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Abstract

Transport properties of strongly correlated 2D electrons confined
in microchannels

Wigner crystal is the solid phase of strongly correlated electrons. The main theme
of this thesis work is employing a two-dimensional Wigner solid (WS) formed on the
surface of liquid helium to probe interplay between, on the one hand, strong internal
forces arising from electron-electron interaction and, on the other hand, external forces
due to substrate and applied electrostatic potentials. To accomplish these studies
we developed and employed a number of microchannel devices to confine WS system
and measure its transport properties. First, we characterize the transport properties
of a homogeneous electron crystal, an island of WS, and an inhomogeneous electron
crystal in a microchannel geometry. We show how interplay between transport regimes
of two individual electron crystals effect the overall I-V curves. A further study of
WS system of varied size demonstrates how the energy dissipates from the edges of
electron crystal through emission of ripplons, which thus affects the breaking of the
strong coupling of WS with substrate excitations. Then, by introducing an external
spatial periodic potential, we observed suppression of WS-ripplon coupling and re-
entrant melting of WS when the amplitude of external potential is sufficiently high.
We interpret these phenomena as arising from the structural phase transitions in WS
confined in a microchannel with spatially varied potential. This work is also relevant
to the general study of the Frenkel-Kontorova model of interacting particles subject to
a periodic substrate potential. Finally, some interesting features in the transport of
strongly-correlated electrons have been studied in a T-shaped microchannel geometry.
In particular, experiments showed a breakdown of the conventional Drude behaviour at
sufficiently low temperatures and high electron densities, which could be due to effect
of inertia of the surface excitations coupled to the WS.
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Abbreviations

2DEG two-dimensional electron gas
BC scattering Bragg-Cherenkov scattering

BTE Boltzmann transport equation
CVD chemical vapor deposition
DL dimple lattice

DSF dynamical structure factor
EBL electron-beam lithography
EL electron liquid

FEM finite element model
FK model Frenkel-Kontorova model

GS Ground state
IDC inter-digital capacitor

KTHNY theory Kosterlitz-Thouless-Halperin-Nelson theory
MOSFET metal-oxide-semiconductor field effect transistor

QTT quantum transport theory
RIE reactive ion etching

SG equation sine-Gordon equation
SSE surface-state electron
WS Wigner solid
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Nomenclature

c speed of light (2.997 924 58× 108 ms−1)
~ Planck constant (1.054 572 66× 10−34 Js)
kB Boltzmann constant (1.380 658× 10−23 JK−1)
ε0 permittivity of vacuum (8.854× 10−12 C2/(Jm))
εHe relative permittivity of liquid helium (1.056 for 4He, 1.042 for 3He)
e electrical charge of electron (1.602× 10−19 C)

me mass of electron (9.109× 10−31 kg)
α surface tension of liquid 4He

(3.76× 10−4 kg/s2 at 0.6 K)
(3.72× 10−4 kg/s2 at 0.88 K)
(3.69× 10−4 kg/s2 at 1.1 K)

ρ volume density of liquid 4He (145.1 kg/m3 about 1 K)
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Introduction

Understanding transport properties of strongly correlated electron systems is one of
the important fundamental problems of modern condensed-matter physics. Supercon-
ductivity is one famous example of a non-trivial transport property arising from the
electron-electron interaction. The transport of electrons in such systems is a compli-
cated affair that involves different processes, such as stochastic scattering processes
with background scatterers, interaction of electrons with each other and with an ex-
ternal driving field. In general, all this processes are interconnected with each other.

The classical equation for the transport of particles that involves the stochastic
scattering processes in a dilute gas system is the Boltzmann transport equation (BTE):

df

dt
=

(
∂f

∂t

)
collision

, (1)

where f = f (~r, ~p, t) is the distribution function of particles in a phase space. It essen-
tially describes the balance of forces due to, on the one hand, an external drive and,
on the other hand, collisions with background scatterer. In a quantum mechanical
treatment, the description of scattering is more intricate and involves quantum corre-
lation functions, but the mechanism of force balance is universal. An average physical
quantity of interest is described by the trace of a corresponding quantum mechanical
operator over the statistical operator ρ̂, the density matrix operator, that must satisfy
the quantum Liouville equation:

i~
∂ρ̂

∂t
= −

[
ρ̂, Ĥ

]
, (2)

where Ĥ is the Hamiltonian of the system studied. Similarly to the classical kinetic
theory, the quantum transport theory (QTT) derives system’s transport properties
from the quantum Liouville equation using various approximations, such as the linear
response approximation. The main task in both classical and quantum transport the-
ories is to deal with the scattering term, and the situation becomes significantly more
complicated when the interactions between particles comprising the system can not
be ignored. Unlike in dilute weakly interacting systems which can be well described
theoretically by the properties of individual particles, qualitatively new behaviors of
a strongly correlated system, such as the superconductivity mentioned earlier, usually
can not be predicted from a single-particle description. Strong inter-particle interac-
tion results in a collective behavior, therefore new global and macroscopic properties
may appear. As often happened in the history of science, experimental observations of
such new properties happen earlier than their theoretical development.

1



2 Introduction

On the theoretical side, quantum Monte Carlo methods and density functional the-
ory provide certain understanding of strongly correlated system. Nevertheless, such
studies are significantly impeded by complexity of the problem and insufficiency of
computation resources. As an alternative pathway, some theoretical models can be
studied experimentally using a well controlled physical system [1]. For example, some
unsolved standard theoretical models of strongly interacting systems, such as the Hub-
bard and Frenkel-Kontorova models, have been recently studied using ultracold atoms
and ions [2–6]. Such experiments allowed not only to probe correlation effects between
atoms and ions but also study effects of their interaction with external (substrate)
potentials which can have great implications, for example, for the general study of
friction [7].

Surface State Electrons (SSEs) floating above a free surface of liquid helium is a very
promising candidate system for such studies. Unlike in other two-dimensional electron
systems, the nature of background scatterers is very well understood and theoretically
described [8, 9]. Owing to a weak interaction with polar liquid, SSEs essentially reside
in vacuum at a relatively large distance of 10 nm above the liquid and interact with
each other by the unscreened Coulomb repulsion. In general, the potential energy
of electron-electron interactions is much larger than the electron kinetic energy and
the system crystallizes into a solid phase already at temperatures about 1 K. The
unique nature of the substrate, a quantum liquid which does not solidify down to a
temperature of absolute zero, allows to study the regime of strong coupling of SSEs
to surface deformations. This brings additional intriguing properties to the strongly-
corrected system of SSEs on liquid helium.

This thesis is mainly about the experimental study of the transport properties of
the strongly-correlated SSE system, especially focusing on its solid phase. Experimen-
tally, we study SSEs in microchannel devices which are built using microfabrication
methods, and measure electrical transport properties of SSEs subject to various device
geometries and configurations of applied electrostatic potentials depending on the par-
ticular topic of research. In Chapter 1, we will briefly describe the general properties
of SSEs and outline the main theoretical frameworks used to describe the electrical
transport in this system. The microfabricated devices and experimental methods will
be briefly described in Chapter 2. Different experiments with SSEs in such devices will
be described in the following four chapters (Chapters 3-6). This thesis will end with
our prospective for future studies.



Chapter 1

Electrical transport in highly
correlated electron systems

After the theoretical proposals of the SSE system on liquid helium were introduced
in 1969 [10, 11], many experiments with this system have been reported. It can be
expected that SSE could serve as an ideal system for testing approaches in QTT be-
cause the properties of SSE scatterers are well known. It was found that for a dilute
SSE system, the predictions of QTT are comparable with the experimental results.
However, when approaching the strongly correlated regime at high electron densities,
discrepancies between theoretical predictions and experimental observations become
prominent. For example, in 1984 R. Metrota et al. have reported a systematic mea-
surements of SSE mobility at different temperatures for various SSE densities ne [12].
As shown in Fig. 1.1, for the liquid phase of SSEs the deviation of single-electron theory
from experimental data increases with increasing ne. For example, at ne = 0.53× 108

cm−2 the experimental data are well described by the theoretical curve, see Fig. 1.1
(a). However, at ne = 3.2× 108 cm−2 the discrepancy between experimental data and
theoretical curve is significant, see Fig. 1.1 (d).

Clearly, the single-electron approximation fails under the condition of high ne and
low temperatures. Unfortunately, the up-to-date theoretical models which attempt to
include the inter-electron interaction are still unable to account for the discrepancy.
Inclusion of electron-electron interactions into the transport theory has been discussed
by Monarkha and Kono in Chapter 3.3 of the book Two-dimensional Coulomb liquids
and solids [8]. Predictions of many-electron theory are shown in Fig. 1.2. The theo-
retical prediction (solid curve) for highly correlated electrons can only partly explain
the observed increase in the resistance of SSE. The discrepancy between theory and
experiment is still an open question.

At lower temperatures a sudden jump in the resistance seen in Figs. 1.1 and 1.2
indicates that the SSEs crystallize into a solid phase, i.e. the Wigner solid (WS).
The transport of WS is nonlinear and rather complicated due to a resonant coupling
between a WS and capillary waves on a helium surface. The mechanism of the resonant
coupling between a WS and ripplons is related to coherent emissions of ripplons by a
moving electron lattice; the corresponding transport regime is called Bragg-Cherenkov
(BC) scattering [13]. This regime is rich of interesting physical phenomena discussed
later in this thesis.

3



4 Electrical transport in highly correlated electron systems

Figure 1.1: Inverse mobility vs temperature for various densities. The elec-
tron densities denoted by N8 is in units of 108 cm−2. The solid dots and cross symbols
are the experimental data. The curves are the theoretical predictions of the single-
electron approximation (dashed: consider ripplon scattering only; solid: ripplon and
helium gas atoms). Figures are reproduced from [12].



1.1 Bound states of electrons on liquid helium surface 5

Figure 1.2: Inverse mobility vs temperature for SSEs with electron density
ne = 3.2 × 108 cm−2. The experimental data (open circle) are taken from Fig. 1.1
(d). The dashed curve is the theoretical result of the single-electron approximation for
ripplon and helium gas atom scattering, the dotted curve is for ripplon scattering only.
The solid curve is the prediction of many-electron theory. The figure is reproduced
from [8].

This chapter will start with a description of the structure of quantized states of
SSE. Then, the general theoretical frameworks used to describe the electrical transport
in strongly-correlated electron systems will be briefly reviewed in Sect. 1.2. The single-
electron interaction with two kinds of background scatterers in our system, the vapor
atoms and ripplons, will be discussed in Sect. 1.3. The consequences of strong electron-
electron interactions in SSEs are discussed in Sect. 1.4. The final section Sect. 1.5
will be focused on the Bragg-Cherenkov scattering, which is the main theme of the
experimental studies described in this thesis.

1.1 Bound states of electrons on liquid helium surface

SSEs residing above the surface of liquid helium form a stable physical system. To
illustrate the basic structure of SSEs, we consider the following simplified model of a
particle of charge −e (e > 0) in vacuum (relative permittivity ε = 1) at a distance z
away from a plane interface of liquid helium (with relative permittivity εHe). Helium
is an inert atom that heads the noble gas group in the periodic table. Its 1s orbitals
are fully occupied. Owing to the Pauli exclusion principle, an additional electron
in the vicinity of He atom must have its wavefunction to be orthogonal to occupied
atomic states, which leads to the strong repulsion between an electron and He atoms.
Therefore, a strong repulsive force will prohibit an electron from entering liquid helium.
The resulting potential barrier at the liquid helium surface V0 is about 1 eV [14, 15].



6 Electrical transport in highly correlated electron systems

Figure 1.3: Simplified classical model for a single electron along liquid he-
lium. A particle of charge −e representing an electron floats above a free surface of
liquid helium at a distance z. The image charge +eΛ is located below the electron at
the same distance z inside the liquid helium.

In addition to a strong short-range repulsion, there is a long-range attraction between
electrons and the bulk liquid. Whenever an electrical charge locates near a dielectric,
instantaneous dipole moments of the polar atoms comprising the dielectric medium are
induced. The electric field produced by induced dipoles exerts an attractive force on
the electron. The repulsive barrier and attractive potential are entirely responsible for
the bound surface states of electrons above liquid helium.

For a flat unconfined liquid helium surface, the method of electrical images is used
to yield an effective image charge q′ = +e (εHe−1)

(εHe+1)
located inside the liquid at the same

distance z from the liquid surface. Thus, the potential energy of an electron at distance
z can be approximated as

Ue (z) = V0θ (−z)− keΛ

z + z0

e2θ (z) + eE⊥z, (1.1)

where Λ = (εHe−1)
4(εHe+1)

is a dimensionless constant much less than 1, θ (z) is the unit step
(Heaviside) function, and E⊥ is the magnitude of an external electrical field applied
normal to the surface. The parameter z0 ' 1 Å is introduced in order to avoid the
singularity of the image potential at the liquid helium surface [16]. Because V0 is
much larger than the typical eigen-energies of the electron in the potential Eq. (1.1),
the simplified model with V0 → ∞ and z0 → 0 is usually used. When E⊥ = 0, the
corresponding 1D Schrödinger equation is identical to that of the radial motion of an
electron in a hydrogen atom. The quantized energy levels along z axis for SSEs thus
can be written as

ε(⊥)
n = −Λ2Re

n2
u −0.65

n2
meV u −7.5

n2
K, n = 1, 2, 3... , (1.2)
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Figure 1.4: Probability density of SSE eigenstates. A schematic diagram of the
potential energy of interactions and the first three eigenstates of a single SSE above a
liquid helium surface.

where Re is the effective Rydberg constant for SSE. The corresponding wave-functions
are

Ψn (z) = R10(z), n = 1, 2, 3... , (1.3)

where R10(r) is the well-known expression for the radial wavefunction of an electron
in the hydrogen atom. The probability density of the first three eigenstates and the
image potential are plotted in Fig. 1.4.

Eq. (1.2) is obtained under the condition E⊥ = 0. In most cases of the experiments
with SSE system, an external electric field E⊥ is applied normal to a liquid helium
surface. For a weak E⊥ corrections to the eigen-energy can be considered in first order
perturbation theory, which results in the linear Stark shift:

δε(⊥)
n ' eE⊥ 〈n |z|n〉 . (1.4)

For a sufficiently strong E⊥, that is such that the image potential can be disregarded,
Eq. (1.1) results in a triangular-shaped potential well. Therefore,

ε(⊥)
n = eE⊥

ζl
γF
, (1.5)

where γF =
(

2meeE⊥
~2

)1/3, and ζl is the l-th zero of the Airy function, Ai (−ζl) = 0 [17].
The corresponding wave-functions are

Ψn (z) = constant× Ai

[(
z − ε

(⊥)
n

eE⊥

)
γF

]
. (1.6)



8 Electrical transport in highly correlated electron systems

Figure 1.5: Fractional population of a ground state. Fractional population
of a ground state plotted against temperature for different relations between holding
electric fields E⊥ and electron densities. The dotted curve is the ratio of Qb/Qc,
where Qb and Qc are the partition functions of the bound states Qb =

∑∞
l=1 e

−ε(⊥)
l /T

and the continuous spectrum states (determined by the container length Lz) Qc =√
meT
8π~2Lz, respectively. The ground state population is calculated according to n1

n
=

exp(−ε(⊥)
1 /T )∑

l exp(−ε(⊥)
l /T )

, where n is the electron density. The dashed curve is evaluated for E⊥ = 9

V/cm. The figure is reproduced from [8].

In the presence of E⊥, the binding energy of a ground state electron and the energy dif-
ference between different eigenstates substantially increase. Accordingly, the fractional
population of a ground state increases with E⊥. As shown in Fig. 1.5, the fractional
population of the ground state is almost 100% even for rather small pressing fields E⊥.
Correspondingly, for typical temperatures and pressing fields used in the experiments,
SSEs are mostly in a ground state. Therefore, we can safely ignore the occupancy of
higher eigenstates and focus on the transport of electrons confined in a 2D plane (in
the ground state).

1.2 Overview of transport theories

In transport experiments we are interested in an effect of a driving force on the motion of
the whole electron system. In a semiclassical theory, the relation between the electron
drift velocity vd and the external driving field ~Eex is obtained from the BTE using
the relaxation time approximation. As outlined in the Introduction, BTE accounts
for stochastic scattering processes occurring in the system due to interaction with
background scatterers. Although the stochastic scattering events are random, a moving



1.2 Overview of transport theories 9

electron will receive more impacts from the collisions in the direction opposite to its
motion. The number of such impacts usually is proportional to the velocity of the
moving electron. The impacts due to background scatterers, therefore, give rise to
the frictional force on an electron subjected to a driving force. The frictional force
and the random background collisions must be related. The internal relationship of
these microscopic forces is manifested in the so-called fluctuation-dissipation theorem.
Without external driving force, the equation of motion including the thermal noise is

mv̇ = −mγv + η, (1.7)

where γ is a coefficient appearing in the frictional force in the units of T−1 and η is the
fluctuating force (noise) due to collisions with background scatterers. The solution to
Eq. (1.7) is

v(t) = v0e
−γt +

1

m

∫ t

0

dt′η(t′)e−γ(t−t′), (1.8)

where v0 = v(0). The physical meaning of the introduced coefficient γ is clear. It
represents the inverse of the time scale during which an electron relaxes to attain equi-
librium with the background thermal bath (the relaxation time approximation). For a
large thermal bath we typically assume that the background noise η is white, that is
the corresponding correlation function can be represented as 〈η(t′)η(t′′)〉 = Γδ (t′ − t′′),
where Γ is a measure of the strength of thermal fluctuations. Then, by equating, on the
one hand, the statistical average 〈v2〉 obtained using Eq. (1.8) and, on the other hand,
its thermal equilibrium average, a useful relationship between fluctuating and thermal
equilibrium quantities can be obtained. For example, for a classical system we obtain
the relation Γ = 2mγkBT . In other words, the frictional dissipation rate γ, that is the
inverse of the relaxation time, is related to measure of the strength of fluctuations in the
background scatterers Γ. This relation represents the famous fluctuation-dissipation
theorem.

Now let’s consider a system under an external driving electric field. The full deriva-
tive in the BTE, see Eq. (1) in the Introduction, can be expressed as

df

dt
=
∂f

∂t
+
~p

m
· ~5rf + ~Fex · ~5pf. (1.9)

Assuming that the system has an uniform density (~5rf = 0) and has attained an
equilibrium (∂f

∂t
= 0), we have

df

dt
= ~Fex · ~5pf = e ~Eex · ~5pf, (1.10)

where ~Fex = e ~Eex. Under the relaxation time approximation, RHS of BTE can be
expressed as (

∂f

∂t

)
c

= feqγ − fγ = −f − feq
τ

, (1.11)
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where γ = 1/τ , feqγ and fγ represent the rates of scattering in and out of the given
volume of the phase space, respectively. Therefore,

f = feq − eτ ~Eex · ~5pf = feq − eτ
∑
b

Eb
∂f

∂pb
. (1.12)

The electric current density is

Ja =
e

V

∫
d3~r

∫
d3~p

(2π~)3fva ≡
3∑
b=1

σabEb, (1.13)

where σab is the conductivity tensor. For a quantum Fermi gas, feq = 1

e(ε−εF )/kBT+1
,

σab = δab
ne2τ
M

= σaa. Eq. (1.13) represents the Ohm’s law, where σab is the Drude con-
ductivity i. The condition of force balance between the driving field and the stochastic
scattering events automatically results in a terminal (drift) velocity, vd, of the electron
system.

The general framework to describe the single-SSE transport is similar to the classical
Drude-Lorentz model [8, 18–20] outlined above. In a quantum treatment, the electron
conductivity can be derived using the memory function expressed in terms of the elec-
tron density-density correlation function and its time and space Fourier transform, the
equilibrium dynamical structure factor (DSF) [8, 21]. The conductivity of SSEs can
be written using the effective collision rate γeff, which is determined by the ripplon
scattering at low temperatures and vapor-atom scattering at high temperatures and
in general depends on the electron density ne, in the form of σ = e2ne/meγeff. When
ne is sufficiently large, many-body effects become important, in particular the multiple
scattering events involving at least two background scatterers. The relaxation time ap-
proximation may be no longer applicable. When the scattering time becomes shorter
than the momentum relaxation time, the initial state of the system at each collision
event does not correspond to the equilibrium state of the background. The retarda-
tion effects become important, and the spectrum of the fluctuating force exerted on
electrons deviates from the white noise. This results in correlations between particle
motions and complicates the mathematical description of the scattering processes. For
strongly correlated electron systems, the electron-electron interaction makes the equi-
librium DSF hard to describe [22, 23]. For SSEs, in some cases it is still possible to
incorporate effects of strong electron-electron interaction into the expression for equi-
librium DSF using the concept of the fluctuating many-electron field [8]. Nevertheless,
in many cases the theoretical predictions of the many-body QTT are unable to explain
experimental observations in SSEs, c.f. our earlier discussion and Fig. 1.2. Up to now,
a complete theoretical tool for describing the electrical transport of electrons on helium
is still missing.

1.3 Scatterers: vapor atoms and ripplons
There are two kinds of background scatterers in the system of SSEs floating above a
free surface of liquid helium. One is vapor atoms of helium, and the other is capillary

iThe Hall conductivity σab also can be derived from the conductivity tensor.
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waves of the liquid surface, or ripplons in their quantized form. The number of both
kinds of background scatterers decreases with cooling. The scattering rate by vapor
helium atoms has been found to be independent of the SSE energy of the motion
parallel to the liquid surfaces, and depends linearly on the density of vapor helium
atoms n(a) [8, 20, 24]

n(a) (T ) =

(
MaT

2π~

)3/2

exp

(
−Q
T

)
, (1.14)

where Q is the evaporation constant and Ma is the mass of a helium atom. Therefore,
while n(a) increases exponentially as the temperature rises, the electron mobility µ
decreases exponentially with temperature

µ =
8ea0

3π~An(a)
∝ T−3/2exp

(
Q

T

)
, (1.15)

where a0 is the effective Bohr radius of SSE and A is the scattering cross section of a
He atom [20].

Figure 1.6: Comparison of µ4He and µ3He as a function of temperature. The
temperature dependence of µ3He is qualitatively same as the µ4He data. The vapor-
atom regime is shifted to lower temperatures for the 3He surface than that for the 4He
case due to the higher vapor pressure of 3He. In the case of 4He, the gradual increase of
µ4He below 700 mK is due to the crossover from atom- to ripplon-dominated scattering
regime. The figure is reproduced from [25].

At low temperatures T < 0.7 K, the vapor density is extremely low. Therefore,
the SSE scattering is dominated by ripplons. The number of ripplons is described
by the Bose distribution function, and only the low energy ones are involved in the
momentum relaxation of SSEs, q ≤ 2k, where q is the wave number of ripplons and
k is the wave number of SSEs corresponding to their thermal motion along a liquid
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surface. For ripplons with such q their energy ~ωq � kBT , which is the consequence
of ripplon dispersion relations ωq =

√
α/ρq3/2. The corresponding density of such

ripplons, therefore, decreases linearly with decreasing temperature [8, 16]:

n(r)
q (T ) =

1

e
~ωq
kBT − 1

' kBT

~ωq
. (1.16)

As a result, electron-ripplon scattering rate decreases linearly with T . For liquid 3He
which has higher vapor pressure than 4He at the same T , the electron-vapor scattering
extends to a lower temperature region, as shown in Fig. 1.6 [25]. At sufficiently low T ,
the mobility drops abruptly. This is caused by the Bragg-Cherenkov scattering when
the SSEs are in a solid phase. This will be discussed in the Sect. 1.5.

Figure 1.7: The momentum relaxation time τ as a function of temperature
for various values of pressing field Fz. Below T ≈ 0.7 K, the ripplon scattering
becomes dominant and shows significant Fz dependence. Note that Ohmic mobility
µ = eτ/me. The figure is reproduced from [20].

The electron-ripplon interaction is described by the displacement function ξ(r) of a
liquid surface entering into the polarization interaction potential of an electron with he-
lium. It is strongly affected by the SSE probability distribution near the interface. As
discussed in Sect. 1.1 the SSE wavefunction Ψn (z) is strongly affected by the pressing
field E⊥, therefore the electron-ripplon scattering is expected to depend on E⊥. Intu-
itively, at high E⊥ the coupling of electrons and ripplons increases, so SSE mobility
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Figure 1.8: A single SSE on an uneven surface. The diagram shows the wave
function of an electron which does not follow the interface displacement (a) and for an
electron that remains in the bound state (b). The figure is reproduced from [8].

decreases [20, 26]. The momentum relaxation time of SSE for various values of pressing
field E⊥ is shown in Fig. 1.7 [20]. The coupling term in electron-rippon interaction
which is linearly proportional to E⊥ mainly results from the fact that an electron wave
fuction in the bound surface state should be zero at the helium vapor-surface intreface,
see Fig. 1.8 [8]. Therefore, when an electron encounters ripplons it should follow the
surface displacement which results in the interaction potential energy Uint ≈ eE⊥ξ,
where ξ is the surface displacement.

1.4 Electron-electron interaction

There is no intrinsic difference between the scattering of an electron from another elec-
tron and that from other sources of scatterers, like vapor atoms and ripplons. Electron-
electron collisions preserve total momentum of particles like other collisions do. But
when describing the dynamics of a system of electrons under the influence of the en-
vironment, electron-electron scattering within the electron system does not contribute
to the momentum balance between the external forces applied to the electron system
and the friction forces from their background scatterers. In other words, the exchange
of momentum between electrons does not change the total momentum of the elec-
tron system, therefore, it doesn’t affect the long-wavelength conductivity directly [21].
The electron-electron interaction mainly affects the electron distribution function f
(in the classical kinetic equation treatment) or the density matrix ρ (in the quantum
treatment) [8, 27]. In the case when the corresponding momentum and energy redistri-
bution within the electron system is mainly governed by the inter-electron interaction,
the regime of electron transport is called the complete control regime. In another case
when only the energy redistribution is governed by the electron-electron collisions, it
is called the partial control regime. The redistribution of f(~r, ~p, t) is strongly related
to the relation between electron-electron collision rate νe-e and momentum/energy re-
laxation rate γ, and thus influences the transport properties significantly. The study
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Table 1.1: KTHNY predictions for a 2D isotropic system.

Solid Hexatic Liquid
Dislocations bound in pairs free free
Disclinations bound in pairs free

Positional correlations quasi-long range short range short range
Elastic constant 6= 0 0 0

Bond-orientational correlations long range quasi-long range short range
The difference between the three phases predicted by the KTHNY theory. There are
difference on two levels: (1) the presence of different types of topological defects, and
(2) the type and range of correlations [9].

of strongly correlated electron systems is largely about the competition between indi-
vidualistic and collective behavior of electrons.

Correlations between electron motions due to the mutual interaction between par-
ticles have large impact on statistical properties of SSEs. Owing to the property of
self-organization, this is largely manifested in the emergence of some kind of ordered
structures, such as the spatially ordered Wigner crystal [28]. Wigner crystal is a solid
phase of electrons in a structureless positive background. When the potential energy
of interaction between electrons Uee becomes significantly larger than the (thermal) ki-
netic energy Ke, the electrons eventually localize at the lattice sites in order to reduce
their total energy. The ratio of the mean interaction energy to the mean kinetic en-
ergy is called the plasma parameter, Γ ≡ 〈Uee〉 / 〈Ke〉. For the system of SSEs floating
above liquid helium, Γ = e2√πne/kBT . The transition for SSEs into a solid phase is
expected to occur at Γ = 130. The spatial structure of WS in SSEs on liquid helium is
a 2D hexagonal lattice [9]. According to the KTHNY (Kosterlitz-Thouless-Halperin-
Nelson) theory, melting of a WS occurs in two stages through two continuous phase
transitions: solid phase to hexatic phase, and hexatic phase to liquid phase. The phase
transition is mediated via the unbinding of pairs of topological defects: disclinations
and dislocations, as shown in Fig. 1.9. A disclination is an orientational defect that
can be viewed as a particle having the wrong number of nearest neighbors, the so-
called coordination number. A dislocation is a bound pair of disclinations of +1 and
−1 coordination numbers. It maintains the long distance ordering with a much lower
energy than an isolated disclination. The unbinding of dislocations will cause the sys-
tem to loose its long-distance order and its resistance to shear stress. The response
to shear stress is a key property to distinguish between solid and liquid phases. The
melting of WS is generally mediated via the spontaneous unbinding of dislocations due
to thermodynamic instability. In KTHNY theory, WS is elastic and characterized by
the shear modulus G. The temperature dependence of the shear modulus can be ex-
pressed as G(T ) = G− (1−A · T/Tc), where Tc is the temperature of the first melting
transition from the solid phase to the hexatic phase, and A is an constant which can
be determined from the experiments [9].

There are two phonon modes of WS excitation spectrum. In long-wavelength limit,
the longitudinal phonon mode coincides with the 2D plasmon spectrum, while the
transverse mode follows the usual sound-like dispersion relation [8]. In a WS, the
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Figure 1.9: Topological defects in a triangular lattice. (a) Isolated disclina-
tions. For a hexagonal lattice (coordination number is 6) there are disclinations with
coordination 5 and 7. They are indicated by (-) and (+) respectively and can be viewed
as topological charges. Note that a disclination is characterized by a mismatch in ori-
entation and the energy of such a defect is large. (b) Isolated dislocation. A dislocation
is a tightly bound pair of +1 and −1 disclinations. The ordering at long distance will
not be disrupted by a dislocation. And consequently such a bound pair has a much
lower energy. The figure is reproduced from [9].
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phonon modes and the motion of dislocations strongly interact with ripplons (one
of the background scatterers). The interaction of WS with a soft liquid substrate
can result in complicated dynamics associated with polaronic states when an electron
becomes self-trapped into a surface dimple that it creates [29]. The coupled WS-dimple
system can show striking behaviours, such as the nonlinear conductivity of WS in the
Bragg-Cherenkov scattering regime and the decoupling (sliding) transition [13, 30].

1.5 Nonlinear transport of electron crystal
The Cherenkov radiation (Nobel Prize in 1958) occurs when a charged particle moves
in a medium at a speed faster than or equal to the phase velocity of the electromagnetic
radiation it triggers in the medium [31, 32]. Although the exact theory for this effect
involves a full quantum mechanical treatment, main features of the Cherenkov radiation
are classical or semiclassical in origin. A moving charged particle polarizes polar atoms
of the medium. The coherent response of the medium as a whole is described by the
distribution of electrical dipoles induced by the charged particle along its trajectory.
When the charged particle’s velocity vp is faster than the local phase velocity of light
in the medium, the induced dipole distribution is asymmetric and has a non-zero total
dipole moment which radiates EM waves. The Cherenkov radiation, accordingly, has
a threshold velocity for the moving particle v(th)

p = c/
√
ε, where c is the speed of light

in vacuum, and ε is the relative permittivity of medium. The propagation direction of
the collective wavefront tangent to all circular wavefronts of the radiated EM waves is
at an angle θc to the direction of the moving charged particle. This characteristic angle
θc can be interpreted qualitatively in terms of "shock waves" like the supersonic bomb
or the bow shock from the moving object on a liquid surface, see Fig. 1.10 [33]. The
angle θc is approximately defined by the travel distance of the moving particle and the
travel distance of the wave triggered at time t0 = t−∆t,

θc ≈ cos−1

(
vwave ×∆t

vp ×∆t

)
, (1.17)

where vwave is the phase velocity of the triggered wave. At vp = vwave, that is θc = 0,
the Cherenkov radiation wavefront is moving in the same direction as particle.

For an array of moving particles, the Cherenkov waves emitted by different particles
would interfere with each other. For the particles in an ordered structure, such as a
Wigner crystal on a surface of liquid helium, the interference of the capillary waves
generated by moving electrons is constructive when the wave vector ~q of radiated
ripplons equals the reciprocal lattice vectors ~G of the WS, see Fig. 1.11. This is
similar to the Bragg scattering of X-rays or neutrons from a lattice. The enhancement
in the amplitude of the radiated ripplons increases the collision rate of electrons with
such ripplons, which results in strong increase of the momentum loss of WS. Therefore,
the frictional drag force dramatically increases and results in a terminal velocity of WS:

vBC = vG =
√
αG/ρ, (1.18)

where G is the magnitude of the reciprocal lattice vector. This is the model of the
Bragg-Cherenkov (BC) scattering which was introduced in 1997 by Dykman and Rubo
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Figure 1.10: Cherenkov radiation. Spherical wavelets of the EM field radiated by
a particle traveling with a speed υ less (on the left) and greater (on the right) than
the speed of light in the medium c/

√
ε. For υ > c/

√
ε, an electromagnetic "shock"

wave appears moving in the direction given by the Cherenkov angle θc. The figure is
reproduced from [33].

[21] in order to explain the anomalous electrical conductivity observed in the system
of SSEs above a liquid helium surface [30, 34]. In the BC scattering regime, the strong
coupling between a WS and its coherently emitted ripplons occurs. The constructive
interference of surface waves forms a commensurate dimple lattice (DL) underneath
the electron lattice, such that the deepened surface deformation increases the friction
force on electrons and slows down WS, see Fig. 1.12 (a). Under this condition, the
effective electron mass increases and the WS mobility decreases dramatically. The
drift velocity of the electron lattice is locked at vBC so the electrical current of SSEs is
IBC = enevBCw, where w is the width of WS. Therefore, in the BC scattering regime
the differential conductivity of SEEs dI/dV ≈ 0, until decoupling occurs.

The decoupling of a WS from the dimple lattice has been shown to be strongly
related to the external driving force Fext applied to the WS in the direction parallel
to the liquid surface [30, 35, 36]. The two systems decouple when Fext is larger than
some threshold value, F (th)

ext . For example, as shown in Fig. 1.12 (b), the WS mobility
abruptly jumps up when the driving voltage Vin exceeds 0.16 V for the upward sweep
and gets back to its value in the BC scattering regime when Vin is lower than 0.135 V
for the downward sweep. The threshold voltages for both sweeps vary from run to run
within about 10 %. A classical model aimed to explain the origin of the threshold driv-
ing force F (th)

ext was proposed by Vinen who used a simple classical argument [37]. The
terminal velocity of a WS in the BC scattering regime results from the balance between
the driving force Fext and the friction forces exerted on the WS. Vinen considered this
friction force F (‖)

DL directed opposite to the WS motion as arising from the reaction
force ~N exerted on the WS from the dimple lattice, see Fig. 1.13. Correspondingly, he
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(a)(a)(a) (b)

Figure 1.11: BC scattering of moving WS. (a) The Cherenkov radiation of a
moving particle when υp = υwave. The corresponding Cherenkov angle θc is zero. (b)
The interference of surface waves by a moving WS on a surface of liquid helium in the
BC scattering regime.

(a) (b)

Figure 1.12: Dimple lattice and WS nonlinear mobility. (a) Schematic view of
the surface deformation (dimple lattice) induced by a WS on liquid helium. (b) The
nonlinear conductivity of a WS in the BC scattering regime and the sliding transition.
The figure is reproduced from [30].
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Figure 1.13: Force balance for an electron in a dimple. The reaction force
~N on the electron from the liquid surface must balance the normal force F (⊥)

WS and an
external driving force Fext (not shown).

related the friction force F (‖)
DL to the pressing force F (⊥)

WS ≈ eE⊥ exerted on the electron
perpendicular to the 2D plane by

F
(‖)
DL = F

(⊥)
WS

(
∂ξ

∂x

)
x=xe

, (1.19)

where xe is the position of the electron, and ξ is the vertical displacement of the liquid
surface in the z direction. Note that a similar expression for the friction force F‖ = ∂Uint

∂x

can be derived from the expression for the electron-ripplon coupling, Uint ≈ eE⊥ξ,
which has been discussed in Sect. 1.3. Therefore, for a given value of the pressing
electric field and a dimple profile ξ(x) there exists a maximum friction force F (‖)

DL,th
when the local slope attains its maximum. Beyond this value the decoupling, or sliding,
between the WS and DL occurs, which leads to a sudden jump of the WS conductivity
as shown in Fig. 1.12 (b). However, this simple model does not account for the bistable
behaviour seen in this figureii.

BC scattering occurs when the WS velocity approaches the resonance velocity of
ripplons and results in the constructive interference of surface waves forming a commen-
surate lattice of dimples. The physics is essentially described by the textbook problem
of a forced harmonic oscillator, where surface vibrations represent the harmonic oscil-
lator and the normal force exerted on the surface by WS represent the periodic driving
of the oscillator. The amplitude of the oscillator is essentially the depth of the dimple
ξ. For an oscillator without damping ξ will become infinity. It is, of course, unphysical.
To avoid this unphysical result, Vinen introduced a phenomenological damping coeffi-
cient vd to account for the energy dissipation in the oscillator (the surface waves) and
found that ξ decreases with increasing vd [37]. He suggested that damping arises from

iiThis bistable behaviour may be caused by the variety of WS defect configurations which affect
the intererence of Cherenkov radiations and the dynamic interactions between a WS and the dimple
lattice [38]. The hysteresis, which depends on how driving field changed in the past, may be also
related to the irreversible thermodynamic change with internal frictions due to defect distributions.
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two effects: the natural damping of the capillary waves and radiative loss of capillary
waves from an electron crystal of finite sizeiii. This hints that the sliding properties
of a WS can depend on its size. However, no experimental studies of such finite-size
effects were done in this system until now.

1.6 Summary
In this chapter, we briefly reviewed the fundamental concepts of the transport theory
(Sect. 1.2),the electron-ripplon and electron-atom scattering (Sect. 1.3), the electron-
electron interaction and phase transition in SSEs (Sect. 1.4), and the non-linear trans-
port of a WS (Sect. 1.5). In the following chapters we describe our experiments where
we aimed at achieving further understanding of some puzzling transport properties
in the strongly-correlated SSE system on liquid helium, in particular focusing on the
nonlinear transport of a WS in the Bragg-Cherenkov scattering regime.

iiiVinen has further explained the meaning of a "finite" size: "An effectively finite size may arise
from the lack of long-range order in the electron crystal, either from its being polycrystalline or because
of the inherent lack of long-range crystalline order in two dimensions; or it may arise because only
limited areas of the crystal can satisfy the condition for the Bragg-Cerenkov scattering at any one
time [37]."



Chapter 2

Experimental methods

Recently, it was demonstrated that confining electrons in capillary-condensed mi-
crochannel structures facilitates control of the electron system by imposed electrostatic
potentials and allows to observe new interesting features associated with the electron
transport and phase transitions in the system, such as clocked electron transport [39],
discrete transport through a point-contact constriction [40, 41], suppressed and re-
entrant melting of a quasi-1D electron crystal [42–44], stick-slip motion of a WS [36],
inhomogeneous WS [45], etc. Motivated by these works, we designed and fabricated
several microchannel devices for different research topics. We introduced varied config-
urations of external potentials imposed by microscopic electrode structures introduced
along the microchannel. In most of our devices, there are two reservoirs located sym-
metrically on the two ends of a long microchannel in order to provide a source of
constant SSE flow in the microchannel. One of our devices, which will be described in
detail in Chapter 6, features three such reservoirs connected by a T-shaped microchan-
nel. The transport properties of SSEs subjected to external electrostatic potentials of
varied configurations are measured by a standard capacitive (Sommer-Tanner) method
and further characterized by an analysis of a lump circuit model.

2.1 Device structure and manufacturing process

The experimental devices for studying transport properties of electrons on liquid helium
have generally a structure of the field-effect transistor for a two-dimensional electron gas
in semiconductors, for example in a form of thin films [47] or microchannels [48]. The
first experiment of the electrons on a liquid helium surface fractionated by microchan-
nels was conducted by D. Marty though the conductivity was not measured [49]. Later,
P. Glasson et al. performed the pioneering study using capillary-condensed microchan-
nel structures to investigate transport properties of confined electrons [48, 50]. Then
a careful analysis done by H. Ikegami et al. signified the practicality of microchannel
structures for studying nonlinear transports of electrons [51, 52]. As shown in Fig.
2.1, the device to study electron transport consists of an active channel through which
electrons flow from the source to drain. For the system of SSEs floating above liquid
helium, we need a channel structure to maintain liquid helium in the source, drain and
gate electrode ares. The channels are etched in the insulating material, therefore the

21
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(a) (b)

Figure 2.1: Schematic view of an device for SSE experiments. (a) Cross
section of a n-type Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET).
An electrical potential applied to the Gate electrode controls the electron density in
the channel region. The current of electrons is measured between Source and Drain. (b)
A schematic diagram of a microchannel device used for SSE transport measurements.
The device has a double-layered structure with a top and bottom metal electrodes
separated by an insulting layer. The center channel connects two reservoirs of SSEs.
The SSEs are confined in the area above the center channel by the negative-biased top
guard electrode Vgu. The SSE surface density ne in the center channel is controlled by
the voltages applied on the bottom gate electrode and Vgu. The figure is reproduced
from [46].

depth of channels is defined by the thickness of the insulating layer. The guard elec-
trode on the top of insulating layer is used to avoid charging of the top of the insulating
layer. It also helps to confine electrons inside the channel. More negative voltage Vgu
confines SSEs stronger such that the effective width of the charged system in a channel
can be tuned by Vgu. Therefore, in order to have an independent control of the width
of the electron system in the center microchannel an independent top electrode, the
split-gate electrode, is usually introduced along the center microchannel.

Exemplary images of one of the used devices are shown in Fig. 2.2. All the mi-
crochannel devices used here are composed of two patterned gold layers separated by an
insulating layer. The two layers of gold electrode can be distinguished by the colors in
Fig. 2.2 (b). The bottom layer contains reservoir electrodes, whose functions are simi-
lar to the Source and Drain in MOSFET, and a central microchannel electrode, whose
functions are similar to the Gate in MOSFET. The top layer is composed of guard
and split-gate electrodes. Those two layers of microscopic structure are prepared by
the lithography techniques. For a pattern of spatial resolution higher than 1 µm, the
layer is prepared by the electron-beam lithography (EBL) technique. Otherwise, the
micro structure is prepared by the UV lithography technique. The insulating layer
varies for different microchannel devices from hard-baked photoresist to silicon nitride.
The insulating layer of hard-baked photoresists was made by OFPR or Shipley on hot
plate at 250 ◦C for 30 minutes. The silicon nitride insulating layer was prepared by
the chemical vapor deposition (CVD) technique. The overall process of sample manu-
facture starts from the bottom gold layer, then adds a homogenous layer of insulating
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Images of a microchannel device at different preparation stages.
(a) (A microscopic image) The top view of a sample after top-layer development. (b)
(A microscopic image) The top view of a sample after lift-off. The bottom layer is
covered by a layer of insulating material which makes it darker than the top layer. (c)
& (d) Scanning electron microscopic images of a sample after etching. The walls of
channel are vertical and sharp. (e) A microscopic image of a sample after etching. The
bottom layer is exposed such that colors of bottom and top layers are almost the same.
(f) A microscopic image of a sample with wires bonded on electrodes.
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material of desired thickness. After finishing the top layer on the flat insulating layer,
the sample was treated with reactive ion etching (RIE) with sulfur hexafluoride gas un-
til the insulating material is removed and the bottom layer becomes exposed (Fig. 2.2
(e)). Because the etching rate for gold is much slower than the insulating material and
the RIE is highly anisotropic, the top-layer gold pattern will act as a mask for etching
and result in a vertical groove along the pattern’s edge. In this manner, the channel
structure is created (Fig. 2.2 (c) and (d)). The final step of the sample manufacture
is to make connections between electrodes and the 8-lead side braze by a wire bonder
(Fig. 2.2 (e) and Fig. 2.3).

2.2 Experimental setup

Figure 2.3: A photograph of a microchannel device mounted in a copper
cell.

Each microchannel device was mounted horizontally in a vacuum-tight copper cell,
see Fig. 2.3. A tungsten filament placed above the device at a distance about 5 mm
served as an electron source for charging the liquid 4He surface in all microchannels.
The vacuum-tight copper cell was filled with liquid 4He and the level of bulk liquid 4He
inside the cell was maintained to be slightly lower than the level of the microchannel
device (about 1 mm). All the microchannels, therefore, are filled with the liquid 4He
by capillary action. The suspended helium surface in microchannels will curve due
to the Van der Waals attraction of liquid to the walls of microchannels. The radius
of curvature Rc of the liquid surface depends on the height of the device above the
bulk helium level h, as shown in Fig. 2.4 [53]. For a microchannel of 10-µm width,
the depth of the liquid 4He meniscus ζ0 is expected to be smaller than 50 nm. If
the suspended helium film is charged, the electron pressure will result in a decrease
of Rc = α/

(
ρgh+ n2

ee
2

2ε0εHe

)
, where α is the surface tension of liquid helium, and g is
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the acceleration due to gravity [54]. For ne ≈ 1013 m−2, we have ζne ≈ 240 nm. For
a sample of 5-µm channel width, ζ0 ≈ 12 nm and ζne ≈ 60 nm. In the experiments
described in the following chapters, we use a device with a width of microchannels
in the range from 5 to 10 µm, and the channel depth in the range from 0.55 to 1.6
µm. The reduction of liquid helium thickness for such microchannels is approximately
10 % of the physical channel height for an electron density ne ∼ 1013 m−2 for such
microchannels. Therefore, for the sake of simplicity the liquid helium height in the
channel is assumed to be the geometrical height of the channel. This simplification
mainly affects the estimation of ne from the parallel-plate capacitor approximation.

Figure 2.4: A schematic sketch of a suspended helium film in a corrugated
surface. The figure is reproduced from [53].

It is convenient to use a simplified capacitance model to find a relation between the
density of electrons in the microchannel and voltages applied to different electrodes of
the device [41]. First, we define the total capacitance of the liquid surface in the central
microchannel CΣ = Cbottom + Ctop, where Cbottom and Ctop are capacitances between
the liquid surface and channel’s bottom and top electrodes, respectively (see Fig. 2.5)).
It is also convenient to introduce dimensionless coupling constants α = Ctop/CΣ and
β = Cbottom/CΣ, which satisfy the obvious relation α + β = 1. Then, the potential at
the uncharged liquid surface can be written as Vs = αVtop +βVbottom. When the device
is charged with electrons, the potential of the charged liquid surface Ve has to be the
same everywhere, owing to a high mobility of the surface electrons on liquid helium.
The value of Ve is determined by voltages applied to the reservoir’s bottom and guard
electrodes and amount of electrons in the reservoir, and is assumed to be fixed once the
device is charged i. Then, by the definition of capacitance we can write for the total
charge Q of electrons in the channel Q = CΣ(Ve − Vs). A further simplification can be
made by assuming an uniform density distribution of electrons in the channel, that is
Q = −eneS, where ne is the areal density of surface electrons, e > 0 is the electron
charge, and S is the channel area. Such a parallel-plate capacitance approximation is
partially justified by a large aspect ratio (∼ 10) of a wide and shallow microchannel

iOccasionally, loss of electrons from the device is observed, which is reflected in discontinuous
jumps of the measured current I. Such data are not considered here.
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used in our device. Using Cbottom = εε0S/d, where d is the height of the microchannel
in our device, we obtain the required relation

ne =
εε0
βed

(αVtop + βVbottom − Ve) =
εε0
βed

(Vs − Ve) . (2.1)

Figure 2.5: Parallel-plate capacitor model. The charged liquid helium surface is
approximated by a conducting plate parallel to the top and bottom electrodes. From
this model, the relation between electron density ne and voltages applied to electrodes
can be found, see Eq. (2.1) in the text.

In addition to the simplified capacitance model mentioned above, the electron den-
sity ne can be calculated by numerically solving the Poisson equation with the aid of
a finite-element model (FEM). We define an electrostatic model of our channel, where
the SSE system is represented by an equipotential plane along the helium surface at
potential Ve. According to Gauss’s law, the electron-density distribution ne(x, y) is
retrieved from the difference of perpendicular components of electric fields Ea and Eb

above and below the electron system, respectively, see Fig. 2.5, ne = εε0
e

(Ea − Eb).
From these calculations, we directly obtain the width w and length l of the electron
system in the channel, which is always somewhat less than the geometric channel size
W and L. An example of calculated profiles are shown in Fig. 2.6. The value of Ve
(horizontal dotted line), which represents the potential of the electron system in our
model, is determined experimentally. The resulting electron-density profile ne(y) across
the channel is not homogeneous (orange closed square symbols). In the following, we
define the electron density ne as the average value n(aveg)

e = (1/w)
∫ w/2
−w/2 ne(y)dy (blue

dash-dotted line).
The profile of potential Vs(y) at the uncharged liquid surface can be numerically

estimated by using a FEM that solves the Poisson equation subject to boundary con-
ditions. It is found that Vs(y) largely depends on the channel geometry (the black solid
line in Fig. 2.6). For the shallow channel geometry, the profile can be approximated
as a hyperbolic cosine function Vs(y) = A[cosh(By) − 1] + Vs(0) (the red dash-dotted
line in Fig. 2.6). The coefficients A and B can be obtained from fitting to the ex-
act profile obtained by FEM calculations. Since ne(y) is maximal in the center and
quickly decreases towards the channel walls, the effective capacitive coupling between
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Figure 2.6: Electrostatic potential and electron density profiles across the
channel obtained by different methods as described in the text. Left axis:
The black curve is the FEM calculated potential profile across the central channel with-
out SSEs. The red dot-dashed line is the fitting by a function Vs(y) = A[cosh(By) −
1] + Vs,y=0. Right axis: The orange (closed squares) symbols is the SSE density profile
calculated by FEM. The blue curve is the averaged ne calculated from the above pro-
file. The dark yellow curve is calculated using ne,ch(y) = ε0ε(Vs(y) − Ve)/ (edβ). The
simulations are done for a microchannel of width w = 5 µm and height 0.55 µm with
Vsg = −0.8 V, Vch = 1.5 V and Ve = 0.92 V.

the SSEs and the (bottom and top) channel electrodes mainly comes from the SSEs at
the channel center. In the simplified capacitance model mentioned above, see Eq. (2.1),
the values of α and β, which determine Vb, are estimated by FEM calculated value of
Vs(y = 0). The value of ne(y = 0) estimated by Eq. (2.1) (the dark-yellow dashed line
in Fig. 2.6) is fairly close to the averaged n(aveg)

e estimated from Gauss’s law (the blue
dash-dotted line in Fig. 2.6), while the width w̄ at Ve = Vs(y)y=±w̄/2 is close to the width
of the electron system w. Therefore, the n(aveg)

e and w can be approximately retrieved
by equating Ve to the fitted function Vs(y). Similar approximate methods were used in
previous studies to obtain estimation of ne in microchannel devices [41, 44]. Note that
this continuous electron distribution approximation may not work so well for the case
of electrons in a WS state, where the granular nature of electrons has to be taken into
account. Alternately, the electron density of a WS can be estimated from transport
data in BC scattering regime, as will be described later.
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2.3 Measurements and analysis

(b)(a)(a)

Figure 2.7: Electrical lumped-circuit model of a charged microchannel de-
vice. (a) The left reservoir electrode on the bottom layer is driven by Vin, and the
response current Iout is measured from the right reservoir electrode. Ich is the current
of a SSE flow in the center channel. (b) The electrical lumped-circuit model used for
retrieving Ich and the resistance of the SSEs in the center channel R.

The current of SSEs through the center channel Ich is measured by a standard
capacitive (Sommer-Tanner) method and analyzed by the lumped-circuit model shown
in Fig. 2.7. An AC voltage Vin at the frequency f was applied to the electrode of
left reservoir, and the output current Iout is measured with a lock-in amplifier at the
bottom electrode of right reservoir. Due to the symmetry of the left and right reservoir
area of the microchannel device, the capacitances between the charged liquid surface
and the bottom reservoir (top guard) electrode on both sides are assumed to be the
same, indicated as C1 (C2). In the lumped-circuit model, we obtain

Iout =
iωC1

2 + iωC0R
Vin, (2.2)

where C0 = C1 +C2. When R varies, the plot of the component of current Iout in phase
with Vin, Re(Iout), versus the quadrature component, Im(Iout), is a semicircle. The
relation between the radius of the semicircle r0 and C0 is C0 = (4r0)/(ωβVin), where
β = C1/C0. Therefore, the value of C0 for a particular microchannel device can be
determined by the numerical fitting of the Re(Iout) vs Im(Iout) plot (Fig. 2.8), while the
value β can be numerically determined by the finite element method (FEM) [41, 55].
After the value of C0 is found, the resistance R and the current Ich of electrons in the
center channel can be obtained by the following equations

R =
1

2πfC0

√
V 2
in (2πf)2C2

0β
2

I2
out

− 4, (2.3)

Ich =
Iout
β
, (2.4)
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With the knowledge of R and Ich, the voltage drops across the channel Vch can be also
estimated.

(a)(a) (b)

Im
(I o

ut
) (

nA
)

Re(Iout) (nA)

Figure 2.8: Examples of experimental data obtained using one of our mi-
crochannel devices. (a) The amplitude (symbols) and phase (dashed-doted lines) of
the current Iout versus the voltage Vch applied to the bottom electrode of the central
channel for different values of driving frequencies. The data were taken using the device
described in Ch. 4 at Vin = 5 mVp.p.. With the increase of Vch, ne in the channel starts
to increase from zero, where it shows a constant amplitude and phase of background
current, to a higher value close to WS crystallization. The current amplitude first
increases due to conduction through the channel and then decreases due to crystalliza-
tion of SSEs and increase of the resistance R of the channel. (b) Plots of Im(Iout) vs
Re(Iout) using data in (a).

As discussed in Ch. 1, in the regime of BC scattering we observe a BC plateau of
current IBC = enevBCw. Therefore, we can retrieve the electron density ne from the
measured current IBC by the following relation

ne =

(
IBC
ew

√
ρ√

2 4
√

3πα

)4/5

. (2.5)

As described above, the effective width of SSE system in the channel w = w(ne) can
be determined by equaling Ve to Vs(y)y=±w/2. Therefore, from Eq. (2.1) we get

ne =
εε0

ed
A
[
cosh

(
B
w

2

)
− 1
]
. (2.6)

Consequently, for a given IBC, both ne and w can be retrieved by solving Eq. (2.5) and
Eq. (2.6).

In the lumped-circuit analysis of AC-driven SSEs described earlier we assumed a
linear relationship between applied voltages Vin and SSE currents Ich. For the transport
of a WS in the BC scattering regime, the analysis is slightly complicated by a nonlinear
dependence of Ich on driving voltages. Fig. 2.9 shows time-resolved measurements of
currents Iout in the BC scattering regime. The measured current significantly deviates
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from sinusoidal due to its saturation at the BC-plateau value IBC. This affects the
results obtained by a lock-in amplifier which measures the first harmonic of the current
signal at the reference frequency. The lock-in signal in the case of a non-linear response
of SSE can be modeled by an analytical expression

Ilock-in =
π

4

(∫ −π
2

+arcsin
(
IBC
s×Vin

)
−π

2

s× Vin cosφ× e−iφdφ+

∫ 0

−π
2

+arcsin
(
IBC
s×Vin

) IBC × e−iφdφ
)
,

(2.7)
where IBC is an adjustable parameter and s is an experimentally determined slope
of the linear IV -dependence far from the BC scattering regimeii. An example of the
amplitudes and phases measured by a lock-in amplifier together with fitting by Eq. (2.7)
are shown in Fig. 2.10.

iiIn general, the value of υBC is about 10 m/s. For the system of SSEs on liquid helium which
possesses mobilities as high as 104 m2/Vs, it will reach BC scattering regime at a driving voltage
as small as 10−3 V. The previous studies have shown a linear transport behavior before the drift
velocity υd of a WS reaching the BC scattering regime [13]. Once υd approaches υd,BC, the measured
current I respect to the further increase of the driving voltage Vin will saturate at the value of IBC.
Therefore, before the decouple of BC scattering, there appears a plateau in the IV curve due to the
mechanism of BC scattering. This plateau is flat in the time-resolved transport measurement as shown
in Fig. 2.9 [38]. For measurements by a lock-in amplifier, the measured signal is the first harmonic
of the distorted current response of a WS with respect to the sinusoidal drive. Therefore, the signal
in the BC scattering regime in the measurement by a lock-in amplifier IBC,l is not as flat as the one
in the direct time-resolved transport measurement IBC,d.
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Figure 2.9: Time-resolved transport measurement for SSEs in the BC scat-
tering regime. Currents recorded for SSEs in the BC scattering regime (solid lines,
left axis) as well as the sinusoidal driving voltage Vlr (dashed line, right axis) versus
time t. The blue dotted lines show the value of current IBC at the BC plateau. The
sharp peak of currents observed in the trace marked by DM is due to the WS sliding.
The figure is reproduced from [38].
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Figure 2.10: Amplitudes and phases of current Iout measured by a lock-in
amplifier versus the amplitude of driving voltage for WS in the nonlinear
transport regime. The dashed and dash-dotted lines are fittings using Eq. (2.7) with
fitting parameter IBC = 0.51 nA.





Chapter 3

Inhomogeneous WS and multiple BC
plateaus

In our first experiment, we studied transport of SSEs which had a nonuniform density
ne along the channel. In particular, the transport features attributed to the electron
ordering, such as the BC scattering and the WS sliding, were probed and compared for
three cases: (1) a homogeneous WS in a 400 µm-long channel, (2) a small WS island
of 20 µm in length formed at the center of the channel filled with electron liquid (EL),
and (3) an inhomogeneous WS composed of two electron lattices with different lattice
constants. For the inhomogeneous WS, we found two separate BC scattering plateaus
and WS sliding transitions attributed to each individual WS. The corresponding IV -
curves are explained in terms of an interplay between transport properties of two WSs
connected in series.

3.1 Experiment

The microchannel device used in the experiment is shown in Fig. 3.1 (a). The device
consisted of an array of 1.5-µm-deep channels, fabricated on a silicon dioxide substrate
using optical lithography. Four sets of 20-µm-wide channels connected in parallel,
which serve as electron reservoirs, are connected to a single central channel that is 10
µm wide and 400 µm long (Fig. 3.1 (a), inset). A schematic picture of the device is
shown in Fig. 3.1 (b). In the experiments discussed here only two electron reservoirs
(R1 and R2) of the device were used in the measurements, while two others were kept
empty.

The electrostatic potential in the reservoirs and the central channel is controlled by
several electrodes integrated into the device architecture. Two electrodes, each covering
the bottom of one of the reservoirs and the adjacent part of the central channel, are
denoted as reservoir electrodes. The potential of these electrodes is denoted as VR.
The electrode covering the top of the channel ribs is denoted as the guard electrode,
and its potential is denoted as VGu (during the measurements it was always grounded,
so VGu = 0 V). The potential difference VR− VGu > 0 confines the electron system and
controls the electron density in the reservoirs (nr) and in the central channel (nch). The
20 × 10 µm gate electrode, with potential VG, is defined in the middle of the central

33



34 Inhomogeneous WS and multiple BC plateaus

(c)

(b)

Guard (VGu)

20 m

10 m

Figure 3.1: Microchannel device for study of an inhomogeneous WS. (a) A
microscopic image of the microchannel device used for the inhomogeneous WS study.
There are four reservoirs in this sample. Only two reservoirs (R1 and R2 in (b)) are used
in the measurement, while two others were kept empty (negatively biased). Inset: (false
colored) the structure of the center channel. (b) & (c) A sketch of the experimental
circuit, where the current of SSEs is driven between reservoirs R1 and R2 through the
center channel.
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channel at the bottom. The potential difference VG − VGu > 0 controls the electron
density in the section of the central channel above the gate ng. Thus, ng could be
made significantly different from nch. The current of SSEs through the central channel
is measured by the Sommer-Tanner techniques described in Ch. 2 at driving frequency
of 99.5 kHzi.

The possibility to apply different independent potentials VR and VG to the channel
and gate electrodes allows for three distinct states of SSEs in the microchannel. In
the first case, we apply the same potential VR = VG to each electrode. Under this
condition, the SSE density is homogeneous along the whole central channel, nch = nG.
For high enough density nch, a homogeneous WS is formed and fills the whole channel.
In the second case, a sufficiently large voltage VG > VR is applied to the gate to form a
WS only along the gate electrode, while keeping EL in the rest of the channel. In the
third case, sufficiently large independent voltages VG and VR are applied to form two
distinct WSs above both the gate and channel electrodes, with different ne and lattice
constants.

3.2 Results and Discussion
Fig. 3.2 shows the IV curves measured at 0.58 K for the three cases mentioned above.
Fig. 3.2 (a) shows IV -curves when VR = VG (homogeneous ne along the channel)
for three different values of VR. As VR increases, the ne increases and SSEs form a
WS in the center channel. The expected length of the WS is about the length of the
whole center channel, 400 µm. When the WS forms, a clear BC scattering plateau
appears. This data also show that decoupling onset of BC scattering increases with
the applied voltage VR. Fig. 3.2 (b) is the second case of a WS island above the gate
electrode. In this case, VR is maintained at 0.3 V while a different bias VG is applied
to the gate. Fig. 3.2 (b) shows IV -curves for several values of VG. With increasing VG,
a BC scattering plateau starts to develop, and the decoupling onset shows the same
trend as the homogeneous WS case. The length of the WS island is estimated to be
about the length of the gate electrode, i.e. 20 µm. Fig. 3.2 (c) is the third case of an
inhomogeneous WS. For a sufficiently large VG and VR, there are three segments of WS
in the center channel connected in series, see Fig. 3.1 (c). Fig. 3.2 (c) shows IV -curves
for the fixed value of VR = 1.5 V and different values of VG. In general, IV -curves
exhibit multiple plateaus. While one plateau of BC scattering is always presented
when VR is fixed at 1.5 V, the second plateau starts to develop with increasing VG. In
Fig. 3.2 (d), we compared the individual plateaus of the individual WSs from the first
and second case with the multiple plateaus from the third case. It is found that the
IBC values of the two plateaus in the case of two WSs in series are the same as the
values in the case of a single WS. This allows to identify two plateaus to be due to BC
scattering induced by two individual WSs.

The behavior of the whole IV -curve for different values of VG can be understood as
an interplay between transport properties of two individual WSs connected in series,
which in turn depends on the driving electrical field E‖ in each segment of the inho-

iBecause the bottom electrodes of reservoir and the center channel are connected, we didn’t use
the lumped circuit describe in Chapter 2 for further analysis.
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Figure 3.2: Iout vs Vpp measured at T = 0.58 K and VGu = 0 V. (a) A homoge-
neous WS all along the channel. The expected length of the WS is about the length
of the whole center channel, 400 µm. (b) A WS island above the gate electrode. The
length of the WS island is estimated to be about the length of the gate electrode, i.e.
20 µm. The other parts of the center channel are maintained in a liquid phase. (c)
An inhomogeneous WS. The two BC scattering plateaus result from the interplay of
the WSs of different lattice constants in the center channel. (d) The three above cases
plotted together on the same graph. The dash-dotted lines are fitting of the lock-in
response as described in Chapter 2.
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mogeneous WS. Since the density of SSE in the microchannel is fixed, the current I
through the cross section of different segments of the microchannel should be the same.
For the Drude model, I = enevdw, where vd = µE‖ is the drift velocity. For the WSs
connected in series, the applied driving voltage Vin is the sum of voltage drops of each
segment. Therefore,

Vin = V
(ch)
in + V

(G)
in = E

(ch)
‖ × Lch + E

(G)
‖ × LG =

I

e

[
Lch

nchµchwch
+

LG

nGµGwG

]
, (3.1)

where Lch and LG are the length of channel and gate electrodes, respectively. Because
VG and VR are different and because the two crystalline sections Lch and LG have
different lengths, the driving electric fields E‖ applied to the SSE in each WS are
different. In Fig. 3.2 (c), the shifts of sliding onset of the first BC scattering plateau
may be affected by the fact that the ratio of V (ch)

in to V (G)
in is changing.

For each WS, the sliding from the dimple lattice occurs when the driving force
per electron eE‖ reaches a threshold value that depends on the electron density and
the pressing electric field. Once decoupled from the dimple lattice, the WS resistivity
drops significantly. For two WSs connected in series, the sliding of one WS from the
dimple lattice therefore leads to an increase in the driving force applied to SSEs in the
second WS. While the drift velocity of second WS increases with increasing V (G)

in and
approaches its resonance velocity of BC scattering vBC(ne) (see Eq. (1.18)), the BC
plateau of the second WS develops. When the V (G)

in is sufficiently large to decouple
the WS above the gate electrode, the second sliding occurs. For the short gate region,
E‖ becomes very large once the SSEs in the rest of the channel are decoupled from
the dimple lattice; the BC scattering can be observed only when the pinning force
becomes sufficiently strong, thus when VG is large. For lower VG, once the SEs in the
main part of the channel become decoupled, the value of E‖ in the gate area becomes
large enough to immediately induce sliding of SEs above the gate area. As a result, we
observe a single sliding transition in the whole channel at lower VG and two distinct
sliding transitions in the main part of the channel and above the gate at higher VG.

The decoupling of a WS from dimples leads to an abrupt change in the electron
current. Therefore, it is convenient to represent data in terms of the differential con-
ductivity dI/dV . Such data are summarized and plotted in Fig. 3.3. The line between
the area I and III in the figure indicates the first sliding transition due to the long WS
above the center channel electrode. When nG approaches nch, the transition line splits
into two lines to form a characteristic Y-shape. The two lines correspond to two WS
sliding transitions, one in the WS above the center channel electrode and the other in
the WS above the gate electrode. Since the width of microchannel in the reservoirs
is wider than the one in the central channel, nr > nch. Therefore, whenever nch is
high enough to form a WS, the SSEs in reservoir area much have been in a crystal
phase already. While in general, the resistance of the device is mainly determined by
the flow of SSEs in the channel, in BC scattering regime the total current Iout can be
affected by the transport of electrons in the reservoirs. Therefore, we suspect that the
line enclosing the area IV is due to the sliding transition of a WS in the reservoir.
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Figure 3.3: Differential conductance dIout/dVin vs Vin and VG measured at
T = 0.58 K, Vch = 1.5 V. Labels I-IV correspond to different transport regimes as
discussed in the text. The Y-shaped dash-dotted line serves as an eye guide.
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3.3 Summary
We have investigated and compared transport properties of (1) a homogeneous WS,
(2) a WS island in EL, and (3) an inhomogeneous WS formed on the surface of liquid
helium, in a microchannel geometry. For the homogeneous WS our observations are in
good agreement with previous studies. For the WS island, we found that characteristic
WS transport phenomena are retained at least down to a WS size of 20 µm. For the
inhomogeneous WS, the transport properties can be explained by the interplay of the
transport of two distinct WSs connected in series.

In our first experiment, we have demonstrated the possibility to create a WS of
a sufficiently small size (≈ 20 µm) and studied its transport properties. In the next
chapter, we describe our studies of the relationship between the size of a WS and its
nonlinear transport properties.





Chapter 4

Effect of finite size of WS on its
nonlinear transport

As discussed in Ch. 1, Vinen predicted a dependence of the nonlinear transport features
for a WS, in particular the sliding threshold of driving forces, on the size of a WS.
This arises from the loss of coherently excited ripplons from the system’s boundary.
In the previous chapter, we demonstrated the possibility to study nonlinear transport
properties of a small WS island created in a microchannel. This motivated us to design
a sample suitable for studying nonlinear transport of a WS of varied sizes to observe
the finite-size effects predicted by Vinen. These studies are subject of this chapter.

4.1 Theoretical framework

As a theoretical framework for our experiments we use Vinen’s model which has been
discussed in Sect. 1.5. In addition to explaining the mechanism of resonant enhance-
ment of dimples and their coupling to a driven WS, it also allows to estimate the
maximum (threshold) driving force before a WS decouples from dimples. According
to Vinen’s model, the friction force exerted by a dimple on a electron is related to
the surface displacement ξ, see Fig. 1.13. The latter can be found from the Laplace
equation describing waves on a free surface of a liquid:

−∂p
∂t

+ ρ
∂2φ

∂t2
− α ∂

∂z

(
∂2φ

∂x2

)
= 0, (4.1)

where φ is the velocity potential, p is the pressure on the surface exerted by the WS,
ρ is the density of liquid, α is the surface tension, z-direction is perpendicular to
the surface, and x-direction is in the direction of the WS motion. In addition, the
relation between the velocity potential φ and the displacement of the surface element
ξ is ∂φ/∂z = ∂ξ/∂t. The pressure on the surface exerted by an infinitely long WS
moving with velocity vx can be described as p = neeE⊥Re

[
eı(G1x−ωt)

]
, where G1 is the

magnitude of the smallest reciprocal lattice vector, Ω = vxG1, and we take into account
only the first harmonic of Fourier expansion of p(x). Eq. (4.1) is similar in structure
to the equation of motion for a frictionless harmonic oscillator driven by a periodic
force. In our case, the eigen-frequencies of oscillator correspond to the capillary wave

41
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spectrum, ωq =
√
q3α/ρ, and the resonance is expected when ωq = vxG1. The steady-

state solution of Eq. (4.1) and ∂φ/∂z = ∂ξ/∂t describes the surface deformation. The
maximum amplitude of the periodic surface displacement is

ξ0 =
neeE⊥
ρG1

1

υ1υd
, (4.2)

where v1 =
√
G1α/ρ and vd is the phenomenological damping coefficient introduced

by Vinen to account for the energy dissipation in the oscillator. The energy loss in the
coupled WS-DL system includes the natural damping of ripplons and the radiative loss
of ripplons through the system’s boundary [37]. In addition, the distribution of defects
in the electron lattice may also contribute to vd. Eq. (4.2) shows that the maximum
amplitude of the resonant ripplons ξ0 decreases with increasing damping parameter
vd and increases linearly with increasing pressing force from WS. The corresponding
maximum force obtained by Vinen is given by

Fmax = eE⊥

(
∂ξ

∂x

)
x=x1

=
nee

2E2
⊥

ρυ1υd
, (4.3)

where the slope of the liquid surface in the above equation is evaluated at x1 = Ωt/G1
i.

The situation could be more complicated when the driving force on a moving WS is
not constant as it usually happens in an AC driven WS. Since the Fourier components
of the dimple profile are time-averaged quantities, they were found to be strongly
dependent on the alternating driving field conditions [57]. Under an AC driving at
frequency ω, the dimple profile appears to be dependent on the ratio ω/γq, where γq
is the damping rate of ripplons with wave number q. For ω � γq, the resulting dimple
shape is close to the one obtained for DC driving. For ω > γq, the interference of
ripplons generated at different times during oscillatory period of AC drive makes it
more complicated. Fig. 4.1 shows the theoretical curves for a dimensionless function
Q, where Q represents a driving electric field Ex, versus the normalized drift velocity
u0 = vx/v1

ii [57]. In particular, there appear multiple resonances in addition to the
main resonance at vx = v1 predicted for the DC driving.

The dimple profile also depends on the orientation of the direction of WS motion
with respect to the symmetry axes of the WS. For simplification, here we assume the
direction of WS motion to be parallel to the line connecting two nearest neighbors of the
electron lattice. Despite some complications arising from AC-driving, etc., in general
the maximum depth of the dimples is given by ξ0 from Eq. (4.2). As shown in Fig. 1.13,
the maximum horizontal reaction force from the surface deformation is proportional to
ξ0, F

(‖)
DL,th ∝ ξ0, thus is strongly affected by the phenomenological damping coefficient

vd. Therefore, by measuring the threshold driving force at the decoupling onset, the

iNote that due to the damping, the spectrum of the induced ripplons is not a delta function
centered at the resonant velocity υ1. The actual velocity distribution of the induced ripplons should
depend on υd [56]. As a resonance signal, we may be able to treat the ripplon frequency response
as a Cauchy-Lorentz distribution of the full width at half maximum (FWHM) υd [21]. The resulting
dimple profile from the superposition of all the induced ripplons may, therefore, be able to further
estimate.

iiNote that in the Drude regime vx = µEx
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Figure 4.1: Field-velocity characteristic of the BC resonance under AC
driving of a WS. The dimensionless function Q(u0, β, ω

′), which describes the field-
velocity characteristic, versus the normalized drift velocity u0 of a AC-driven WS.
Curves are for several values of dimensionless ω′ which is the ratio between the driving
frequency and frequency of resonant ripplons. Fixed parameter β characterizes the
damping rate for resonant ripplons. The figure is reproduced from [57].

factors affecting the damping of resonant ripplons can be studied. In particular, we
are interested in the effect of finite size of a WS on damping of resonant ripplons.

4.2 Experiment

Two microchannel devices were used in the experiments described here. The first de-
vice, hereafter called Sample 1, was composed of two patterned gold layers separated
by an insulating hard-baked photoresist layer with 1.6 µm in height, while the second
device, Sample 2, was composed of the same patterned gold layers but with an insu-
lating silicon nitride layer with 1.5 µm in height. The bottom layer contains a left
and right reservoir electrodes connected by a 215 µm long channel, which is formed
with one 5 µm, one 10 µm, one 20 µm, and two 90 µm long segments. The top layer
contains a split-gate electrode and a guard electrode, by which the microchannels are
defined (Fig. 4.2). Adjacent electrodes were separated by 1 µm gaps.

The transport of electrons through the microchannel device was measured by the
Sommer-Tanner method as described in Ch. 2. An AC voltage Vin at the frequency f
in the range 30−100 kHz was applied to one of the reservoir electrodes, while both the
in-phase and quadrature components of the current Iout induced by electron motion in
the other reservoir’s electrode was measured with a lock-in amplifier. The capacitance
value C0 for both samples are retrieved from the measured trajectory data by the
method mentioned in Sect. 2.3. The values of C0 are 2.04 pF and 6.82 pF for Sample 1
and 2, respectively. As mentioned in Sect. 2.3, the FEM-determined values of β for both
samples are 0.77225 and 0.7875. The current of electrons in the center microchannel
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Figure 4.2: Microchannel device for study of finite-size effect. A false-color
scanning electron microscopic image of the microchannel device consisting of two reser-
voirs connected by a center channel of 215 µm in length and 10 µm in width. The
bottom electrode of the center channel is segmented into pieces of different lengths as
indicated in the figure.

flows between reservoirs Ich is further retrieved by the electrical lumped-circuit model
as has been shown in Fig. 2.7 (b).

The WS of different lengths is created by applying a positive bias Vtr to a certain
group of adjacent segments that comprise the center microchannel electrode, while
keeping the rest of segments at a small positive potential VL (typically 0.3 − 0.5 V).
In this case, at sufficiently large Vtr we observed the formation of a WS of an effective
length corresponding to the total length of the adjacent segments biased by the poten-
tial Vtr = VWS, while electrons above the rest of the segments in the central channel
were in a liquid phase. Using a segmented channel electrode, shown in Fig. 4.2, we
thus could create a WS with effective lengths of 5, 10, 15, 20, 25, 35, 90, 100, 110, 115,
125, and 215 µm. The results of the measured IV -dependence for a WS of different
lengths by varying the amplitude of driving voltage Vin are presented in the following
sections.

4.3 Results

Here we present 6 different data sets measured in Sample 1 (Fig. 4.3 and Fig. 4.4),
and 5 data sets measured in Sample 2 (Fig. 4.5 and Fig. 4.6). The conditions for
each measurement are as listed in the figures. The electron density of a WS ne,WS

is estimated by solving Eq. (2.6) and Eq. (2.5) using the value of IBC obtained from
fitting experimental data with Eq. (2.7), as has been described in Sect. 2.3. The pressing
electric field Ez,WS exerted by a WS towards a liquid helium surface is the sum of the
pressing electric field due to applied voltages VWS and the pressing electric field due
to the image charge in the liquid. The results for amplitudes and phases of currents
measured by a lock-in amplifier as a function of driving voltage Vin for different lengths
of a WS are shown in Fig. 4.3–Fig. 4.6. Both the BC plateau and the onset of sliding
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are observed for a WS when its length is at least 15 µm. The threshold driving voltage
at the onset of sliding steadily increases with the size of a WS and is maximal when a
WS occupies the whole channel (curve marked as WS 215 µm). The red dashed line
shows the fitting of the experimental data by Eq. (2.7) as described in Sect. 2.3.

In order to find the values for the threshold electric field Es,max at the onset of
sliding for each length of WSs, we used a simple model to account for the resistance
of the microchannel filled with electrons in both solid and liquid phases. Such a model
proved successful in explaining the main experimental features of the electron transport
in a microchannel observed in the experiments discussed in the previous chapter [45].
In particular, we assume that the total resistance of the microchannel, Rch, comes from
the resistance of electrons in solid and liquid phases, Rs and RL, respectively, which
are connected in series, that is Rch = Rs+RL. The total resistance of the microchannel
is found for a given value of the driving voltage Vin using the lumped-circuit model, as
described in Sect. 2.3. Then the electric field across the WS can be estimated from the
corresponding voltage drop RsIch according to

Es =
Ich(Rch −RL)

Ltr
, (4.4)

where Ich is the current of electrons in the microchannel and Ltr is the length of the
strongly-biased segmented electrodes, which determines the length of the WS. The
resistance RL is estimated as RL = RLC(Lch − Ltr)/Lch, where Lch = 215 µm is the
length of the microchannel and RLC is the resistance of the microchannel when it is
biased at VL, entirely filled with electron liquid. Similar to Rch, values pf RLC were
found from the lumped-circuit analysis, too.

The calculated values of Es of each data set in the left-hand side of Fig. 4.3–
Fig. 4.6 are shown in the figures on the right-hand side, respectively. In the BC
scattering region, Es increases linearly with the driving voltage Vin until an abrupt
reduction in Es occurs at the onset of sliding. This determines the threshold eletric
field E(max)

s . Note that after sliding, the behavior of the measured Ich and Es becomes
rather complicated. So far, little is known about the transport of an electron system in
the sliding regime. In particular, it is still under debate whether the electron system
remains in a solid phase iii. For some data sets, the sliding transition becomes hard to
determine. This could be due to effects of AC-driving, as discussed in pervious section,
or other reasons. We did not analyse such dataiv.

Values of the threshold electric field E(max)
s at the onset of sliding extracted from

data are plotted in Fig. 4.7 for different lengths of WSs. It shows that the threshold
electric field is essentially independent of the size of the WS, unless its length is shorter

iiiIn fact, the observed current behavior before and after sliding, it is reminiscent of the Bingham
plastic liquid to me. (See App. A)

ivFor the cases of a WS length longer than 90 µm, the sliding transition becomes hard to determine.
The complicated wavy Es curves (S1D4, S2D5) may be due to the side oscillations predicted for the
AC driving condition (Sect. 4.1), and the reasons why the wavy behviour tends to occur for a WS
of long length (observed here is > 90 µm) are still not clear. Maybe the size of a WS-DL system
would also affect the interference of ripplons by "filtering out" the low frequency and long wavelength
ripplons, since there is no sufficient spatial interval for them to effectively affect the synthesized dimple
profile for a small size WS. In other words, for the Fourier components of the dimple profile we should
also take the length of a finite-size WS into account.
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Figure 4.3: Data sets S1D1-S1D3 measured in Sample 1. Figures on the left
side are the amplitude (the left axis) and the phase (the right axis) of the current
measured by a lock-in amplifier plotted as a function of driving voltages Vin. Data
(a) are measured at T = 0.88 K and ne = 7.03 × 1013 m−2; data (b) are measured
at T = 1.08 K and ne = 6.28 × 1013 m−2; data (c) are measured at T = 0.58 K
and ne = 4.11 × 1013 m−2. The red dashed line is the fitting of experimental data by
Eq. (2.7) as described in Sect. 2.3. The figures on the right side show the calculated
electric field Es across the WSs for each data plot on the left side. The maximum
values of Es at the onset of sliding for each data set are connected by a grey dashed
line that serves as an eye guide.
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Amplitude

Phase
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(b) (b)

(a)(a)

Figure 4.4: Data sets S1D4-S1D6 measured in Sample 1. Figures on the left
side are the amplitude (the left axis) and the phase (the right axis) of the current
measured by a lock-in amplifier plotted as a function of driving voltages Vin. Data
(a) are measured at T = 0.58 K and ne = 3.85 × 1013 m−2; data (b) are measured
at T = 0.88 K and ne = 4.37 × 1013 m−2; data (c) are measured at T = 0.88 K
and ne = 4.12 × 1013 m−2. The red dashed line is the fitting of experimental data by
Eq. (2.7) as described in Sect. 2.3. The figures on the right side show the calculated
electric field Es across the WSs for each data plot on the left side. The maximum
values of Es at the onset of sliding for each data set are connected by a grey dashed
line that serves as an eye guide.
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Figure 4.5: Data sets S2D1-S2D3 measured in Sample 2. Figures on the left
side are the amplitude (the left axis) and the phase (the right axis) of the current
measured by a lock-in amplifier plotted as a function of driving voltages Vin. Data
(a) are measured at T = 0.91 K and ne = 5.01 × 1013 m−2; data (b) are measured
at T = 0.91 K and ne = 5.44 × 1013 m−2; data (c) are measured at T = 0.91 K
and ne = 5.05 × 1013 m−2. The red dashed line is the fitting of experimental data by
Eq. (2.7) as described in Sect. 2.3. The figures on the right side show the calculated
electric field Es across the WSs for each data plot on the left side. The maximum
values of Es at the onset of sliding for each data set are connected by a grey dashed
line that serves as an eye guide.
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Figure 4.6: Data sets S1D4, S1D5 measured in Sample 2. Figures on the
left side are the amplitude (the left axis) and the phase (the right axis) of the current
measured by a lock-in amplifier plotted as a function of driving voltages Vin. Data
(a) are measured at T = 0.89 K and ne = 5.27 × 1013 m−2; data (b) are measured at
T = 0.88 K, 30 kHz and ne = 5.24 × 1013 m−2. The red dashed line is the fitting of
experimental data by Eq. (2.7) as described in Sect. 2.3. The figures on the right side
show the calculated electric field Es across the WSs for each data plot on the left side.
The maximum values of Es at the onset of sliding for each data set are connected by
a grey dashed line that serves as an eye guide.
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than about 25 µm, while for a WS of shorter length there is a significant decrease of
Es,max. A theoretical analysis of the observed results is given in the next section.
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Figure 4.7: Threshold electric fields E
(max)
s at the onset of WS sliding

plotted as a function of WS lengths. The values of E(max)
s are extracted from

data taken using Sample 1 (left panel) and Sample 2 (right panel) using data sets
shown in Fig. 4.3–Fig. 4.6. The dashed line is the fitting line using expression
E

(max)
s = E0(1− exp(−L/LWS)), see explanation in the text in Sect. 4.4.

4.4 Discussion
The observed threshold driving electric field E

(max)
s shows a significant decrease at a

sufficiently small LWS. Such size-dependent behavior could be caused by different fac-
tors. One of the interesting possibilities is related to the structural order transition in
a WS due to the finite-size confinement, which has been demonstrated to be strongly
dependent on the commensurability of WS lattice constant and the confinement geom-
etry [43, 58–60]. A reentrant solid-liquid-solid transition is the feature of this KT-type
melting of a WS under the condition of varying commensurability with respect to the
WS confinement in the direction normal to the transport direction. This type of be-
havior will be discussed in the next chapter. Here, we attribute the observed finite-size
effect to the loss of resonant ripplons through WS boundary.

To account for the observed finite-size effect, we follow Vinen’s classical model and
consider an essentially one-dimensional model of a finite size electron lattice of length
L and periodicity a moving along the microchannel at velocity vx. The force exerted
by electrons on the liquid surface per unit length is given by

f(x, t) = eE⊥

N∑
n=0

δ(x−Xn − υxt), (4.5)

where N = L/a and Xn = an is the average x-coordinate of electrons at t = 0. We as-
sume that the force was averaged over fast thermal motions of electrons, thus the press-
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ing field E⊥ was appropriately corrected by the Debye-Waller factor [8]. To proceed
further it is convenient to write the Fourier expansion of f(x, t) over one-dimensional
wave vectors q. This can be easily done by representing the above expression for f(x, t)
as a product of an infinite train of delta-functions δ(x −Xn − υxt), −∞ < n < +∞,
and a pulse function π(x) = Ξ(L/2+x)−Ξ(L/2−x), where Ξ(x) is the Heaviside step
function. This results in

f(x, t) =
NeE⊥
π

∞∑
m=−∞

∞∫
−∞

ei(qx−mΩt) sin [L(q −mG1)/2]

L(q −mG1)
dq, (4.6)

where G1 is the first reciprocal lattice vector and Ω = vxG1. Similar to Vinen’s model,
we consider the distortion of the liquid helium surface only due to the term m = 1
in the above expansion, which is expected to give the resonant excitation of ripplons
with the wave vector G1 when the electron’s velocity vx approaches the ripplon phase
velocity v1 =

√
αG1/ρ. Higher harmonics in the expansions will give resonances at

higher velocities, therefore can be neglected. Using the Laplace equation of free surface
waves, Eq. (4.1), and replacing the pressure on the surface from the electron lattice
with the relation p = f(x, t)/w, the resulting amplitude of the surface distortion in
z-direction ς is

ξ(x, t) =
2NeE⊥
πρw

∞∫
−∞

qei(qx−Ωt)

Ω2 − ω2
q + iγqΩ

sin (L(q −G1)/2)

L(q −G1)
dq. (4.7)

The real part of the above equation represents the amplitude of the liquid surface
deformation caused by the propagating electron lattice. Following Vinen’s model, we
introduced a phenomenological damping rate γq that accounts for the natural damping
of ripplons with the wave vector q due to internal losses of energy in a liquid. Note
that due to damping the propagating periodic surface deformation described by the
above equation has a phase lag with respect to the propagating electron lattice, that is
the positions of the minima of surface distortion do not coincide with the positions of
electron lattice sites. As a result, the reaction force exerted on electrons normal to the
liquid surface has a horizontal component which results in the friction force F exerted
on the electron system in the direction opposite to their motion, see Fig. 1.13 in Ch. 1.
This force can be found by equating the normal component of the reaction force to
eE⊥, from which we obtain F = eE⊥ (∂ξ/∂x)x=xt

, where the slope of the liquid surface
in the above equation is evaluated at xt = Ωt/G1. Plugging the real part of Eq. (4.7)
into the above expression and considering the relevant wave numbers q close to G1, the
maximum force F obtained at vx = v1 can be found in the analytical form

Fmax =
nse

2E2
⊥

ρvdv1

[
1− exp

(
−γG1L

2v1

)]
, (4.8)

where we introduced the notation for the damping coefficient vd = γG1/G1 ≈ γq/q
which was used by Vinen. The above equation gives the maximum friction force on the
electron lattice that can be provided by surface dimples. In the BC scattering regime
(vx ≈ v1), this force equilibrates the driving force on electrons due to the applied electric



52 Effect of finite size of WS on its nonlinear transport

field in x-direction. Thus, the maximum force given by the above equation determines
the threshold electric field Eth discussed in Sect. 1.5. Note that at L→∞ the Eq. (4.8)
recovers Vinen’s result given by Eq. (4.3) in Sect. 4.1. More interestingly, as the length
of the electron lattice L decreases and becomes close to 2(v1/γG1) the maximum force,
therefore the threshold electric field Eth, also decreases. This is in agreement with
our experimental observation described in the previous section. The decrease of the
maximum friction force with decreasing effective size of the electron lattice has a simple
physical meaning. The quantity v1/γG1 represents the typical propagation length of
ripplons with the wave vectorG1 due to internal energy losses in a liquid. As long as this
length is much shorter than the length of the electron lattice L, the damping of resonant
ripplons do not depend on the system size. On the other hand, when the propagation
length becomes longer than L, the contribution to the loss of resonant ripplons via
their escape from the area occupied by the electron lattice becomes significant. This
leads to the diminishing of dimples, therefore decrease of the threshold electric field
Eth, which is in agreement with our experiment data shown in Fig. 4.7 . The dashed
lines are fitting curves using Eq. 4.8 in the form Fmax = E0

[
1− exp

(
− L
LWS

)]
, where

E0 and LWS = 2v1/γG1 are adjustable parameters. From LWS the damping rate γG1

could be estimated.
The estimated damping rate of ripplons is about 106 s−1. The damping of micron-

wavelength capillary waves on superfluid 4He was experimentally studied by Roche et
al. using an interdigital capacitor setup [61]. The authors concluded that the main
contribution to damping of such ripplons comes from the ripplon-phonon interaction
and provided a theoretical expression for γq [62]

γq =
π2

90

~
ρ

(
kBT

~s

)4

q, (4.9)

where s is the first sound velocity in liquid 4He. Using this expression, we obtain γG1 =
3×105 s−1 for T = 0.88 K and G1 = 5×107 m−1. This is in very satisfactory agreement
with our order-of-magnitude estimate γG1 = 106 s−1 considering the extreme simplicity
of our model and that the theoretical formula by Roche et al. underestimates the
experimentally measured attenuation coefficient at temperatures above 0.7 K [61, 62].

4.5 Summary

We have studied the non-linear transport of a WS coupled to a commensurate defor-
mation on a surface of liquid helium. In particular, we employed a microchannel device
that allowed us to vary the effective size of a electron crystal and study its transport
in a microchannel geometry. We observed the dependence of the sliding threshold of
a driving electric field, therefore the maximum friction force exerted on the electron
crystal from the liquid substrate, on the crystal size. In particular, we found that the
friction force significantly decreases when the crystal length is shorter than about 25
µm. We explain this effect by weakening of the surface deformation due to radiative
losses of ripplons coherently emitted by the driven electron lattice of finite size. To
account quantitatively for the observed effect, we employed a simple hydrodynamic
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model that allowed us to estimate the natural damping of ripplons due to internal
energy losses in a liquid. In particular, we found a good agreement of our result with
predicted damping of ripplons due to their interactions with bulk excitations in liq-
uid helium. This indicates that our experimental method can be viable for studies of
not only the transport of electron systems on liquid substrates but also interactions
between a surface and bulk excitations in superfluid helium.





Chapter 5

A WS in a microchannel subject to a
spatial periodic potential

The experiments described in the two previous chapters demonstrated that satisfactory
control of SSEs confined in a microchannel can be achieved by imposing an electrostatic
potential whose profile can be designed by a proper micro-electrode structure. In
this chapter, we describe experiments where we studied the transport of a WS in a
microchannel subjected to a spatially periodic potential. The long-term motivation
to our work comes from the possibility to use the SSE system as a simulator of the
Frenkel-Kontorova (FK) model.

5.1 The Frenkel-Kontorova model

Figure 5.1: FK model. A schematic presentation of the Frenkel-Kontorova model:
A chain of particles interacting via harmonic springs with an elastic coupling g is
subjected to an external periodic potential with period as.

The FK model is a simple model that describes the dynamics of a chain of par-
ticles harmonically coupled with their nearest neighbors and subjected to a periodic
substrate potential, as shown in Fig. 5.1. The corresponding classical Hamiltonian can
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be expressed in the form

H =
∞∑

n=−∞

[
m

2

(
dxn
dt

)2

+
1

2
g (xn − xn−1 − ae)2 +

Us
2

cos

(
2π

as
xn

)]
, (5.1)

where m is the particle mass, xn is the coordinate of the n-th particle in the chain, Us
and as are the depth and period of the external on-site periodic potential, g is the elastic
constant of the harmonic coupling string, and ae is the equilibrium distance between
particles in the absence of the on-site potential. In the continuum limit approximation,
the standard FK model reduces to the integrable sine-Gordon (SG) equation

∂2u

∂t2
− ∂2u

∂x2
+ sinu = 0, (5.2)

where u is the particle displacement defined by the relation xn = nas+un in the contin-
uum limit approximation. The SG equation allows exact solutions for different types
of elementary excitations, such as phonons, kinks (topological solitons) and breathers
(dynamical solitons). The general behavior of the traditional FK model, therefore, can
be determined by the dynamics of these three elementary excitations. In spite of the
simplicity of the FK model itself and further approximations resulting in the SG equa-
tion, it was shown that the FK model can provide deep physical insight into nonlinear
transport phenomena such as the dynamics of charge-density waves [63], competing
interactions of different periodicities in adsorbed atomic layers [64], commensurate-
incommensurate phase transition in dielectrics [65], dynamics of disordered Wigner
crystals in 2D heterostructure [66], models of interfacial slip [67]. Note that the real
physical systems mentioned above are mostly two dimensional, while only the simpli-
fied one-dimensional FK model has been studied. Further studies of the FK model
in higher dimensions are impeded by the inherent difficulty of describing a strongly
correlated system theoretically.

The idea of a quantum simulator realized in a highly pure, controllable physical
system has been proposed for testing several standard non-trivial models of strongly
correlated systems such as the Hubbard model [2] and the FK model [4]. So far, the
experimental systems extensively exploited are the system of cold trapped ions [68]
and the 2D colloidal monolayers [69, 70]. The system of electrons floating above liq-
uid helium possesses high purity such that its solid phase, the Wigner solid, shows a
promising potential for studying the FK model. Here we propose to employe a WS on a
surface of liquid helium as a 2D particle lattice, and introduce an external electrostatic
periodic potential as the periodic substrate potential for the FK model simulation.
The transport of a WS along a microchannel can be studied, and the FK model driven
dynamics can be characterized by the current measured as a function of the strength
of the applied periodic electrostatic potential. Here we report our preliminary studies
of the transport of a WS in a microchannel subject to a spatially periodic (period 1
µm) potential along the channel.
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5.2 Experiment
As in our previous experiments, the microchannel device used in this study consisted
of two reservoirs and a central channel. A microscopic image of the device is shown
in Fig. 5.2 (a). The device is composed of two layers of gold electrodes which can be
distinguished by the colors in Fig. 5.2 (a). The darker golden pattern is the bottom
layer while the lighter one is the top layer. The bottom layer contains two reservoirs
(left and right) and a pair of finger-like electrodes, also known as the inter-digital
capacitor (IDC), which form the center channel electrode, as shown in Fig. 5.2 (c).
The top layer contains an usual guard electrode and split gate electrode as described in
Ch. 2. The depth of the central microchannel is 0.55 µm determined by the thickness
of an insulating silicon nitride layer separating two gold layers. Each reservoir consists
of 51 rows of 5 µm-wide and 700 µm-long channels in order to provide large area for
storing SSEs. The central channel was 5 µm-wide and 101 µm-long.

(a)

(b)

(c)

(d)
Vin,ch

VS

Figure 5.2: The microchannel device of the AC-driven FK model study.
(a) A microscopic image of the microchannel device. (b) The electrical lumped-circuit
model. (c) A false-color scanning electron microscopic image of the area of center
channel. (d) A schematic drawing of the external periodic potential defined by the
bottom finger-like electrodes (blue curve), and the chain of particles represented by a
WS (red dots).

The IDC structure of the bottom channel electrode was fabricated by the EBL
method. Each finger of IDC was 250 nm-wide, and the distance between the adjacent
fingers was also 250 nm. By applying voltage difference ∆VF between two electrodes
of IDC, an external periodic potential along the channel with spatial periodicity of 1
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µm could be introduced. The amplitude of the external periodic potential at the liquid
surface VS is controlled by the voltage difference ∆VF. The current of SSEs flowing
through the center channel Ich is measured by the Sommer-Tanner method at driving
frequency 99.5 kHz as described in Ch. 2. As discussed in Sect. 2.3, the capacitance
value C0 = 2.05 pF was found from the measured trajectory data by fitting them with
the lumped-circuit model, see Fig. 5.2 (b). The FEM-determined value of β was 0.844.

5.3 Results

5.3.1 The phase diagram of the electron system without apply-
ing periodic potentials

Figure 5.3: Measured currents Iout in the device versus split-gate electrode
potentials Vsg and channel potentials Vch = Vch1 = Vch2. Magnitudes of electron
currents Iout measured at T = 0.86 K and f = 99.5 kHz. The dashed (white) line shows
potential threshold values for channel opening, as described in the text. (a) Iout-Vsg
curves for different values of channel potentials Vch as indicated. (b) Iout-Vch curves for
different values of the split-gate electrode voltages Vsg as indicated

First, we check the performance of the fabricated device by applying the same
potential to both finger-like electrodes F1 and F2 of the central microchannel, Vch =
VF1 = VF2, and measuring currents in the device Iout while applying the peak-to-peak
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AC voltage Vin = 5 mV to the device. The absolute value of measured Iout is plotted
in Fig. 5.3 for various values of Vch and bias Vsg applied to the split-gate electrode
of the central microchannel. To understand this diagram, it is convenient to use the
simplified capacitance model described in Sect. 2.2. The potential at the uncharged
liquid surface can be written as Vs = αVsg + βVch. When the electron potential Ve is
smaller than Vs, the channel is closed such that no current can be detected. The zero
current in the central microchannel corresponds to the condition αVsg + βVch = Ve,
which determines the threshold value of the channel voltage for given values of Vsg and
Ve

V
(th)
ch =

1

β
Ve −

1− β
β

Vsg. (5.3)

Below this threshold value, the potential at the uncharged surface in the central mi-
crochannel Vs is lower than Ve, therefore the central microchannel is completely depleted
of electrons and the current Iout in the device is zero. The experimental values of V (th)

ch
are plotted in Fig. 5.3 by a dashed (white) line. By fitting this line using Eq. (5.3) we
obtain Ve = 0.92 V and β = 0.77 (therefore α = 0.23).

Above the threshold line in the Vsg-Vch plane, the current in the device is deter-
mined by the resistance R of electrons in the microchannel, which in turn depends on
the phase of the electron system, see Fig. 5.3 (a) and (b). For a weak confinement
of the electron system, which corresponds to lower values of Vch and more positive
values of Vsg, the system is in a liquid phase. This corresponds to low resistance R
and large current Iout. For a stronger confinement of the electron system, which cor-
responds to larger values of Vch and more negative values of Vsg, the system undergoes
crystallization into a WS [42, 60]. As a result, the resistance R of electrons in the
central microchannel increases due to formation of the commensurate dimple lattice,
and the measured current Iout significantly drops. A spectacular behaviour is observed
in the intermediate range of voltages, where the current Iout oscillates with Vsg value,
see Fig. 5.3 (a). This phenomenon was identified with the re-entrant melting of a
WS [43, 44]. As confining potential, therefore the width of the electron system in the
microchannel, is varied by varying the voltages applied to the electrodes, the WS in
the microchannel undergoes intermittent melting as a result of increased fluctuations of
positions of electrons between stable configurations corresponding to different number
of electron rows across the channel [58, 59]. Therefore, the oscillations in Fig. 5.3 (a)
can be identified with different numbers of electron rows in the microchannel. The
re-entrant melting, which results from the competition between stable configurations
corresponding to different numbers of electron rows, is particularly important in studies
of confined crystalline systems where the spatial order of particles is strongly affected
by their confinement [60]. The interplay between an electron lattice configuration and
its confining potential is an interesting problem of structural phase transitions [71]. It
is worth noting that deep in the WS-phase region the threshold line slightly deviates
from the fitting line. Apparently, that is because the continuous electron-distribution
approximation, which is used to derive Eq. (5.3), may not work so well for the case of
few rows of electrons in the WS state, where the granular nature of electrons has to be
taken into account.
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5.3.2 Effects of periodic potentials

Figure 5.4: Measured electron currents Iout versus driving AC voltages Vin
and potential differences ∆VF applied to the IDC electrodes. Magnitudes
of electron currents Iout measured at T = 0.86 K for a split-gate electrode potential
Vsg = −0.25 V and the common bias for both channel electrodes Vch = 1.55 V. (a)
Iout-Vin curves for different values of periodic-potential depths ∆VF as indicated. (b)
Iout-∆VF curves for different values of driving AC voltages Vin as indicated.

Next, we study effects of periodic potentials by applying voltages VF1 = Vch+∆VF/2
and VF2 = Vch−∆VF/2. The measured currents Iout against amplitudes of the periodic
potentials and driving voltages Vin are plotted in Fig. 5.4. At ∆VF = 0, the I-V curve
demonstrates a clear BC scattering plateau and the sliding transition. The retrieved
electron density ne from the procedure described in Sect. 2.3 is 1.1 × 1013 m−2 i and
the effective WS width is 2.8 µm. For a triangular lattice, the relationship between ne
and the lattice constant is ae =

√
2/(31/4√ne). Therefore, for ne = 1.1 × 1013 m−2, it

corresponds to a WS of lattice constant ae = 0.32 µm. The estimation of the number
of rows Ny and columns Nx of a WS depends on the lattice orientation. Here we let
the number of rows Ny equal to Ny = w/(

√
3/2 × ae) + 1, where (

√
3/2 × ae) is the

height of a triangle lattice of a lattice constant ae. We got Ny u 11 rows. For the
iThe fitted value β = 0.77 from Fig. 5.3 is close to the FEM simulated value β = 0.844, and the

difference in the estimated ne value by Eq. (2.5) is less than 0.05× 1013 m−2.



5.3 Results 61

finger-like electrodes of the fixed period as of 1 µm, Nx = as/ae + 1 u 4. Thus, the
commensurability between the WS lattice constant ae and the substrate period as is
about 4, i.e. about four electrons per substrate period.

A prominent feature observed in Fig. 5.4 (a) is the suppression of the BC scattering
plateau with increasing depth of periodic potentials ∆VF. As mentioned in Sect. 1.5,
the BC plateau is resulted from the resonance of the commensurate DL and the WS
lattice. One possible explanation of the resulting suppression is a mismatch of the
DL and the WS lattice which has been spatially modulated by the imposed periodic
potential, see the ground state (GS) shown in Fig. 5.5ii. Another possible explanation
is that the application of sufficiently strong periodic potential suppresses crystallization
of an electron system into the long-range ordered WS phase [74].

Fig. 5.6 shows the measured electron current Iout against ∆VF and split-gate poten-
tial Vsg under the conditions of Vch = 1.5 V and Vin = 5 mV. At ∆VF = 0, the Iout-Vsg
curve demonstrates oscillations of Iout with Vsg, see the black curve of Fig. 5.6 (a).
Thess oscillations are due to re-entrant melting of a WS as mentioned in Sect. 5.3.1.
For ∆VF > 0.5 V, the oscillation decreases and then totally disappears. This suggests
that the application of sufficiently strong periodic potential suppresses crystallization
of SSEs and the formation of a WS.

To understand the effects of the spatially periodic potential on the electron sys-
tem it is instructive to estimate the variation of the electron density ne in the cen-
tral microchannel using the parallel-plate capacitance approximation. As described
in Sect. 2.2, the electron density can be estimated by Eq. (2.1). We find that at the
middle of the channel the density varies nearly sinusoidally with the average value n̄e
and amplitude ∆ne. In particular, for Ve = 0.92 V, Vsg = −0.4 V, Vch = 1.5 V, and
∆VF = 0.7 V using the above approximation we estimate n̄e = 3.9 × 1013 m−2 and
∆ne = 0.4 × 1013 m−2. For an infinite 2D electron system, the melting of a WS is
expected to happen when the value of the plasma parameter Γ = e2√πne/(4πε0εkBT )
exceeds 130 ± 10. For T = 0.86 K, the critical density of electrons corresponds to
ne = 1.4×1013 m−2. Therefore, a small variation of electron density due to the applied
periodic potential estimated above can not cause melting of the WS for an infinite elec-

iiThe ground state (GS), which is the static electron configuration subjected to a periodic potential
of depths ∆VF with the lowest potential energy, in one dimension is primarily concerned here. For θ =
4, the GS is expected to have electrons symmetrically placed about either the top or the bottom of the
periodic potential, as shown in Fig. 5.5(b) [72]. In the 1D FK model, there is a corresponding phonon
spectrum that describes small oscillations around the stable stationary positions of particles [73].
And the excitation of the phonon spectrum can be determined by the crystalline lattice and the
basis. In a 1D lattice, the expression of the normal mode is ωk =

√
2g
me

(1− cos (kae)), where g is
the characteric elastic constant, and ae is the crystalline lattice constant, and k is the wavenumber.
From the estimated GS, we found that the inter-electron distances are modulated by ∆VF. The
crystalline lattice is varied, and the number of phonon modes increases. In the SSE system, the
phonon mode of a WS can reflect in the spectrum of ripplons. We suspect that the spectrum of the
triggered ripplons is therefore been broadene by the resulting increase of phonon modes, such that
the resonance is diminished. Note that the phonon modes are connected with the dynamics of the
other essential nonlinear excitation in the FK model, kinks, topologically. Due to the periodicity of
the substrate potential, any FK configuration is infinitely degenerated. Kink configurations describe
the configurations which "link" two commensurate ground states of the infinite FK chain. Owing to
the boundary conditions, such excitations are topologically stable. It has to be emphasized that kinks
exist only for commensurate structures [73].
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Figure 5.5: The ground state of an odd/even number of particles in one
period. (a) Stable and unstable configurations of three particles (typical of an odd
number of particles). (b) Stable and unstable configurations of four particles (typical
of an even number of particles). In both cases, the stable configuration does not have
a particle at the top of a well. The figure is reproduced from [72].

tron system. On the other hand, as was pointed out earlier the variation of the lateral
confinement of an electron system in the microchannel can cause loss of the long-range
crystalline order in the quasi-1D WS due to the structural transitions between two
stable configurations of the electron lattice corresponding to changing the number Ny

of electron rows in the channel by one [43, 44]. This is exactly the mechanism that
explains the phenomenon of the re-entrant melting in this system. Therefore, one can
expect that the variation of Ny along the microchannel caused by the applied periodic
potential can induce a similar loss of the long-range positional order, which in turn
strongly changes the transport of the electron system observed in the experiment. For
Ve = 0.92 V, Vsg = −0.4 V, Vch = 1.5 V, and ∆VF = 0.7 V we estimate that w varies
from 3.63 to 3.54 µm, and Ny changes from 25 to 23. Therefore, ∆Ny ≈ 2. In other
words, the variation of the confining potential due to the applied periodic potential
with ∆VF = 0.7 V is sufficient to cause the structural transition between Ny- and
(Ny + 1)-row configurations, which increases fluctuations in the positions of electrons
and suppresses nonlinear transport features usually associated with the electron system
in the long-range ordered WS phase.
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Figure 5.6: Measured electron currents Iout versus split-gate potentials Vsg
and potential differences ∆VF applied to the IDC electrodes. Magnitudes
of electron currents Iout measured at T = 0.86 K for a driving AC voltage Vin = 5
mV as a function of split-gate electrode potentials Vsg for different values of potential
differents ∆VF = |VF1 − VF2| between channel electrodes. The common bias for two
channel electrodes is fixed at Vch = 1.5 V. (a) Iout-Vsg curves for different values of
periodic-potential depths ∆VF as indicated. (b) Iout-∆VF curves for different values of
split-gate voltages Vsg as indicated.
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5.4 Discussion

As shown in our work, the applied periodic potential has a strong effect on the transport
of the electron lattice, therefore our device can be used for studying the FK model in
the interacting system. Compared with the traditional FK model discussed in Sect. 5.1,
the transport of a WS in our experiment is affected not only by the external periodic
potential competing with the inter-electron interaction, but also the competing between
a WS and its dimple lattice. In fact, the interaction between the electron lattice and the
commensurate deformation of the liquid surface has a loose analogy with the FK model
in the case when the mean distance between particles equals exactly the spatial period
of the substrate potential. This introduces additional physics into the traditional FK
model. In general, our system should be described by Hamiltonian

Ĥ =
∑
i

~̂p2
i

2me

+ Ĥe-e + Ĥe-b, (5.4)

where Ĥe-e describes the inter-electron interaction, and Ĥe-b represent the electron-
background interaction. The background of the SSE system above liquid helium, in
particular at low temperature, are the 2D vibrations of the surface ripplons. When
the SSE system is in the BC scattering regime, the DL will attribute a commensurate,
periodic background potential such that the coupled WS-DL system acts like a 2D FK
model. Indeed, the coupled WS-DL system shows some typical features predicted by
the FKmodel, such as a depinning transition, hysteresis [75, 76]. The observed behavior
of suppression of BC scattering due to the external periodic potential, may represent
an interesting issue of a substrate periodic potential composed of two characteristic
periods.

The effects of an external periodic potential on the re-entrant melting have been
observed in our experiments as well, see Fig. 5.6. The re-entrant melting, which results
from competition between stable configurations corresponding to different numbers
of electron rows, is particularly important in studies of finite-size crystalline systems
where the spatial order of particles is strongly affected by their confinement [60]. The
interplay between the electron lattice configuration and the confining potential is an
interesting problem of structural phase transitions [71]. In our experiment, the confine-
ment is spatially modulated by the external periodic potential of varying strengths. A
characteristic feature of our observation in Fig. 5.6 is a certain (threshold) value of the
amplitude of the periodic potential above which the nonlinear transport of the electron
system associated with its crystalline ordering is suppressed. Our estimations presented
above show that this corresponds to about a 10%-variation of the electron density in
microchannel and a variation of the number Ny of electron rows across the channel of
the order one. More accurate estimations could be done by calculating the distribution
of electrical potential and electron density across the microchannel (y-direction) using
a FEM [44, 55]. However, to take a proper account for the granular nature of electrons
a molecular dynamics (MD) calculation is preferable [60]. Therefore, we did not try to
improve the continuous density approximation model used in the Sect. 5.3.1. The MD
calculations for an electron system in our device is currently under development.

As demonstrated here, the employed microchannel device can be used to study
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structural phase transitions in a quasi-1D electron systems; likewise, the device shows
the potential for the FK model study. As mentioned in our long-term motivation, we
are interested to use similar devices to study the FK model employing a 1D chain
of electrons subject to a periodic potential. Of particular interest is to realize an
incommensurate case when the ratio of the mean distance between electrons to the
spatial period of potential is equal to the "golden ratio", (

√
5 + 1)/2. This is subject

of our future experimental efforts.

5.5 Summary
We have investigated the transport properties of a WS on a surface of liquid helium
confined in a long 5 µm-wide microchannel and subjected to an electrostatic potential
with periodicity of 1 µm along the channel. The nonlinear features of the WS transport
were found to be suppressed by increasing the potential amplitude. We attribute this
observation to structural transitions and suppressions of the crystalline ordering of the
electron system induced by the spatially modulated confinement.





Chapter 6

Electron flows in a T-shaped channel
geometry

When a strongly-correlated system is driven by an external force, quite often it shows
an unexpected strange behavior. In this last chapter, some intriguing and unexpected
experimental observations on SSE transport in a T-shaped microchannel device are
presentedi. The complete understanding of this observation is yet to be achieved.

6.1 Experiment

The microchannel device used in this study is shown in Fig. 6.1. The device is designed
such that SSEs can flow between three reservoirs through a T-shaped microchannel
structure. Each segment of T-shaped channel is 10 µm-wide, 400 µm-long, and 1 µm-
depth. The gaps between the T-shaped channel bottom electrode and the reservoir
bottom electrode are 300 nm-wide. A single guard electrode on the top layer is used
for all three reservoirs and T-shaped channel.

In this experiment, the SSEs were driven by a voltage ramp Vin (t) applied to one
of the reservoir electrodes, while the flow of electrons into/out of two other reservoirs
was detected by the electrical currents induced by SSEs in the bottom electrodes of
corresponding reservoirs. The induced currents were measured by a digital storage
oscilloscope using current preamplifiers and averaged over 8000 ramp repetitions.

6.2 Results

First, the SSEs were driven out of and into the top reservoir RT by applying a ramp
of negative voltage (Vin < 0) to the bottom electrode of the top reservoir as shown in
Fig. 6.2 (a). The observed induced currents IL and IR at the left and right reservoirs,
respectively, (the black and red traces in Fig. 6.2 (b)) due to SSEs flowing in and out
into corresponding reservoirs are completely symmetric, as expected. The blue and
green traces in Fig. 6.2 (b) are the values of the sum and difference, respectively, of
currents IL and IR. According to the DC bias applied to the channel electrode and

iMore experimental observations are included in App. B

67
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(a) (b)

Figure 6.1: A false-color scanning electron microscopic image of the T-
shaped microchannel device. The T-shaped microchannel is designed for SSEs to
flow under the same geometry but in different orientations. It connects three reservoirs
labeled as Left, Right and Top Reservoir as indicated in (b). An enlarged image of
the area enclosed by the red rectangle in (b) is given in (a). It shows the gap between
bottom electrodes of reservoir and T-shaped microchannel. The depth of microchannel
is 1 µm.

the guard electrode, the estimated electron density ne is about 3.5× 1013 m−2, which
corresponds to a melting temperature TM of 1.3 K and a saturated current IBC of 0.4 nA
in the BC scattering region. Since I = enewv and IT = IL+IR, vL = vR = 1

2
vT = 1

2
vBC.

Therefore, the current plateau at 0.4 nA for the sum of IL and IR (the blue curve)
implies that, although the SSEs in the whole T-channel are in a solid phase, only the
SSEs in the area between the top reservoir and the adjacent junction are in the BC
scattering regime. The difference of currents IL and IR (the green trace) is always zero,
which shows that the current of SSEs splits equally into left and right channels, as
expected.

Next, the same ramp of negative voltage was applied to the left reservoir RL, while
the induced currents IT and IR at the top and right reservoirs, respectively, were
measured, as shown in Fig. 6.2 (c). Similar to the case of Fig. 6.2 (b), the sum IR + IT
(the blue curve) shows a BC plateau of saturated current at 0.4 nA, which implies
that the WS in the region between the left reservoir and adjacent junction is under the
condition of the BC scattering. However, the current of SSEs flowing into top and right
reservoirs is not symmetric. Instead, we observed that the total current of electrons
splits very asymmetrically between top and right reservoirs when it is pushed from
the left reservoir, but flows symmetrically from the top and right reservoirs when it is
pulled back into the left reservoir (see Fig. 6.2 (c)) ii. The current difference IR − IT
(the green curve) clearly shows that, about 45 µs after the start of the ramp up, all the
SSE current from the left reservoir flows into the right reservoir, while the current into
the top reservoir goes to zero. This unusual behavior lasts for about 50 µs, after that
the SSEs start to flow out of the right reservoir into the top reservoir. It is expected

iiSimilar asymmetry of electron flow is observed when voltage ramp is applied to the right reservoir
and currents at top and left reservoirs IT and IL are measured.
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(b)

(a)

(c)

Figure 6.2: Flows of SSEs in T-channel at T = 0.4 K. (a) The applied negative
(Vin < 0) voltage ramp plotted against time. (b) The measured induced currents at the
left and right reservoirs IL (black trace) and IR (red trace) when the negative voltage
ramp is applied to the top reservoir. The calculated sum and difference of induced
currents, IL + IR and IL − IR, are shown by the blue and green traces, respectively.
(c) The measured current at the right and top reservoirs IR (black trace) and IT (red
trace) when the negative voltage ramp is applied to the left reservoir. Similar to (b),
the calculated sum and difference of induced currents, IL + IR and IL− IR, are showed
by the blue and green traces, respectively.
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Figure 6.3: Temperature dependence of the current difference IR− IT when
a positive (Vin > 0) voltage ramp is applied to the left reservoir. The current
difference IR − IT is given for different values of temperature. The estimated SSE
density is ne w 3.5 × 1013 m−2, which corresponds to the WS melting temperature
TM w 1.3 K.
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that as the SSEs are accumulating during the first 50 µs in the right reservoir, the
resulting voltage difference between the top and right reservoirs will cause a back flow
of SSEs from the right reservoir into the top reservoir until the amount of SSEs in both
reservoirs equalizes.

When the voltage Vin at the left reservoir is ramped back to zero, initially the
current IR from the right reservoir is slightly larger than the current IT from the top
reservoir. However, the currents equalize quickly, and the overall flow of SSEs from
the two reservoirs into the left reservoir is symmetric, see Fig. 6.2 (c). Similarly, when
applying a positive (Vin > 0) voltage ramp to the left reservoir, we observe an almost
symmetric flow of electrons from the top and right reservoirs into the left reservoir and
an asymmetric flow of electrons when voltage is ramped back to zero.

The observed asymmetric flows also shows a strong temperature dependence, which
is shown in Fig. 6.3 for the case of applying a positive (Vin > 0) voltage ramp to the left
reservoir. Here, we plot the current difference IL − IT for different temperatures from
200 mK to 1000 mK. Note that the current asymmetry starts to disappear at around
600 mK, while the melting temperature of the WS is expected to be TM > 1 K.

6.3 Discussion

The observed behavior of SSE flows in the T-shaped microchannel is intriguing. The
effect seems to appear only when there is an asymmetry in the orientation of electron
flows, which suggests that the inertia of the driven system plays an important role in
this experiment.

We propose one possible scenario for the observed behavior. The fact that the
asymmetric flows of electrons happens at sufficiently high electron densities and low
temperatures suggests that the dynamics of the BC scattering and coupling of a WS
to the dimple lattice plays an important role. As discussed in the previous section, in
the case of symmetric flows when the current of electrons splits equally between the
two reservoirs, SSEs are expected to be deep in the BC scattering regime only at the
entrance of the T-shaped junction (let’s say from the top reservoir). This suggests
that SSEs are essentially free of dimples as they enter the two reservoirs (left and
right). Oppositely, in the case of an asymmetric flow, SSEs flow mainly in the straight
direction, which means that they enter the corresponding reservoir being deep in the
BC scattering regime. This suggests that the observed behavior can be associated with
the effect of inertia of the dimple lattice that carries the WS through the T-shaped
junction predominantly in the straight direction.

While this explanation seems to be natural, it is surprising that the asymmetry in
the SSE flows, which we attribute to the inertia of the dimples, disappears at tem-
peratures well below the melting temperature of a WS. However, it is important to
consider also a strong temperature dependence of the ripplon damping rate, γG1 , and
the corresponding amplitude of the DL, see Eq. (4.9) and Eq. (4.7) in Chapter 4. As
the temperature decreases, the damping rate rapidly decreases as T 4. For T ≈ 0.8 K,
we estimated γ−1

G1
≈ 1 µs. At such temperature, if SSEs free themselves from DL as

they move through the T-shaped junction, the DL disappears on the same timescale
of γ−1

G1
≈ 1 µs due to the dissipation of ripplon energy into phonons of bulk liquid.
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This time is comparable with the typical time for the electrons to travel through the
junction. As the temperature decreases, the typical time over which the uncoupled DL
dissipates rapidly increases and can exceed the time during which SSEs travel through
the junction, thus the dimples can trap the SSEs again. As a result, only at sufficiently
low temperatures SSEs remain to be bound to the DL and show asymmetric transport
associated with DL inertia.

6.4 Summary
We have investigated the transport properties of SSEs in a T-shaped microchannel. No
asymmetry in the split electron flows is observed when electrons are pushed out of or
pulled into the top reservoir. Moreover, almost no flow asymmetry is observed when
electrons are pulled from the T-shaped channel into either the left or right reservoir.
However, there appears a strong asymmetry in the split electron flows when electrons
are pushed into the T-shaped channel from either the left or right reservoir. From
the analysis of the asymmetric flow, one can conclude that electrons prefer to flowing
straight rather than turning at the junction. We suspect that the observed SSE asym-
metric flows are caused by the DL inertia which is sufficient to carry the WS through
the T-shaped junction in the straight direction. The observed temperature dependence
can be explained by the slow decay of the uncoupled DL at low temperature, which
thus can re-trap the WS. In a way, the re-trapping process is akin to the inverse BC
scattering where a WS can reabsorb the energy of resonant ripplons iii. A more rigorous
theoretical study of re-trapping process is required.

iiiThe concept of both the DL emission and absorption has already been mentioned in Dykman
& Rubo’s original work: "The Bragg-Cherenkov scattering is a coherent many-electron emission or
absorption of vibrational excitations" [13].



Conclusion

As mentioned in the beginning of this thesis, the electrical transport in strongly corre-
lated electron systems is an important subject to study in order to understand fascinat-
ing phenomena in modern condensed matter and solid state physics, such as conven-
tional and high-Tc superconductivity, the fractional Hall effect, melting of 2D electron
crystals. In this thesis we described a few experiments aimed at further studies of
transport properties of a 2D electron crystal confined in microstructures. Some new
intriguing phenomena, which need further studies and theoretical developments, were
already observed in the experiments described here. More importantly, these works
show viabilities and advantages to use the developed microchannel devices to study
fascinating transport properties of SSEs on liquid helium. As a conclusion of this
thesis, we outline some future plans.

In the described work, we mostly concentrated on the transport of an electron
crystal, the Wigner solid, on liquid helium. However, the electrical transport of electron
liquid could be also a very interesting subject of research. In particular, because
for sufficiently high electron densities of such liquid and low enough temperatures
the electron-electron collision time can greatly exceed the momentum relaxation time
due to collisions with background scatterers, such a liquid can show hydrodynamic
behaviour, as was demonstrated for example in 2D electrons in graphene [77–79]. The
key point for the possibility to observe hydrodynamic effects in the flow of electrons in
graphene was an appropriate geometry of a sample. The flexibility in manufacturing
the microchannel devices used in our experiments allows us to design a proper geometry
of the device where hydrodynamic features of electron flows in SSE liquids could be
observed. For example, we do not exclude the possibility that some hydrodynamic
features of electron flows, such as vorticity, could be also responsible for the unusual
transport of SSEs in the T-channel geometry as was described in Chapter 6. This is
certainly a very interesting and new direction of research to pursue further.

As was described in Chapter 5, our motivation to study the transport of a WS
subject to a spatially periodic potential comes from the possibility to use the SSE
system to simulate the FK model. In our experiments we realized a case of about four
electrons per period of the spatial potential. A more clear-cut and interesting case
would be to have a single particle per period to study the effect of commensurability.
It would be also advantageous to carry out such experiments with an electron liquid
rather than a WS to avoid effects of strong coupling of a WS to the commensurate
deformation of the surface of liquid helium, as well as use a single chain of electrons in a
microchannel rather than a 2D system. Such experiments require further developments
in device manufacturing, in particular employing shallow channels with height below
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200 nm.
While all experiments described here were done with the many-electron system,

our original motivations to employ microchannel devices for experiments with SSEs
on liquid helium also come from the possibility of trapping and detecting a single
electron in the microchannel. Such work is mostly driven by the proposals to employ
electrons on helium to build qubits for a scalable quantum computer architecture [80–
83]. While this is a very challenging task, the possibility of single-electron detection on
liquid helium has been already demonstrated using a single-electron transistor (SET)
device [84, 85]. Employing a suitable microchannel geometry might provide some
advantages for control of the number of electrons, as was already demonstrated by
Rees et al. in experiments with a point contact device [40, 41]. Trapping of a single
electron in the microchannel (subsequent detection of its quantum states) is one of the
key points for successful implementation of SSEs on liquid helium for qubits.
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WS vs Bingham plastic liquid
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Figure A.1: WS vs Bingham plastic liquid. (a) The nonlinear transport of a WS
undergoing transitions of the BC scattering and the sliding shows a similar behavior
of (b) the Bingham plastic liquid.

The Bingham plastic, named after Eugene C. Bingham who also coined the term
rheology in 1929, is a non-Nowtonian fluid that behaves like a solid at low stressess
and flows like a viscous liquid at high stresses. The mathematical form proposed by
Eugene C. Bingham describes that the gradient of the material flow speed ∂u

∂y
is directly

proportional to the amount by which the applied shear stress τ exceeds the yield stress
τ0:

∂u

∂y
=

{
0, τ < τ0

(τ − τ0)/µ∞ τ ≥ τ0
, (A.1)

where µ∞ is the plastic viscosity. Therefore, whenever τ ≥ τ0, the Bingham plastic
liquid flows like a Newtonian liquid.

Some common examples include the toothpaste, ketchup, mayonnaise, lava and
paints, which will not flow until a certain pressure is applied to those fluids. One of the
physical reason for this behavior given by Eugene C. Bingham is quoted below: "In a
suspension of solid particles in a liquid there must be a dissipation of energy when the
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solid particles collide, as they must collide if the layers of the suspension move over
each other. This dissipation of energy follows the laws of ordinary friction and not the
laws of viscosity." Therefore, “the behavior of the plastic flow is sharply differentiated
from the viscous flow by the ’friction’ necessary to start plastic flow.” [86] In other
words, the interactions between the particles (such as clay) or large moleculae (such as
polymers) contained in the liquid creat weak solid structures. And the stress τ0 is the
amount of stress required to break this solid structure such that it starts to flow. Once
the stress τ is removed or smaller than τ0, the particles associate into solids again.

If we associated the "break of solid structure" with the dynamics of dislocation, the
WS may be "melted" after the sliding transition (F > Fmax, or τ > τ0) [50, 66, 87].



Appendix B

T-shaped microchannel: AC driven
cases

The experimental observation presented here are measured in the T-shaped microchan-
nel device under AC driving conditions. Owing to time constraints, it is still failing to
offer a good explanation.

First, we observed that when the driving voltage Vin was applied to the top reservoir,
the measured currents IR and IL were symmetric under the conditions of small value
of Vch where the SSE density was small. But as the applied channel voltage Vch getting
larger, the asymmetric behavior of currents started to develope. As shown in Fig. B.1
(d), whenever IR underwent an extraordinary raising, IL underwent a diminishing of
the same amount as IR raised. It looks like that when SSEs reached the junction, they
have been randomly splitted into two pieces. Similar behaviors were also observed in
Fig. B.2(c) and (d). In Fig. B.2, the expected SSE density was larger than the one of
Fig. B.1 due to the earlier opening of channel flows at Vch = 0.2 V. And the temperature
0.48 K was also lower than the temperature of Fig. B.1 (0.8 K). In contrast to Fig. B.1,
the behavior of the observed asymmetric flows in Fig. B.2 looks more rigid. Moreover,
as the Vch increased, current gaps emerged in both Fig. B.2 and Fig. B.3 (both were
0.48 K). It seems that SSEs were jamming at the junction such that no flows can be
detected. After the current gap, the oscillations of asymmetric currents became rapid
and sharper.

There are some plausible reasonings to the observed complex SSE flows, but any
of them is difficult to test. For example, Fig. B.4 shows a theoretical prediction of
the dependence of the sliding distance uc of a microflake on its initial velocity vi of a
modified FK model [88]. Not like a frozen external periodic potential used in a classical
FK model, the periodic potential in the modified FK model is described with the van
der Waals (vdW) potential. And the vdW potential between the particles in the chain
and the substrate is of the Lennard-Jones (LJ) type:

Uij = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (B.1)

where ε is the depth of the potential well and σ is the finite distance at which the

77



78 T-shaped microchannel: AC driven cases

Figure B.1: Driving the top resevoir at 99 kHz, 0.8 K, Vgu = −0.4 V. (a) &
(b) The measured induced current IL & IR at the left & right reservoir against applied
driving voltages Vin and T-shaped channel bias Vch. (c) & (d) IV curves for different
values of Vch as indicated. These curves correspond to the dashed lines of the same
color plotted in (a) for IL and (b) for IR.

inter-particle potential is zero. Therefore, the modified FK used in this work is

d2ui
dt2

= ω2
s0(ui+1 + ui−1 − 2ui) +

∑
j

χ2σ

[
2

(
σ

rij

)13

−
(
σ

rij

)7
]

cos θij, (B.2)

where χ =
√

24ε/m/σ is a parameter defined to characterize coupling intensity, m
is the chain atom mass, and ωs0 =

√
β/m is the phonon mode of the particle chain.

In this modified FK model, the phonon excitation is considered. The authers found
that the kinetic energy is dissipated via phonon discharge toward the substrate. To
compare with our SSE system, if we adopt the Drude model, vi ∝ Vin and let the
sliding displacement uc ∝ Iout, the current behaviour observed in Fig. B.3 (d), where
the SSEs of high densities are expected to be in a solid phase, is analogous to Fig. B.4
(b). In face that a WS on a liquid helium surface is one of the ideal systems to study
the interfacial interaction between lattice structure and a soft surface, especially in the
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Figure B.2: Driving the top resevoir at 99 kHz, 0.48 K, Vgu = −0.4 V. (a) &
(b) The measured induced current IL & IR at the left & right reservoir against applied
driving voltages Vin and T-shaped channel bias Vch. (c) & (d) IV curves for different
values of Vch as indicated. These curves correspond to the dashed lines of the same
color plotted in (a) for IL and (b) for IR.

presence of a strong coupling in the BC scattering regime. The idea of kinetic energy
dissipates toward the substrate vibrational excitations is akin to the mechanism of
BC scattering proposed by Dykman and Rubo [13]. I found that it is interesting to
compare the BC scattering model with this modified FK model with dissipations.

Another interesting research subject about this strongly correlated electron system
is "viscoelastic" electron flows. As discussed in the main chapters, the mathematical
descriptions of strongly-correlated systems are still in want. And we have noticed
that recently there are several studies showing the potential of hydrodynamic models
for systems of strong inter-electron interactions [77, 78, 89]. Although for centries, the
hydrodynamic theories have been extensively developed to study the collective behavior
of classical many-particle systems, when the studies related with non-Newtonian flows
it is still puzzling to deal with, such as shear thickening and jamming [90–93]. For
the SSE system which can exhibit either the liquid properties (viscosity) or the solid
properties (elasticity) owing to the existence of phase transitions, I believe that its
essential viscoelastic properties are the keys to the strong-correlations puzzle.
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Figure B.3: Driving the top resevoir at 99 kHz, 0.48 K, Vgu = −0.7 V. (a) &
(b) The measured induced current IL & IR at the left & right reservoir against applied
driving voltage Vin and T-shaped channel bias Vch. (c) & (d) IV curves for different
values of Vch as indicated. These curves correspond to the dashed lines of the same
color plotted in (a) for IL and (b) for IR.
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(a)

(b)

Figure B.4: Dependence of the sliding distance of a one-dimensional atom
chain on initial velocity. (a) Schematic of the modified FK model. as is the period
of the external on-site potential as mentioned in Sect. 5.1, and β is the spring stiffness.
(b) Largest displacement of central mass as a function of initial velocity for simulated
particle number N = 15 and different χ/ωs0 in the time range of 0− 4000. v0 = as/t0,
where t0 = h/ε and h is the Planck constant. The figures are reproduced from [88].
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