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Abstract

The KLR algebras were introduced almost a decade ago to categorify the neg-
ative half of a quantum group. In type A, Brundan and Kleshchev showed that
cyclotomic quotients of KLR algebras are isomorphic to cyclotomic Hecke algebras,
which has spurred on the development of their graded representation theory, in
particular with a theory of Specht modules. We will report on recent joint work
with Susumu Ariki and Euiyong Park, in which we have defined a family of Specht
modules for the KLR algebras in type C. We will outline some of their basic prop-
erties and explain why they are interesting objects to study. We will finally discuss
how we used these Specht modules to classify which cyclotomic quotients of the
KLR algebras of type C are semisimple.

1 Tableaux and type C residues

Fix a field F. Let ` ∈ {2, 3, . . . } ∪ {∞} and I = Z>0 if ` = ∞ or I = {0, 1, 2, . . . , `}
otherwise. We have the root datum of type C∞ if ` = ∞, or type C

(1)
` if ` < ∞. In

particular we have the Cartan matrix A = (aij)i,j∈I , simple roots {αi | i ∈ I} and
fundamental weights {Λi | i ∈ I} in P, and an invariant symmetric bilinear form on
P satisfying (αi, αj) = diaij where d = (2, 1, 1, . . . ) if ` = ∞ and d = (2, 1, . . . , 1, 2) if
` <∞.

Fix a level l ∈ Z>0 and a multicharge κ = (κ1, . . . , κl) ∈ Zl.

Definition 1.1. An l-multipartition of n is an l-tuple of partitions λ = (λ(1), . . . , λ(l))
such that

∑
|λ(i)| = n. We denote the set of l-multipartitions by P l

n.

We may draw the Young diagram [λ] of λ ∈P l
n as depicted in the following example.

Example. Let λ = ((6, 3, 2, 2),∅, (4, 2)). Then

[λ] =

∅
.
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Next, we describe the type C residue pattern. To each node in a Young diagram, we
may associate a residue as follows. Let A = (r, c,m) ∈ [λ].

If ` =∞, then we define the residue of A to be resA := κm + c− r = |κm + c− r|.
If ` < ∞, we define p : Z → Z/2`Z to be the natural projection, and f` : Z → I the

function determined by

f`(0+2`Z) = 0, f`(`+2`Z) = `, f`(k+2`Z) = f`(2`−k+2`Z) = k for 1 6 k 6 `−1.

Then resA := κm + c− r, where : f` ◦ p : Z→ I is the composition of these maps.

Example. Let ` = 3, κ = (2, 0,−1), and λ = ((6, 3, 2, 2),∅, (4, 2)) as above.

2 3 2 1 0 1
1 2 3
0 1
1 0

∅
1 0 1 2
2 1

If instead we let ` =∞, then the residue pattern is as follows.

2 3 4 5 6 7
1 2 3
0 1
1 0

∅
1 0 1 2
2 1

Definition 1.2. Let λ ∈ P l
n. A λ-tableau is a filling of [λ] with {1, 2, . . . , n} without

repeats. A λ-tableau is called row-strict if its entries increase along rows within each
component. If the entries also increase down columns within each component, we call the
tableau standard. We denote the sets of row-strict and standard λ-tableaux by RowStd(λ)
and Std(λ), respectively.

The initial λ-tableau Tλ is obtained by filling the entries along each row in order down
the Young diagram (beginning with the first component).

The residue sequence of a λ-tableau T is res T = (i1, . . . , in) where ir is the residue of
the node occupied by r in T.

Example. For λ = ((6, 3, 2, 2),∅, (4, 2)) and κ = (2, 0,−1) as before, the initial tableau
Tλ is

1 2 3 4 5 6
7 8 9
1011
1213

∅
14151617
1819

.

If ` = 3, then res Tλ = (2, 3, 2, 1, 0, 1, 1, 2, 3, 0, 1, 1, 0, 1, 0, 1, 2, 2, 1). If ` =∞, then res Tλ =
(2, 3, 4, 5, 6, 7, 1, 2, 3, 0, 1, 1, 0, 1, 0, 1, 2, 2, 1).
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For a λ-tableau T, we denote by wT ∈ Sn the permutation such that wTTλ.
If A = (r, c,m) ∈ [λ] and (r + 1, c,m) ∈ [λ], we call A a Garnir node. The corre-

sponding Garnir belt BA is the set of nodes

{(r, a,m) ∈ [λ] | c 6 a 6 λ(m)
r } ∪ {(r + 1, a,m) ∈ [λ] | 1 6 a 6 c}.

The Garnir tableau GA is the λ-tableau which agrees with Tλ outside of BA and has the
entries of BA appearing in order along the bottom row, then along the top row.

Example. For λ = ((6, 3, 2, 2),∅, (4, 2)) and A = (2, 2, 1),

GA = 1 4 5 6 7 8
2 3 9
1011
1213

∅
14151617
1819

.

2 KLR algebras and Specht modules

We fix a system of polynomials Qi,j(u, v) ∈ F[u, v] for i, j ∈ I of the form

Qi,j(u, v) =

{∑
p(αi,αi)+q(αj ,αj)+2(αi,αj)=0 ti,j;p,qu

pvq if i 6= j,

0 if i = j,

where ti,j;p,q ∈ F are such that ti,j;−aij ,0 ∈ F× and Qi,j(u, v) = Qj,i(v, u).
Here, we choose a specific system of polynomials as follows. If ` <∞ then, for i < j,

Qi,j(u, v) =


u+ v2 if (i, j) = (0, 1),

u+ v if i 6= 0, j = i+ 1, j 6= `,

u2 + v if (i, j) = (`− 1, `),

1 otherwise.

If ` =∞ then, for i < j,

Qi,j(u, v) =


u+ v2 if (i, j) = (0, 1),

u+ v if i 6= 0, j = i+ 1,

1 otherwise.

We note that if every element of F has a square root, then any other choice of polynomials
yields an isomorphic algebra.

Definition 2.1. The Khovanov–Lauda–Rouquier (KLR) algebra R(n) is the unital F-
algebra generated by

{e(ν) | ν ∈ In} ∪ {x1, . . . , xn} ∪ {ψ1, . . . , ψn−1}

subject to the following relations.

e(ν)e(ν ′) = δν,ν′e(ν);
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∑
ν∈In

e(ν) = 1;

xre(ν) = e(ν)xr;

ψre(ν) = e(srν)ψr;

xrxs = xsxr;

ψrxs = xsψr if s 6= r, r + 1;

ψrψs = ψsψr if |r − s| > 1;

xrψre(ν) = (ψrxr+1 − δνr,νr+1)e(ν);

xr+1ψre(ν) = (ψrxr + δνr,νr+1)e(ν);

ψ2
re(ν) = Qνr,νr+1(xr, xr+1)e(ν);

(ψr+1ψrψr+1 − ψrψr+1ψr)e(ν) =

{
Qνr,νr+1 (xr,xr+1)−Qνr,νr+1 (xr+2,xr+1)

xr−xr+2
e(ν) if νr = νr+2,

0 otherwise;

for all admissible r, s, ν, ν ′.
Let Λ = Λκ1 + · · ·+ Λκl .
The cyclotomic KLR algebra RΛ(n) is the quotient of R(n) by the relations

x
#{i|κi=ν1}
1 e(ν) = 0 for ν ∈ In.

We give a Z-grading on R(n) and RΛ(n) by setting

deg(e(ν)) = 0, deg(xre(ν)) = (ανr , ανr), deg(ψse(ν)) = −(ανs , ανs+1)

for all admissible r, s and ν.
For k ∈ Z and d ∈ Z>0, we define

ν(k;d) = (k, k + 1, . . . , k + d− 1) ∈ Id.

Then L(k;d) = Fl(k;d) is the graded R(d)-module concentrated in degree 0 with

xrl(k;d) = ψsl(k;d) = 0, e(ν)l(k;d) = δν,ν(k;d)l(k;d),

for all r, s, ν.
For λ = (λ1, λ2, . . . , λr) ∈P1

n and κ ∈ Z, we define the graded R(n)-module Mλ
κ = Mλ

to be
Mλ := L(κ;λ1) ◦ L(κ−1;λ2) ◦ · · · ◦ L(κ−r+1;λr),

where ◦ denotes the convolution product. For λ = (λ(1), λ(2), . . . , λ(l)) ∈ P l
n and κ =

(κ1, . . . , κl) ∈ Zl, we define the graded R(n)-module Mλ
κ = Mλ to be

Mλ := Mλ(1)

κ1
◦Mλ(2)

κ2
◦ · · · ◦Mλ(l)

κl
.

In other words, Mλ is the module with generator mλ subject to the relations

1. e(ν)mλ = δν,res Tλm
λ,

2. xrm
λ = 0,

3. ψrm
λ = 0 if r and r + 1 lie in the same row of Tλ.
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For each w ∈ Sn, fix a reduced expression w = si1 . . . sir . We define ψw = ψi1 . . . ψir .

Lemma 2.2. Mλ has a homogeneous F-basis {ψwTmλ | T ∈ RowStd(λ)}.

For each Garnir node A = (r, c,m) ∈ [λ], we define

Mλ
κ,A = Mλ(1)

κ1
◦ · · · ◦Mλ(m−1)

κm−1
◦L

(κm;λ
(m)
1 )
◦ · · · ◦ L

(κm−r+2;λ
(m)
r−1)
◦

L(κm−r+1;c−1) ◦ L(κm−r;λ(m)
r +1)

◦ L
(κm−r+c;λ(m)

r+1−c)
◦

◦ L
(κm−r−1;λ

(m)
r+2)
◦ · · · ◦ L

(κm−t+1;λ
(m)
t )
◦Mλ(m+1)

κm+1
◦ · · · ◦Mλ(l)

κl

where λ(m) = (λ
(m)
1 , . . . , λ

(m)
t ).

Now, we have homomorphisms Mλ
κ,A〈d(λ,A)〉 → Mλ, mapping the generator of (a

degree shifted copy of) Mλ
κ,A to a Garnir element gλκ,A ∈ Mλ.

The Specht module Sλ = Sλκ is the quotient of Mλ〈deg Tλ〉 (some degree shifted copy
of Mλ) by the submodule generated by all Garnir elements gλκ,A. We denote by mλ the

image of mλ under the projection Mλ〈deg Tλ〉 → Sλ.

Lemma 2.3. If ` =∞, gλκ,A = ψwGAm
λ. If ` <∞, gλκ,A = ψwGAm

λ +
∑

w<wGA awψwm
λ.

Theorem 2.4 [1, Theorem 3.12 and Corollary 3.13]. Let λ ∈ P l
n. Then Sλκ is a

graded RΛ(n)-module, spanned by the homogeneous elements {ψwTmλ | T ∈ Std(λ)}.

Theorem 2.5 [1, Theorem 3.19 and Corollary 3.21]. Suppose ` =∞ and λ ∈P l
n.

Then the set {ψwTmλ | T ∈ Std(λ)} is an F-basis of Sλ. Moreover, we have the graded
character formula

chq Sλ =
∑

T∈Std(λ)

qdeg T res T.

We conjectured that the above result remains true when ` < ∞, and conjectured an
explicit form for gλκ,A in this case.

Let A ∈ [λ]. We define λA to be the multipartition obtained from λ by removing A.

Corollary 2.6 [1, Corollaries 3.20 and 3.21]. Let EΛ
i denote the i-restriction functor

on RΛ(n)-modules. Then we have the following branching rule in the Grothendieck group
of RΛ(n− 1).

[EΛ
i Sλ] =

∑
A

qdA(λ)[SλA ],

where the sum runs over all removable i-nodes of [λ].

We have a similar result for i-induction, with a slightly messier formula for the grading
shift.

3 Semisimplicity

For i ∈ I and k ∈ Z>0, we define the positive root αi,n = αi + αi+1 + · · ·+ αi+k−1, where
we take indices module `+ 1 if ` <∞.

We note the following conditions which we will refer back to.

(SS1) For all i ∈ I, (Λ, αi,n) 6 1.



6 Liron Speyer

(SS2) For all 1 6 j 6 l, n−1
2

6 κj 6 `− n−1
2

.

Roughly, condition (SS1) says that the κi are “far enough apart” from each other,
while condition (SS2) says they they are far enough away from 0 and `, around which
the residue pattern is symmetric. The reason for wanting such conditions is the following
lemma, which is key to our semisimplicity argument.

Lemma 3.1 [2, Lemma 3.1]. Suppose that conditions (SS1) and (SS2) hold. Let
λ, µ ∈P l

n and S ∈ Std(λ), T ∈ Std(µ). Then S = T if and only if res S = res T.

Examples. 1. If κ = (0) and n = 2, then condition (SS2) fails. We have the following
residue patterns for partitions (2) and (12).

0 1 and 0
1

The tableaux
1 2 and 1

2

thus have the same residue sequences.

2. If κ = (1, 2) and n = 2, then condition (SS1) fails. We have the following residue
patterns for bipartitions ((2),∅) and ((1), (1)).

1
2

1

∅ 2

The tableaux

1
2

1

∅ 2

thus have the same residue sequences.

Theorem 3.2 [2, Theorem 3.3]. Suppose that conditions (SS1) and (SS2) hold, and
let λ ∈ P l

n. Then the Specht module Sλ is concentrated in degree 0, has basis {ψwTmλ |
T ∈ Std(λ)}, and the RΛ(n)-action on the basis is given by

e(ν)ψwTmλ = δν,res TψwTmλ, xrψwTmλ = 0, ψrψwTmλ =

{
ψwsrTm

λ if srT is standard,

0 otherwise.

Moreover, Sλ is an irreducible graded RΛ(n)-module.

Examples. Suppose conditions (SS1) and (SS2) hold.

1. Let n = 3. Then we have three Specht modules S(3), S(2,1), and S(13), with bases
{m(3)}, {m(2,1), ψ2m

(2,1)}, and {m(13)}, respectively. All xr and ψr generators kill
all of these basis elements, with the exception of ψ2 acting on m(2,1).
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2. Let λ = (3, 2). Then Sλ has basis {mλ, ψ3m
λ, ψ2ψ3m

λ, ψ4ψ3m
λ, ψ2ψ4ψ3m

λ}. All xr
generators kill all basis elements, and it is easy to check whether ψr kills a basis
element or takes it to another basis element.

Theorem 3.3 [2, Corollary 3.9]. Suppose that conditions (SS1) and (SS2) hold. Then
RΛ(n) is semisimple.

Proof. The idea of the proof is to show that {ψ(wS)−1e(res Tλ)ψwT | S, T ∈ Std(λ), λ ∈P l
n}

is a graded cellular basis of RΛ(n), and is a basis of matrix units.

Theorem 3.4 [2, Theorem 3.10]. Suppose at least one of the conditions (SS1) and
(SS2) fails. Then RΛ(n) is not semisimple.

Proof. In the degenerate cases where some κj = 0 or `, or where κj = κj′ for some
j 6= j′, we explicitly construct a two-dimensional uniserial module with a one-dimensional
submodule. In all other cases, the idea of the proof is to find a Specht module with a
one-dimensional submodule with no complement.

Example. If κ = (0) and n = 2, RΛ(n) ∼= F[x]/[x2], and the irreducible modules S(2)

and S(12) are isomorphic. In fact, in this case, the two-dimensional module we construct
in our proof is isomorphic to RΛ(n) ∼= F[x]/[x2] as a module.
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