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If £ < oo, we replace the residue pattern ...3210123... with
012...(¢-1)e(6-1)...1.

Example
Let £ =3,k =(2,0,-1),and A = ((6,3,2,2), 2, (4,2)).
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Example
Let A = (3,2). Then we have standard tableaux
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The Khovanov-Lauda—Rouquier algebra R(n) is the unital
[F-algebra generated by

{e(V) |V € In} U {X1/---/Xn} U {1;[11;---/1,bn—1}/
subject to a long list of relations.

R(n) was introduced to categorify the negative half of a
quantum group Ug(g).

For each dominant weight A, R(n) has a cyclotomic quotient
R"(n) which categorifies the corresp. highest weight module
V(A).

Here we discuss results when g is of type C. or Cé”.
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Let A € 2! and « € Z!. We define the graded R(n)-module
S} = S to be the module with generator z* subject to the
relations

1. e()z} =6, 11 2%,

2. x,z" =0,

3. Yz} = 0if rand r + 1 lie in the same row of T#,
4. Garnir relations.

For each w € G, fix a reduced expression w = s;; ... s;. We
define Ipw = llb,'1 ...1!),}.
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Theorem (Ariki—Park—S., 2017)

Let A € 2!. Then S} is a graded R"(n)-module, spanned by
the homogeneous elements {ngTzA | T € Std(A)}.

Theorem (Ariki—Park—-S., 2017)

Suppose £ = co and A € 2. Then the set {ip,:z" | T € Std(A)}
is an [F-basis of S*. Moreover, we have the graded character

formula
chqS* = Z q?°e T resT.
TeStd(A)

We conjectured that the above result remains true when ¢ < co.
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Suppose that conditions (§S1) and (SS2) hold, and let A € 2!..
Then the Specht module S* is concentrated in degree 0, has
basis {,:2" | T € Std(A)}, and the R"(n)-action on the basis is
given by

e(V)Purz" = Oy restVur 2",  Xehyrz' =0,

Yysrzt if 5T is standard,
0 otherwise.

Ebr‘l’wTZA = {

Moreover, S* is an irreducible graded R"(n)-module.

Theorem (S., 2017)
R(n) is semisimple if and only if conditions (SS1) and (SS2).
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