signal using a high

quality factor radio-frequency (RF) RLC resonator [100–102]. Various theoretical and

empirical methods have been developed for designing and fabricating a high quality factor

resonator at a desired frequency for a given set of experimental constrains [103–107].

In the past few decades, the helical RLC resonators have been proved to be a powerful

tool for high precision detection of the image-current of ions in Penning traps [108–110].

Motivated by this work, we are trying to employ the helical resonators for the image-charge

detection of the Rydberg transition in SSE. One can expect that the signal-to-noise ratio of

a measured signal can be significantly improved, which is important for the ultimate goal

of building an image-charge readout setup for a single electron. This chapter is organized

as follows. In Section 5.1, we review the basics of a resonant circuit and the two-port

transmission measurements in the framework of the lumped circuit model. In Section

5.2, we discuss an analytical model of our helical resonator and present the preliminary

experimental results of the application of a helical resonator for the image-charge detection

112



Helical resonator for the image-charge detection 113

of the Rydberg transition in SSE on the bulk helium. Finally, in Section 5.3 we discuss

the further optimization of a helical resonator in order to reach a higher quality factor.

5.1 Theory of a resonant circuit

5.1.1 Introduction to a RLC resonator

Let us start with some basic characteristics of the series and parallel RLC resonant circuits.

Since the circuit operates at radio frequencies, for which the circuit dimensions are small

relative to the wavelength, it can be treated by a lumped-circuit model. As shown in

Fig. 5.1, the RLC resonator can be modeled by either series (a) or parallel circuit (b).

The input impedance for each circuit is given by

Figure 5.1: The lumped circuit model of the series (a) and parallel (b) RLC circuit.

Zin = R + jωL+
1

jωC
, for RLC in series, (5.1)

Zin =

(
1

R
+ jωC +

1

jωL

)−1

, for RLC in parallel. (5.2)

At a resonance frequency ω0 = 1/
√
LC, the capacitive reactance 1/jω0C and inductive

reactance jω0L cancels each other, such that the absolute value of the impedance of the

circuit has an extreme value. We define the ω0 as the resonance frequency. Fig. 5.2

represents the variation of the absolute value of the circuit impedance as a function of the

frequency for series (a) and parallel (b) RLC circuit. It is clear that at ω = ω0 the system

has a minimum and maximum value of |Zin|, respectively. Note that at the resonance
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Figure 5.2: The magnitude of the input impedance versus frequency for RLC series
circuit (a) and parallel circuit (b).

frequency the circuit impedance is real and equal to R.

Alternatively, the resonance frequency can be defined by the balance of the electric

and magnetic energy stored in the circuit. Consider the energy delivered to each lumped

element, with the magnetic energy Wm stored in the inductor L and the electric energy

We stored in the capacitor C

Wm =
1

4
|I|2L, We =

1

4
|I|2 1

ω2C
, for series circuits, (5.3)

Wm =
1

4
|V |2 1

ω2L
, We =

1

4
|V |2C, for parallel circuits. (5.4)

Here, all of the components in a series connection carry the same current I, while the

same voltage V is applied to all circuit components connected in parallel. From (5.3) and

(5.4), it is clear that at the frequency ω0 = 1/
√
LC the stored magnetic energy is equal

to the stored electric energy in both cases, that is Wm = We. Additionally, the power

dissipation Ploss at the series and parallel resistor R is given by

Ploss =
1

2
|I|2R, and Ploss =

|V |2

2R
, (5.5)

respectively.
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Quality factor Q

In addition to the resonance frequency, the quality factor Q is another important quantity

describing the RLC resonant circuit. It is defined as the ratio of the total electromagnetic

energy stored in the capacitor and the inductor to the power dissipation at the resistor

at the resonance

Q = ω0
Wm +We

Ploss
=


ω0L/R = 1/ω0RC, for series circuits,

R/ω0L = ω0RC, for parallel circuits.
(5.6)

The Q-factor characterises the loss of the resonance circuit, the higher Q implies lower

power loss. In practice, the resonator is always coupled to some external circuitry, for

example, the transmission line. This external circuitry can be considered as a load to the

resonator circuit. We consider the simplest case for which the external load is a resistor

RL. If the resonator is a series RLC circuit, the load RL adds in series with resonator

resistance R, so the total resistance is RL+R. According to the definition ofQ-factor given

by Eq. (5.6), the loaded quality QL for the whole system can be written as QL = ω0L/Rtot.

We define Q0 = ω0L/R as the unloaded quality factor, which characterises the resonator’s

Q-factor in the absence of any load. In addition, we define QE = ω0L/RL as the external

quality factor accounting for the power loss at the load. Then, QL can be expressed as

1

QL

=
1

QE

+
1

Q0

=
1

Q0

(1 + g), (5.7)

where g = Q0/Qe is the coupling constant, which characterizes the level of the coupling

between the resonator and the load. The coupling constant can be tuned depending on

the application. For example, to maintain a high Q value of the measurement circuit, the

helical resonator should be weakly coupled to its load, with g ≪ 1. On the other hand, in

order to achieve the maximum power transfer to the resonant circuit through the external

circuitry, the resonator should be optimally coupled to the load, with g ≃ 1. Eq. (5.7)
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also applies to the parallel circuit.

Finally, we define the half-power bandwidth (BW) of the unloaded resonator, see

dashed blue lines in Fig. 5.2(a, b). For the series circuit, one can rewrite Zin in terms of

the frequency ω and Q-factor, as

Zin = R + jωL

(
1− 1

ω2LC

)
= R + jωL

(
ω2 − ω2

0

ω2

)
≃ R + j

2RQ0∆ω

ω0

, (5.8)

where ∆ω = |ω − ω0|. Note that the complex power delivered to the resonator is given

by P = 1
2
Zin|I|2 = 1

2
V 2

|Zin|2Zin and the average power P dissipated in the resonator is given

by the real part of P , that is

P =
1

2

V 2

|Zin|2
R =

1

2

V 2R

R2 + (2RQ0∆ω/ω0)2
. (5.9)

It is clear that at the resonance P reaches its maximum value with Pmax = |V |2/2R and

half power condition P = Pmax/2 corresponds to |Zin|2 = 2R2, that is Q0 = 2ω0/∆ω. If

we define the bandwidth as BW = 2(∆ω/ω0), then we have BW = 1/Q0. Similarly, we

can get the same relation for a parallel circuit.

5.1.2 Determining unloaded Q from the two-port measurements

For practical measurements, a resonator must be coupled to the external circuitry, which

makes it impossible to directly measure the unloaded Q0 of the resonator. Practically, we

first measure the loaded quality factor QL and then find Q0 using the relation given by

Eq. (5.7), assuming all parameters of the external circuit are known. Now, we will show

how to find the unloaded Q0 from the conventional two-port shunt measurements using a

network analyzer. Fig. 5.3(a) shows a parallel RLC resonator (blue shaded area) connected

to the network analyzer with the characteristic impedance RL = 50Ω via two coupling

capacitors Cκ (gray shaded area). In such a setup we measure the transmission coefficient

S21, which is defined as the ratio between the voltage amplitude of the transmitted signal
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measured at port 2 and the driving voltage amplitude applied to the port 1.

Figure 5.3: (a) Illustration of two-port shunt measurement. (b) Norton’s equivalent
circuit after series to parallel impedance transformation, as described in the text.

In order to understand the effect of the series capacitors Cκ, it is convenient to trans-

form the gray shaded circuit to its Norton equivalent circuit with all components connected

in parallel, see Fig. 5.3(b). The parallel and series circuits are equivalent when the output

impedance RL + 1
jωCκ

= (1/R∗ + jωC∗)−1, thus R∗ and C∗ is given by

R∗ =
1 + ω2C2

κR
2
L

ω2C2
κRL

, C∗ =
Cκ

1 + ω2C2
κR

2
L

. (5.10)

Since all the elements are arranged in parallel, the total resistance and capacitance can

be written as

Rtot = (2/R∗ + 1/R)−1, Ctot = C + 2C∗, (5.11)

and the resonance frequency is shifted to a new value

ω∗
0 =

1√
L(C + 2C∗)

. (5.12)

In order to make the shifted resonance frequency close to the intrinsic frequency of the

resonator, one needs to choose a weak coupling, that is C∗ ≪ C. Then, the 50Ω load

resistance RL is transformed into a very large parallel resistance R∗. Furthermore, we can



Helical resonator for the image-charge detection 118

write

QL = ω∗
0

C + 2C∗

1/R + 2/R∗ ≃ ω0
C

1/R + 2/R∗ , (5.13)

Q0 =
R

ω0L
, QE =

R∗

2ω0L
and g =

Q0

QE

= 2R/R∗. (5.14)

The loaded quality factor QL can be determined from the half-power bandwidth of

the measured transmission coefficient S21, with QL = f0/(f2 − f1), where f0 = ω0/2π,

f1 and f2 represents the frequencies at the half-power at each side of the resonance. In

practice, f2 − f1 corresponds to either the −3 dB bandwidth, if S21 is in decibels, or the

0.707 bandwidth, if S21 is in the voltage ratio. Note that S21 should be a real number at

resonance and it is related to the coupling factor g by the relation

g =
S21(ω0)

1− S21(ω0)
. (5.15)

Note that in this expression S21 is in the voltage ratio. Then, one can obtain the unloaded

Q-factor using the relation Q0 = QL/(1 + g). For practical purposes, it is convenient to

use strong undercoupling, g ≪ 1, then Q0 ≃ QL.

5.2 Helical resonator

The helical resonator setup with high quality factor is frequently used for the non-

destructive measurements of image-current induced by the trapped ions. First, we briefly

review the basic measurement setup in trapped-ion systems. The equivalent circuit of the

detection setup using a helical resonator is shown in Fig. 5.4, where the helical resonator

is represented as a RLC parallel circuit and the image-current signal Iima induced by the

trapped ions is represented as a current source. The current source is coupled to the

resonator shunted to the ground and the voltage drop across the resonator is given by

V = ZIima, where Z is the impedance of the resonator. As shown in Fig. 5.2(b), for a par-
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Figure 5.4: Equivalent circuit of the helical resonator coupled to an external image-
current source, as described in the text.

allel RLC resonator the impedance Z has the maximum value at the resonance frequency,

with Zmax = R. Clearly, one can get the maximum voltage drop across the resonator

Vmax = RIima for a given image current Iima. In addition, a high quality factor is desired

in this setup. According to Eq. (5.6), the resistance R of the resonator is proportional to

the quality factor Q. As a result, the voltage drop can be further increased by improving

the quality factor of the resonator. In the following, we adapted this techniques into our

experimental setup for the image-charge detection discussed in Chapter 4.

We start from discussing the geometry of the helical resonator. The helical RLC

resonator consists of a solenoidal coil mounted in the center of a cylindrical metal shield.

In our experiment, the coil is a single layer of conducting wire (Cu or NbTi) wound on a

insulation core [Polytetrafluoroethylene (PTFE)] with the winding pitch equal to the wire

diameter. After the winding, one end of the coil is grounded to the shield and the other

end is left as an open-circuit, which in experiment is coupled to the measurement circuit.

Fig. 5.5(a) shows a photograph of an unassembled high-Q helical resonator made from

the superconducting material, while Fig. 5.5(b) is a sketch of the assembled resonator.

For convenience, we list the symbols describing the geometric parameters of the resonator

in Table. 5.1. The first version of the resonator used for the image-charge detection

experiment is slightly different from the one shown in Fig. 5.5(a). In the first version, the

outer shield is made from a thin Cu foil with the thickness of 0.5 mm. The foil is rolled

into a cylinder with the inner diameter ds = 45 mm and height ls = 100 mm. The two

edges were soldered by tin. For the inner core, the copper wire with diameter 160µm was
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Figure 5.5: (a) Photograph of an unassembled superconducting resonator. Left: NbTi
coil wound tightly on a PTFE tube (white color) with diameter din = 23 mm and total
length = 100 mm. The winding pitch τ is equal to the wire diameter. Right: The outer
metal shield (silver color) is made from NbTi, and has the inner diameter of ds = 38 mm
and inner height of ls = 110 nm. Two lids (silver color) with inner diameter ds are used to
close the shield from both sides. (b) Sketch of the assembled resonator. The outer shield
is shaded in dark blue color, while the coil is in yellow color.

tightly winded on the PTFE tube with din = 23 mm and lin = 6.3 mm and tied up by the

PTFE thread seal tape to ensure the mechanical stability, as well as the thermal contact

with the insulation core.

ds inner length of the metal shield
ls inner diameter of the metal shield
lin length of the winding part
din outer diameter of the insulation core
τ winding pitch

Table 5.1: List of symbols for the geometric parameters of the helical resonator shown
in Fig. 5.5.

Next, we discuss the RF properties of the resonator. The simplest estimation of

the resonance frequency can be done by considering the coil inductance and capacitance

between the coil and shield. The coil inductance can be simply estimated assuming an

unshielded coil, while the coil capacitance can be evaluated as the capacitance of a coaxial
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structure, according to

L =
µ0N

2π(din/2)
2

lin
, [SI] (5.16)

C =
2πϵ0lin

ln (ds/din)
. [SI] (5.17)

For the first version of the resonator, with din = 23 mm, ds = 45 mm and lin = 6.3 mm,

we obtain L = 1.68 mH, C = 6.98 pF and the resonance frequency f0 = 1.4703 MHz. In

addition, one has to consider the contribution to the total capacitance of the resonator

from the capacitance between wire turns in the coil. Moreover, for sufficiently high fre-

quencies ∼ 1 MHz, the skin and proximity effects cause the winding resistance to increase

and the inductance to decrease. Thus, one needs a more accurate estimation.

The first accurate study of the high frequency RF properties of shielded helical coil

resonators was done by Macalpine et al. [105], who took the skin effect and dielectric

losses into account and gave an empirical estimation of the values of inductance and

capacitance. Later, these expressions were derived using the distributed element model

[103–107, 111]. Fig. 5.6(a) shows the equivalent distributed element circuit of a helical res-

onator applicable for sufficiently high frequencies. Here, Ri and Li represent the resistance

and inductance of each wire turn, Ct and Cs represent turn-to-turn and turn-to-shield ca-

pacitance, respectively. All these parameters are strongly dependent on the resonator’s

geometric parameters. It is rather time-consuming to predict the electrical properties of

a resonator using the distributed element model. For the sake of a quick estimation, it is

instructive to further simplify this model to an equivalent lumped parameter circuit. As

shown in the upper panel of Fig. 5.6(b), the resonator inductance, resistance and capac-

itance are represented as lumped parameters L, R and C, respectively. The conversion

relation between the lumped and distributed elements can be found in Ref. [107, 111].

Note that the resistance R is called residual resistance, which is a series resistance consist-

ing of the resistance of the shield, the coil resistance, as well as the resistance representing

the dielectric losses. The capacitance C includes both turn-to-turn and turn-to-shield ca-
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Figure 5.6: (a) Equivalent distributed element circuit of the helical resonator. Here,
Ri and Li represents the resistance and inductance of each turn, Ct and Cs represent
turn-to-turn and turn-to-shield capacitance, respectively. (b) Top: the simplified lumped
circuit model. The coil inductance, resistance and capacitance are depicted as lumped
parameters L, R and C respectively. Bottom: the equivalent parallel circuit. Typically,
C and L is almost unchanged after the series to parallel conversion, while the Rp arises
significantly. The figure is taken from [107].

pacitance. The circuit can be further simplified by the series to parallel conversion. The

bottom panel in Fig. 5.6(b) represents the equivalent parallel circuit. Typically, C and L

are almost unchanged after the conversion, while the Rp changes significantly since it is

inversely proportional to the residual resistance R. In particular, the parallel inductance

L is given by the expression [105, 111]:

L =
πµ0N

2(din/2)
2

lin + 0.9(din/2)
·
(
1− b

b+ 1.55

d2in
d2s

)
, where b =

2lin
ds − din

. [SI] (5.18)

For the first version of our resonator, that is din = 23 mm, ds = 45 mm and lin =

6.3 mm, we obtain L = 0.996 mH. Using the estimated value of L, we can obtain the

values of other parameters by the transmission measurements. Using the standard two-

port measurements discussed in Section 5.1.2, we obtain the resonance frequency f0 =

1.45 MHz and the quality factor QL = 63.4, thus we have C ≃ 10 pF and R ≃ 138Ω

(the equivalent parallel resistance Rp in Fig. 5.6(b) is 0.57MΩ). Here, the coupling

capacitance is chosen to be Cκ = 1 pF and RL = 50Ω (with C∗ = 1pF and R∗ = 241MΩ

at f0 = 1.45 MHz). It is clear that the resonator is weakly coupled (undercoupled) to the
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load since g = Rp/R
∗ ≪ 1, thus we have Q0 ≃ QL = 63.4.

Comparing to the simple relation given by Eq. (5.16), the inductance is reduced about

40% due to the shielding, whereas the total capacitance is also increased because we took

the turn-to-turn capacitance into account. The measured frequency is still very close the

value estimated by the simple model given by Eq. (5.16) and (5.17).

5.2.1 Coupling a helical resonator to the measurement circuit

Once the resonator was prepared and characterized using the transmission measurements,

we incorporated it with our experimental setup. In order to achieve a larger image-charge

signal, we conducted the first experiment with a large number of electrons (∼ 108) on the

bulk liquid helium using the parallel-plate capacitor, see Section 2.2.1.

The photograph of the experimental setup is shown in Fig. 5.7(a), while its equivalent

circuit is given in Fig. 5.7(b). The resonator is mounted on the still plate of the dilution

Figure 5.7: (a) The photograph of the measurement setup. The top center electrode of
the Corbino disk device is connected to PCB, which provides DC bias and coupling to the
resonator. The resonator is brought to a close proximity with PCB to reduce the stray
capacitance of the unshielded wire. (b) The equivalent circuit of the experimental setup.
For the test transmission measurements, the bottom plate of the parallel-plate capacitor
is driven by an external voltage source Vext.

refrigerator and the experimental cell is mounted on the mixing chamber plate. The

resonator is connected to the top center electrode of the parallel-plate capacitor. Here,
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Cp represents a parasitic capacitance of the wiring connecting the cell to the resonator.

Note that, Cp is typically in the order of a few pF, which is comparable to the resonator

capacitance. Therefore, the resonance frequency is shifted to a lower value.

To characterize the resonator, we perform a test transmission measurement, as de-

scribed earlier. As shown in Fig. 5.7(b), we drive the bottom plate of the parallel-plate

capacitor and measure the transmitted signal amplified by a cascode two-stage ampli-

fier with the voltage gain about 28 at room temperature. Note that, the capacitance

between the bottom and top capacitor plates is around C0 = 1 pF, similar to the cou-

pling capacitance Cκ. The measured transmission coefficient S21 is given by the solid

blue line in Fig. 5.8. As expected, the center frequency is shifted to the lower frequency

f0 = 1.199 MHz, from which we estimate Cp ≃ 5.6 pF. The loaded quality factor is

QL = 61.2 and the parallel resistance is Rp = 0.46MΩ, similar to the previously mea-

sured values.

Figure 5.8: The S21 transmission spectrum of the experimental setup for different tem-
peratures.

Next, we cool down the setup in the dilution refrigerator and repeat the same trans-

mission measurements at a low temperature. The result is given by the solid orange line in

Fig. 5.8. The quality factor is improved after cooling down, with QL = 153.6 at 600 mK,

corresponding to the parallel resistance Rp = 1.19MΩ. The center frequency is also

slightly shifted from 1.199 MHz to 1.229 MHz because of the change of Cp after cooling
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down. It should be noted that, because the cascode amplifier has the input impedance

of Rin = 1MΩ, the amplifier’s voltage gain is reduced to 19 due to the effect of a voltage

divider between Rin and Rp.

5.2.2 Image-charge detection using the helical resonator

In this section, we present the preliminary results of the image-charge detection of the

Rydberg transition in SSE on the bulk liquid helium using the helical resonator setup.

In the experiment, the parallel-plate capacitor is half-filled with liquid 3He and the liquid

Figure 5.9: Improvement of the image charge signal by using the helical res-
onator. (a) Schematic of the experimental setup. (b) Image-current signal measured
at the top plate versus MW modulation frequency and DC bias applied to the bottom
capacitor plate (Vbc). When the modulation frequency matches the resonant frequency of
the resonator with f0 = 1.23 MHz, the image-current signal presents the highest SNR. (c)
For the sake of comparison, the image charge signal measured directly at the bottom plate
without using the helical resonator is shown. Comparison with panel (b) demonstrates
an improvement of SNR of the image-charge detection setup.

surface is charged with SSE. Pulse-modulated MW radiation at a fixed frequency 130
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GHz is transmitted into the cell and the Rydberg transition frequency ω12 is tuned in

resonance by adjusting the DC voltage applied to the capacitor bottom electrode. The

image-current signal induced by the excited SSE at the top plate produces a voltage

drop at the RLC parallel resonator shunted to the ground and this voltage is amplified

by the cascode amplifier. The voltage drop is given by ZIima, where Iima is the image-

current, see Eq. (4.2) and Z is the impedance of the RLC resonator. Since the resonator

impedance Z is maximum at the frequency f = f0, see Section 5.2, we tune the modulation

frequency fmod of the pulsed MW radiation to match the resonance frequency of the

resonator. This produces the maximum output signal at fmod = f0 = 1.23 MHz, as

shown in Fig. 5.9(b). The improvement in the detection sensitivity is demonstrated

by comparison with Fig. 5.9(c), where the image-current signal at the bottom plate is

measured without the resonator.

5.3 Improving the quality factor of the helical resonator

In previous section, we have demonstrated that the helical resonator can improve SNR of

the image-charge detection setup even for a relatively low quality factor of the resonator.

In this section, we discuss the further optimization of the resonator’s performance by

improving its unloaded Q-factor. Table 5.2 summarizes the unloaded Q-value of the

resonator for different optimization steps, where the step #0 represents the initial version

of the resonator.

Optimization step 0 1 2 3
Q0 at cryogenic temperature 151 800 1441 18692

Table 5.2: Unloaded Q-value of the resonator for different optimization steps. The
details of the respective optimization steps are described in the text.

As mentioned in the previous section, the high quality factor corresponds to the low

residual resistance which consists of three parts, the resistance of the shield, the coil

resistance, as well as the resistance due to the dielectric losses. In the following, we aim
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to reduce the effect of these three contributions.

In the first step, we use the same inner core which was used in the initial version of

the resonator, while replace the outer shield with a copper cylinder housing having the

inner diameter ds = 38 mm and wall thickness of 5 mm. The housing is closed by two

copper lids at both sides using 12 screws on each side to ensure the good electrical and

thermal contact, see Fig. 5.5(a). The housing and lids are etched in acid and then cleaned

with acetone in an ultrasonic bath to remove all oxidation and organics. Since the bulk

material is used and cleaned up properly, the shield resistance is significantly decreased

compared with the initial setup. As expected, we achieved a much higher quality factor

Q0 = 800.

In the second step, the inner coil is replaced by a superconducting wire with Cu plat-

ing, in order to reduce the coil resistance at low temperature below the superconducting

transition. We found the unloaded quality factor increased to Q0 = 1441.

In the last step, a pure superconducting material is used for both inner core and outer

shield. This procedure aims to decrease the total residual resistance at the cryogenic

temperatures. The inner coil is made from the 75µm PTFE insulated NbTi wire of

50µm conducting diameter, which is much thinner comparing to the initial copper wire

coil. The outer shield is made from pure Nb, with the same geometric parameters used

in earlier steps. In order to keep the same solenoid length lin, we increased the number of

winding turns to N = 714. With this, an effective inductance L = 3.62 mH was estimated.

Fig. 5.10 shows the result of the transmission measurements. The resonant frequency is

measured at f0 ≃ 1.379 MHz and the parallel capacitance and resistance are calculated

to be C = 3.68 pF and Rp = 585MΩ. This resonator gives us the highest quality factor

achieved so far, with Q0 = 18692.

It is important to mention that the above transmission measurements were done in

a strongly undercoupled regime, with the coupling capacitance Cκ < 1 fF. In actual

experiments, it is very difficult to keep the small value of Cκ due to the coupling to the

other parts of the measurement setup. For example, the coupling to the input impedance
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of the amplifier as well as other low-impedance lines may limit the experimentally observed

quality factors. Furthermore, the DC-biasing circuit at the top electrode contains a high-

impedance metal film resistor Rdc, see Fig. 5.9(a). Thus, the total resistance Rtot =

Rdc||Rp is dominated by the smaller resistance. For a typical value of Rdc = 100MΩ, the

total resistance becomes Rtot = 85MΩ, which dramatically decreases the loaded quality

factor QL by 7 times, leading to a QL = 2680.

Figure 5.10: The S21 transmission spectrum of the superconducting resonator measured
at 4.2 K.

5.4 Summary

We presented the preliminary results of our image-charge detection experiment using a

parallel RLC helical resonator. It was shown that, even with a relatively low quality factor

of the resonator, the measurement sensitivity significantly increases. With the ongoing

optimization procedure for the quality factor, we could achieve up to 18692 of unloaded

Q value. In general, a decrease of the measured QL because of the coupling to the lossy

components in the measurement circuit is expected, therefore a further optimization of

the detection circuit is required. In addition to the reduction of the losses in the detection

circuit, one can try to improve the performance of the cryogenic amplifier by increasing
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its effective input impedance.



Future plans and outlook

As was described in the introduction, successful implementation of the quantum-state

detection and manipulation demands confinement and control of electrons at the level of

a single particle. Such implementation requires a well-designed microstructured device.

However, the present design of the microchannel setup have so far fallen below this goal.

Our future works will focus on the following three points.

Single electron trapping

First and foremost, we need to enhance capabilities for charge manipulation in our ex-

perimental setup. A new design of the microchannel device incorporated with other

submicron-scale single-electron traps is required. Fortunately, the trapping of the single

electron has already been demonstrated by several groups using a single-electron tran-

sistor (SET) [6, 7, 89]. Moreover, employing a suitable microchannel geometry might

provide some advantages for charge manipulation, as was already demonstrated by Rees

et al. in experiments with a point contact device [16] and Lin et al. in a device with

spatially periodic electrodes [112].

Single-electron Rydberg states detection

Second, for the purposes of high-precision readout of the single-electron Rydberg states,

the coupling constant between an external RLC resonator with a higher quality factor

and the experimental device must be carefully arranged. In addition, the device geometry

and materials used for fabrication should be carefully considered in order to minimize the

130
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dielectric loss and the stray capacitance.

Spin-states detection

So far, detection of the spin states of SSE on liquid helium is a challenging task. One

potential solution is to couple the spin states to the Rydberg states, as discussed in

Section 1.8.2, which can greatly facilitate the spin-state manipulation and detection. The

microchannel devices are well suited for creating a sufficiently large gradient of an applied

magnetic field to realize the coupling between the spin states and orbital states of SSE. For

example, stripes of a ferromagnetic material, such as Cobalt or Permalloy, can be easily

fabricated by evaporation and placed along the channels. Magnetization of the material

in an applied uniform magnetic field would produce a nonuniform stray field outside the

material, while the close proximity of the stripes to SSE confined in the microchannels

can ensure that the field gradient experienced by SSE is sufficiently large. For example,

our finite-element method (FEM) calculations show that 200-nm thick stripes of Cobalt

placed at the bottom of a 4-µm deep channel filled with the superfluid helium would

produce a gradient on the order 1 mT/µm near the liquid surface. This would result in

the difference between the Zeeman splittings for the ground state and the first excited

Rydberg state of SSE on the order 1 MHz. This is comparable to the intrinsic linewidth

of the corresponding Rydberg transition at temperatures below 1 K [70]. Note that in

the present setup the observed large broadening of the resonance is of orders of 10 GHz.

This is due to inhomogeneous distribution of the pressing field in the microchannel. It

seems to be feasible to significantly reduce this broadening by decreasing the width of the

electron system in the channel. In particular, it has been already demonstrated that such

width can be reduced to effectively a single electron across the channel [13, 113].
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