Specht modules for the KLR algebras of type *C*

Liron Speyer

Osaka University

l.speyer@ist.osaka-u.ac.jp

Joint work with S. Ariki and E. Park.

Fix a field $\mathbb F.$

Fix a field \mathbb{F} .

Definition

A partition of *n* is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, ...)$ of integers which sum to *n*.

Fix a field \mathbb{F} .

Definition

A partition of *n* is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, ...)$ of integers which sum to *n*. An *I*-multipartition of *n* is an *I*-tuple of partitions $\lambda = (\lambda^{(1)}, ..., \lambda^{(l)})$ such that $\sum |\lambda^{(l)}| = n$.

Fix a field \mathbb{F} .

Definition

A partition of *n* is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, ...)$ of integers which sum to *n*. An *I*-multipartition of *n* is an *I*-tuple of partitions $\lambda = (\lambda^{(1)}, ..., \lambda^{(l)})$ such that $\sum |\lambda^{(l)}| = n$. We denote the set of *I*-multipartitions by \mathcal{P}_n^l .

Fix a field \mathbb{F} .

Definition

A partition of *n* is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, ...)$ of integers which sum to *n*. An *I*-multipartition of *n* is an *I*-tuple of partitions $\lambda = (\lambda^{(1)}, ..., \lambda^{(l)})$ such that $\sum |\lambda^{(l)}| = n$. We denote the set of *I*-multipartitions by \mathcal{P}_n^l .

We draw the Young diagram $[\lambda]$ of $\lambda \in \mathscr{P}_n^l$ as in the following example.

Fix a field \mathbb{F} .

Definition

A partition of *n* is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, ...)$ of integers which sum to *n*. An *I*-multipartition of *n* is an *I*-tuple of partitions $\lambda = (\lambda^{(1)}, ..., \lambda^{(l)})$ such that $\sum |\lambda^{(l)}| = n$. We denote the set of *I*-multipartitions by \mathcal{P}_n^l .

We draw the Young diagram $[\lambda]$ of $\lambda \in \mathscr{P}_n^l$ as in the following example.

Example Let $\lambda = ((6, 3, 2, 2), \emptyset, (4, 2)).$

Example Let $\lambda = ((6, 3, 2, 2), \emptyset, (4, 2)).$

Let $\ell \in \{2, 3, ...\} \cup \{\infty\}$ and $I = \mathbb{Z}_{\geq 0}$ if $\ell = \infty$ or $I = \{0, 1, 2, ..., \ell\}$ otherwise.

Let $\ell \in \{2, 3, ...\} \cup \{\infty\}$ and $I = \mathbb{Z}_{\geq 0}$ if $\ell = \infty$ or $I = \{0, 1, 2, ..., \ell\}$ otherwise. Fix a *level* $I \in \mathbb{Z}_{>0}$ and a *multicharge* $\kappa = (\kappa_1, ..., \kappa_l) \in \mathbb{Z}^l$.

Let $\ell \in \{2, 3, ...\} \cup \{\infty\}$ and $I = \mathbb{Z}_{\geq 0}$ if $\ell = \infty$ or $I = \{0, 1, 2, ..., \ell\}$ otherwise. Fix a *level* $I \in \mathbb{Z}_{>0}$ and a *multicharge* $\kappa = (\kappa_1, ..., \kappa_l) \in \mathbb{Z}^l$. To each *node* in a Young diagram, we associate a residue as follows. Let $A = (r, c, m) \in [\lambda]$.

Let $\ell \in \{2, 3, ...\} \cup \{\infty\}$ and $I = \mathbb{Z}_{\geq 0}$ if $\ell = \infty$ or $I = \{0, 1, 2, ..., \ell\}$ otherwise. Fix a *level* $I \in \mathbb{Z}_{>0}$ and a *multicharge* $\kappa = (\kappa_1, ..., \kappa_l) \in \mathbb{Z}^l$. To each *node* in a Young diagram, we associate a residue as follows. Let $A = (r, c, m) \in [\lambda]$. If $\ell = \infty$, then we define the

residue of A to be res $A := \frac{1}{\kappa_m + c - r} = |\kappa_m + c - r|$.

Let $\ell \in \{2, 3, ...\} \cup \{\infty\}$ and $I = \mathbb{Z}_{\geq 0}$ if $\ell = \infty$ or $I = \{0, 1, 2, ..., \ell\}$ otherwise. Fix a *level* $I \in \mathbb{Z}_{>0}$ and a *multicharge* $\kappa = (\kappa_1, ..., \kappa_l) \in \mathbb{Z}^l$. To each *node* in a Young diagram, we associate a residue as follows. Let $A = (r, c, m) \in [\lambda]$. If $\ell = \infty$, then we define the

residue of A to be res $A := \frac{1}{\kappa_m + c - r} = |\kappa_m + c - r|$.

Example

Let
$$\ell = \infty$$
, $\kappa = (2, 0, -1)$, and $\lambda = ((6, 3, 2, 2), \emptyset, (4, 2))$.

Let $\ell \in \{2, 3, ...\} \cup \{\infty\}$ and $I = \mathbb{Z}_{\geq 0}$ if $\ell = \infty$ or $I = \{0, 1, 2, ..., \ell\}$ otherwise. Fix a *level* $I \in \mathbb{Z}_{>0}$ and a *multicharge* $\kappa = (\kappa_1, ..., \kappa_l) \in \mathbb{Z}^l$. To each *node* in a Young diagram, we associate a residue as follows. Let $A = (r, c, m) \in [\lambda]$. If $\ell = \infty$, then we define the

residue of A to be res $A := \frac{1}{\kappa_m + c - r} = |\kappa_m + c - r|$.

Example

Let
$$\ell = \infty$$
, $\kappa = (2, 0, -1)$, and $\lambda = ((6, 3, 2, 2), \emptyset, (4, 2))$.

2	3	4	5	6	7
1	2	3			
0	1				
1	0				
Ø					
1	0	1	2		
2	1				

If $\ell < \infty$, we replace the residue pattern ... 3210123 ... with $012 \dots (\ell-1)\ell(\ell-1) \dots 1$.

If $\ell < \infty$, we replace the residue pattern ... 3210123... with $012...(\ell-1)\ell(\ell-1)...1$.

Example

Let
$$\ell = 3$$
, $\kappa = (2, 0, -1)$, and $\lambda = ((6, 3, 2, 2), \emptyset, (4, 2))$.

A λ -tableau is a filling of $[\lambda]$ with $\{1, 2, ..., n\}$ without repeats.

A λ -tableau is a filling of $[\lambda]$ with $\{1, 2, ..., n\}$ without repeats.

Call a λ -tableau *standard* if entries increase along rows and down columns within each component.

A λ -tableau is a filling of $[\lambda]$ with $\{1, 2, ..., n\}$ without repeats.

Call a λ -tableau *standard* if entries increase along rows and down columns within each component. Denote the sets of standard λ -tableaux by Std(λ).

A λ -tableau is a filling of $[\lambda]$ with $\{1, 2, ..., n\}$ without repeats.

Call a λ -tableau *standard* if entries increase along rows and down columns within each component. Denote the sets of standard λ -tableaux by Std(λ).

The initial λ -tableau T^{λ} is obtained by filling the entries along each row in order down the Young diagram.

A λ -tableau is a filling of $[\lambda]$ with $\{1, 2, ..., n\}$ without repeats.

Call a λ -tableau *standard* if entries increase along rows and down columns within each component. Denote the sets of standard λ -tableaux by Std(λ).

The initial λ -tableau T^{λ} is obtained by filling the entries along each row in order down the Young diagram.

The *residue sequence* of a λ -tableau T is res T = (i_1, \ldots, i_n) where i_r is the residue of the node occupied by r in T.

A λ -tableau is a filling of $[\lambda]$ with $\{1, 2, ..., n\}$ without repeats.

Call a λ -tableau *standard* if entries increase along rows and down columns within each component. Denote the sets of standard λ -tableaux by Std(λ).

The initial λ -tableau T^{λ} is obtained by filling the entries along each row in order down the Young diagram.

The *residue sequence* of a λ -tableau T is res T = (i_1, \ldots, i_n) where i_r is the residue of the node occupied by r in T.

For a λ -tableau T, we denote by $w^{T} \in \mathfrak{S}_{n}$ the permutation such that $w^{T}T^{\lambda}$.

A λ -tableau is a filling of $[\lambda]$ with $\{1, 2, ..., n\}$ without repeats.

Call a λ -tableau *standard* if entries increase along rows and down columns within each component. Denote the sets of standard λ -tableaux by Std(λ).

The initial λ -tableau T^{λ} is obtained by filling the entries along each row in order down the Young diagram.

The *residue sequence* of a λ -tableau T is res T = (i_1, \ldots, i_n) where i_r is the residue of the node occupied by r in T.

For a λ -tableau T, we denote by $w^{T} \in \mathfrak{S}_{n}$ the permutation such that $w^{T}T^{\lambda}$.

Example

For $\lambda = ((6, 3, 2, 2), \emptyset, (4, 2))$ and $\kappa = (2, 0, -1)$ as before, the initial tableau T^{λ} is

1	2	3	4	5	6
7	8	9			
10	11				
12	13				
Ø					
14	15	16	17		
18	19			•	

Example

For $\lambda = ((6, 3, 2, 2), \emptyset, (4, 2))$ and $\kappa = (2, 0, -1)$ as before, the initial tableau T^{λ} is

					_
1	2	3	4	5	6
7	8	9			
10	11				
12	13				
Ø					
14	15	16	17		
18	19			•	

If $\ell = 3$, res $T^{\lambda} = (2, 3, 2, 1, 0, 1, 1, 2, 3, 0, 1, 1, 0, 1, 0, 1, 2, 2, 1)$.

Example

For $\lambda = ((6, 3, 2, 2), \emptyset, (4, 2))$ and $\kappa = (2, 0, -1)$ as before, the initial tableau T^{λ} is

1	2	3	4	5	6
7	8	9			
10	11				
12	13				
Ø					
14	15	16	17		
18	19			•	

If $\ell = 3$, res $T^{\lambda} = (2, 3, 2, 1, 0, 1, 1, 2, 3, 0, 1, 1, 0, 1, 0, 1, 2, 2, 1)$. If $\ell = \infty$, res $T^{\lambda} = (2, 3, 4, 5, 6, 7, 1, 2, 3, 0, 1, 1, 0, 1, 0, 1, 2, 2, 1)$.

Example Let $\lambda = (3, 2)$.

Example

Let $\lambda = (3, 2)$. Then we have standard tableaux

$$T_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \end{bmatrix} \quad T_{2} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 \end{bmatrix} \quad T_{3} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
$$T_{4} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \end{bmatrix} \quad T_{5} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$$

Example

Let $\lambda = (3, 2)$. Then we have standard tableaux

$$T_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \end{bmatrix} \quad T_{2} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 \end{bmatrix} \quad T_{3} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
$$T_{4} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \end{bmatrix} \quad T_{5} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$$

 $w^{T_1} = 1$,

Example

Let $\lambda = (3, 2)$. Then we have standard tableaux

$$T_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \end{bmatrix} \quad T_{2} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 \end{bmatrix} \quad T_{3} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
$$T_{4} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \end{bmatrix} \quad T_{5} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$$

 $w^{T_1} = 1, w^{T_2} = s_3,$

Example

Let $\lambda = (3, 2)$. Then we have standard tableaux

$$T_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \end{bmatrix} \quad T_{2} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 \end{bmatrix} \quad T_{3} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
$$T_{4} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \end{bmatrix} \quad T_{5} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$$

 $w^{T_1} = 1, w^{T_2} = s_3, w^{T_3} = s_2 s_3,$

Example

Let $\lambda = (3, 2)$. Then we have standard tableaux

$$T_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \end{bmatrix} \quad T_{2} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 \end{bmatrix} \quad T_{3} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
$$T_{4} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \end{bmatrix} \quad T_{5} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$$

 $w^{T_1} = 1, w^{T_2} = s_3, w^{T_3} = s_2 s_3, w^{T_4} = s_4 s_3,$

Example

Let $\lambda = (3, 2)$. Then we have standard tableaux

$$T_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \end{bmatrix} \quad T_{2} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 \end{bmatrix} \quad T_{3} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
$$T_{4} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \end{bmatrix} \quad T_{5} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$$

 $w^{T_1} = 1, w^{T_2} = s_3, w^{T_3} = s_2 s_3, w^{T_4} = s_4 s_3, w^{T_5} = s_2 s_4 s_3.$

The Khovanov–Lauda–Rouquier algebra R(n) is the unital \mathbb{F} -algebra generated by

 $\{e(v) \mid v \in I^n\} \cup \{x_1, \ldots, x_n\} \cup \{\psi_1, \ldots, \psi_{n-1}\},\$

subject to a long list of relations.

The Khovanov–Lauda–Rouquier algebra R(n) is the unital \mathbb{F} -algebra generated by

 $\{e(v) \mid v \in I^n\} \cup \{x_1, \ldots, x_n\} \cup \{\psi_1, \ldots, \psi_{n-1}\},\$

subject to a long list of relations.

R(n) was introduced to categorify the negative half of a quantum group $U_q(g)$.

The Khovanov–Lauda–Rouquier algebra R(n) is the unital \mathbb{F} -algebra generated by

 $\{e(v) \mid v \in I^n\} \cup \{x_1, \ldots, x_n\} \cup \{\psi_1, \ldots, \psi_{n-1}\},\$

subject to a long list of relations.

R(n) was introduced to categorify the negative half of a quantum group $U_q(g)$.

For each dominant weight Λ , R(n) has a cyclotomic quotient $R^{\Lambda}(n)$ which categorifies the corresp. highest weight module $V(\Lambda)$.

The Khovanov–Lauda–Rouquier algebra R(n) is the unital \mathbb{F} -algebra generated by

 $\{e(v) \mid v \in I^n\} \cup \{x_1, \ldots, x_n\} \cup \{\psi_1, \ldots, \psi_{n-1}\},\$

subject to a long list of relations.

R(n) was introduced to categorify the negative half of a quantum group $U_q(g)$.

For each dominant weight Λ , R(n) has a cyclotomic quotient $R^{\Lambda}(n)$ which categorifies the corresp. highest weight module $V(\Lambda)$.

Here we discuss results when g is of type C_{∞} or $C_{\ell}^{(1)}$.

Let $\lambda \in \mathscr{P}_n^l$ and $\kappa \in \mathbb{Z}^l$.

1.
$$e(v)z^{\lambda} = \delta_{v, \operatorname{res} \operatorname{T}^{\lambda}} z^{\lambda}$$
,

1.
$$e(v)z^{\lambda} = \delta_{v, \operatorname{res} \operatorname{T}^{\lambda}} z^{\lambda}$$
,

$$2. x_r z^{\lambda} = 0,$$

Let $\lambda \in \mathscr{P}_n^l$ and $\kappa \in \mathbb{Z}^l$. We define the graded R(n)-module $S_{\kappa}^{\lambda} = S^{\lambda}$ to be the module with generator z^{λ} subject to the relations

1.
$$e(v)z^{\lambda} = \delta_{v, \operatorname{res} \operatorname{T}^{\lambda}} z^{\lambda}$$
,

$$2. \ x_r z^{\lambda} = 0,$$

3. $\psi_r z^{\lambda} = 0$ if *r* and *r* + 1 lie in the same row of T^{λ} ,

1.
$$e(v)z^{\lambda} = \delta_{v, \operatorname{res} \operatorname{T}^{\lambda}} z^{\lambda}$$
,

$$2. \ x_r z^{\lambda} = 0,$$

- 3. $\psi_r z^{\lambda} = 0$ if *r* and *r* + 1 lie in the same row of T^{λ} ,
- 4. Garnir relations.

Let $\lambda \in \mathscr{P}_n^l$ and $\kappa \in \mathbb{Z}^l$. We define the graded R(n)-module $S_{\kappa}^{\lambda} = S^{\lambda}$ to be the module with generator z^{λ} subject to the relations

1.
$$e(v)z^{\lambda} = \delta_{v, \operatorname{res} \operatorname{T}^{\lambda}} z^{\lambda}$$
,

$$2. \ x_r z^{\lambda} = 0,$$

- 3. $\psi_r z^{\lambda} = 0$ if *r* and *r* + 1 lie in the same row of T^{λ} ,
- 4. Garnir relations.

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} \dots s_{i_r}$. We define $\psi_w = \psi_{i_1} \dots \psi_{i_r}$.

Let
$$\Lambda = \Lambda_{\overline{\kappa_1}} + \cdots + \Lambda_{\overline{\kappa_l}}$$
.

Let
$$\Lambda = \Lambda_{\overline{\kappa_1}} + \cdots + \Lambda_{\overline{\kappa_l}}$$
.

Theorem (Ariki–Park–S., 2017) Let $\lambda \in \mathscr{P}_n^l$.

Let $\Lambda = \Lambda_{\overline{\kappa_1}} + \cdots + \Lambda_{\overline{\kappa_l}}$.

Theorem (Ariki–Park–S., 2017)

Let $\lambda \in \mathscr{P}_n^l$. Then S_{κ}^{λ} is a graded $\mathbb{R}^{\Lambda}(n)$ -module, spanned by the homogeneous elements { $\psi_{w^T} z^{\lambda} | T \in Std(\lambda)$ }.

Let $\Lambda = \Lambda_{\overline{\kappa_1}} + \cdots + \Lambda_{\overline{\kappa_l}}$.

Theorem (Ariki–Park–S., 2017)

Let $\lambda \in \mathscr{P}_n^l$. Then S_{κ}^{λ} is a graded $\mathbb{R}^{\Lambda}(n)$ -module, spanned by the homogeneous elements { $\psi_{w^T} z^{\lambda} | T \in Std(\lambda)$ }.

Theorem (Ariki–Park–S., 2017) Suppose $\ell = \infty$ and $\lambda \in \mathcal{P}_n^l$.

Let $\Lambda = \Lambda_{\overline{\kappa_1}} + \cdots + \Lambda_{\overline{\kappa_l}}$.

Theorem (Ariki–Park–S., 2017)

Let $\lambda \in \mathscr{P}_n^l$. Then S_{κ}^{λ} is a graded $\mathbb{R}^{\Lambda}(n)$ -module, spanned by the homogeneous elements { $\psi_{w^T} z^{\lambda} \mid T \in Std(\lambda)$ }.

Theorem (Ariki–Park–S., 2017)

Suppose $\ell = \infty$ and $\lambda \in \mathscr{P}_n^l$. Then the set $\{\psi_{w^T} z^\lambda \mid T \in Std(\lambda)\}$ is an \mathbb{F} -basis of S^λ .

Let $\Lambda = \Lambda_{\overline{\kappa_1}} + \cdots + \Lambda_{\overline{\kappa_l}}$.

Theorem (Ariki–Park–S., 2017)

Let $\lambda \in \mathscr{P}_n^l$. Then S_{κ}^{λ} is a graded $\mathbb{R}^{\Lambda}(n)$ -module, spanned by the homogeneous elements { $\psi_{w^T} z^{\lambda} \mid T \in Std(\lambda)$ }.

Theorem (Ariki–Park–S., 2017)

Suppose $\ell = \infty$ and $\lambda \in \mathscr{P}_n^l$. Then the set $\{\psi_{w^T} z^\lambda \mid T \in Std(\lambda)\}$ is an \mathbb{F} -basis of S^λ . Moreover, we have the graded character formula

$$\operatorname{ch}_{q} \operatorname{S}^{\lambda} = \sum_{\operatorname{T} \in \operatorname{Std}(\lambda)} q^{\operatorname{deg} \operatorname{T}}$$
 res T.

Let $\Lambda = \Lambda_{\overline{\kappa_1}} + \cdots + \Lambda_{\overline{\kappa_l}}$.

Theorem (Ariki–Park–S., 2017)

Let $\lambda \in \mathscr{P}_n^l$. Then S_{κ}^{λ} is a graded $\mathbb{R}^{\Lambda}(n)$ -module, spanned by the homogeneous elements { $\psi_{w^T} z^{\lambda} \mid T \in Std(\lambda)$ }.

Theorem (Ariki–Park–S., 2017)

Suppose $\ell = \infty$ and $\lambda \in \mathscr{P}_n^l$. Then the set $\{\psi_{w^T} z^\lambda \mid T \in Std(\lambda)\}$ is an \mathbb{F} -basis of S^λ . Moreover, we have the graded character formula

$$\operatorname{ch}_{\boldsymbol{q}} \operatorname{S}^{\lambda} = \sum_{\operatorname{T} \in \operatorname{Std}(\lambda)} \boldsymbol{q}^{\operatorname{deg }\operatorname{T}} \operatorname{res} \operatorname{T}.$$

We conjectured that the above result remains true when $\ell < \infty$.

For $i \in I$ and $k \in \mathbb{Z}_{>0}$, we define $\alpha_{i,n}^{\vee} = \alpha_i^{\vee} + \alpha_{i+1}^{\vee} + \cdots + \alpha_{i+k-1}^{\vee}$, where we take indices modulo $\ell + 1$ if $\ell < \infty$.

For $i \in I$ and $k \in \mathbb{Z}_{>0}$, we define $\alpha_{i,n}^{\vee} = \alpha_i^{\vee} + \alpha_{i+1}^{\vee} + \cdots + \alpha_{i+k-1}^{\vee}$, where we take indices modulo $\ell + 1$ if $\ell < \infty$.

We have the following important conditions.

For $i \in I$ and $k \in \mathbb{Z}_{>0}$, we define $\alpha_{i,n}^{\vee} = \alpha_i^{\vee} + \alpha_{i+1}^{\vee} + \cdots + \alpha_{i+k-1}^{\vee}$, where we take indices modulo $\ell + 1$ if $\ell < \infty$.

We have the following important conditions.

(SS1) For all $i \in I$, $\langle \Lambda, \alpha_{i,n}^{\vee} \rangle \leq 1$.

For $i \in I$ and $k \in \mathbb{Z}_{>0}$, we define $\alpha_{i,n}^{\vee} = \alpha_i^{\vee} + \alpha_{i+1}^{\vee} + \cdots + \alpha_{i+k-1}^{\vee}$, where we take indices modulo $\ell + 1$ if $\ell < \infty$.

We have the following important conditions.

(SS1) For all $i \in I$, $\langle \Lambda, \alpha_{i,n}^{\vee} \rangle \leq 1$. \longleftrightarrow "residues appearing in distinct components are distinct"

For $i \in I$ and $k \in \mathbb{Z}_{>0}$, we define $\alpha_{i,n}^{\vee} = \alpha_i^{\vee} + \alpha_{i+1}^{\vee} + \cdots + \alpha_{i+k-1}^{\vee}$, where we take indices modulo $\ell + 1$ if $\ell < \infty$.

We have the following important conditions.

(SS1) For all $i \in I$, $\langle \Lambda, \alpha_{i,n}^{\vee} \rangle \leq 1$. \longleftrightarrow "residues appearing in distinct components are distinct"

(SS2) For all $1 \le j \le l$, $\frac{n-1}{2} \le \overline{\kappa_j} \le \ell - \frac{n-1}{2}$.

For $i \in I$ and $k \in \mathbb{Z}_{>0}$, we define $\alpha_{i,n}^{\vee} = \alpha_i^{\vee} + \alpha_{i+1}^{\vee} + \cdots + \alpha_{i+k-1}^{\vee}$, where we take indices modulo $\ell + 1$ if $\ell < \infty$.

We have the following important conditions.

(SS1) For all $i \in I$, $\langle \Lambda, \alpha_{i,n}^{\vee} \rangle \leq 1$. \longleftrightarrow "residues appearing in distinct components are distinct"

(SS2) For all $1 \le j \le l$, $\frac{n-1}{2} \le \overline{\kappa_j} \le \ell - \frac{n-1}{2}$. \longleftrightarrow "residues are far enough away from 0 and ℓ "

Theorem (S., 2017)

Suppose that conditions (SS1) and (SS2) hold, and let $\lambda \in \mathscr{P}_n^l$.

Theorem (S., 2017)

Suppose that conditions (SS1) and (SS2) hold, and let $\lambda \in \mathscr{P}_n^l$. Then the Specht module S^{λ} is concentrated in degree 0,

Theorem (S., 2017)

Suppose that conditions (SS1) and (SS2) hold, and let $\lambda \in \mathscr{P}_n^l$. Then the Specht module S^{λ} is concentrated in degree 0, has basis { $\psi_{w^T} z^{\lambda} | T \in Std(\lambda)$ },

Theorem (S., 2017)

Suppose that conditions (SS1) and (SS2) hold, and let $\lambda \in \mathscr{P}_n^l$. Then the Specht module S^{λ} is concentrated in degree 0, has basis { $\psi_{w^T} z^{\lambda} | T \in Std(\lambda)$ }, and the $R^{\Lambda}(n)$ -action on the basis is given by

$$\begin{split} \mathbf{e}(v)\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda} &= \delta_{v,\mathrm{res}\,\mathrm{T}}\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda}, \quad x_{r}\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda} = \mathbf{0}, \\ \psi_{r}\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda} &= \begin{cases} \psi_{\mathbf{w}^{\mathsf{s}_{r}\mathrm{T}}}z^{\lambda} & \text{if } \mathsf{s}_{r}\mathrm{T} \text{ is standard,} \\ \mathbf{0} & \text{otherwise.} \end{cases} \end{split}$$

Theorem (S., 2017)

Suppose that conditions (SS1) and (SS2) hold, and let $\lambda \in \mathscr{P}_n^l$. Then the Specht module S^{λ} is concentrated in degree 0, has basis { $\psi_{w^T} z^{\lambda} | T \in Std(\lambda)$ }, and the $R^{\Lambda}(n)$ -action on the basis is given by

$$\begin{split} \mathbf{e}(\nu)\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda} &= \delta_{\nu,\mathrm{res}\,\mathrm{T}}\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda}, \quad x_{r}\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda} = \mathbf{0}, \\ \psi_{r}\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda} &= \begin{cases} \psi_{\mathbf{w}^{\mathrm{s}_{r}\mathrm{T}}}z^{\lambda} & \text{if s}_{r}\mathrm{T} \text{ is standard,} \\ \mathbf{0} & \text{otherwise.} \end{cases} \end{split}$$

Moreover, S^{λ} is an irreducible graded $R^{\Lambda}(n)$ -module.

Theorem (S., 2017)

Suppose that conditions (SS1) and (SS2) hold, and let $\lambda \in \mathscr{P}_n^l$. Then the Specht module S^{λ} is concentrated in degree 0, has basis { $\psi_{w^T} z^{\lambda} | T \in Std(\lambda)$ }, and the $R^{\Lambda}(n)$ -action on the basis is given by

$$\begin{split} \mathbf{e}(\nu)\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda} &= \delta_{\nu,\mathrm{res}\,\mathrm{T}}\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda}, \quad x_{r}\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda} = \mathbf{0}, \\ \psi_{r}\psi_{\mathbf{w}^{\mathrm{T}}}z^{\lambda} &= \begin{cases} \psi_{\mathbf{w}^{\mathrm{s}_{r}\mathrm{T}}}z^{\lambda} & \text{if } \mathrm{s}_{r}\mathrm{T} \text{ is standard,} \\ \mathbf{0} & \text{otherwise.} \end{cases} \end{split}$$

Moreover, S^{λ} is an irreducible graded $R^{\Lambda}(n)$ -module.

Theorem (S., 2017)

 $R^{\Lambda}(n)$ is semisimple if and only if conditions (SS1) and (SS2).