Schurian-infinite blocks of type A Hecke algebras Joint work with Susumu Ariki and Sinéad Lyle

Liron Speyer

liron.speyer@oist.jp

Schurian-finiteness

Let $\mathbb F$ be an algebraically closed field of characteristic $p\geqslant 0$ throughout. For any $\mathbb F$ -algebra A, we say that an A-module M is Schurian if $\operatorname{End}_A(M)\cong \mathbb F$. We say that A is Schurian-finite if there are only finitely many isomorphism classes of Schurian A-modules, and Schurian-infinite otherwise.

Schurian modules must be indecomposable, so clearly

representation-finite \Rightarrow Schurian-finite.

The converse is not true in general – e.g. preprojective algebras of type other than A_n for $1 \le n \le 4$ are representation-infinite, but Schurian-finite.

Schurian-finiteness

A result of Demonet, Iyama and Jasso (2019) yields that A is Schurian-finite if and only if it is τ -tilting finite.

So we can use established results for τ -tilting (in)finite algebras to determine when algebras are Schurian-(in)finite. In particular, we make heavy use of the following reduction result.

Proposition

If the Gabriel quiver of a finite-dimensional \mathbb{F} -algebra A contains the quiver of an affine Dynkin diagram with zigzag orientation (i.e. every vertex is a sink or a source) as a subquiver, then A is Schurian-infinite.

We want to determine the Schurian-finiteness of blocks of type A Hecke algebras, using the above proposition.

Hecke algebras

The Iwahori–Hecke algebra of the symmetric group is the unital, associative \mathbb{F} -algebra \mathscr{H}_n with generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$\begin{split} (T_i-q)(T_i+1) &= 0 & \text{for all } i, \\ T_iT_j &= T_jT_i & \text{for } |i-j| > 1, \\ T_iT_{i+1}T_i &= T_{i+1}T_iT_{i+1} & \text{for } 1 \leqslant i \leqslant n-2, \end{split}$$

where $q \in \mathbb{F}$ is a primitive eth root of unity. \mathscr{H}_n is semisimple if e > n.

The *Specht modules* $\{S^{\lambda} \mid \lambda \vdash n\}$ over \mathcal{H}_n are the ordinary irreducible \mathcal{H}_n -modules, indexed by partitions λ of n.

If $e \le n$, the simple modules appear as quotients of the Specht modules: $\{D^{\lambda} \mid \lambda \vdash n, \ \lambda \text{ is } e\text{-regular}\}.$

Blocks

Two Specht modules S^{λ} and S^{μ} (or simple modules D^{λ} and D^{μ}) are in the same block of \mathscr{H}_n if and only if λ and μ have the same core and the same e-weight.

The *e-weight* of a partition has a simple combinatorial definition, and may be seen roughly as a measure of how complicated a block is.

e.g. weight 0 blocks are simple algebras, and weight 1 blocks are Brauer tree algebras associated to a line with no exceptional vertex.

Graded decomposition numbers

Results of Brundan, Kleshchev, and Wang $\sim \mathcal{H}_n$ is isomorphic to a cyclotomic KLR algebra, and its Specht modules and simple modules may be graded.

The graded decomposition number $d_{\lambda\mu}^{e,p}(v)$ is defined to be the graded composition multiplicity of D^{μ} in S^{λ} . In other words

$$d_{\lambda\mu}^{e,p}(v) = [\mathsf{S}^{\lambda} : \mathsf{D}^{\mu}]_{v} = \sum_{d \in \mathbb{Z}} [\mathsf{S}^{\lambda} : \mathsf{D}^{\mu}\langle d \rangle] v^{d} \in \mathbb{N}[v,v^{-1}].$$

Using a result of Shan on Jantzen filtrations and radical filtrations of Weyl modules for q-Schur algebras, we can deduce the following.

Lemma

Suppose that $e\geqslant 3$, p=0, and λ,μ are e-regular partitions of n. If the coefficient of v in $d_{\lambda\mu}^{e,0}(v)$ is nonzero, then

$$\mathsf{Ext}^1(\mathsf{D}^\lambda,\mathsf{D}^\mu)=\mathsf{Ext}^1(\mathsf{D}^\mu,\mathsf{D}^\lambda)\neq 0.$$

Combining this with an argument involving idempotent truncation, we're able to obtain our main tool for showing that a given block of \mathcal{H}_n is Schurian-infinite.

Key Proposition (Ariki-S.)

Suppose $e\geqslant 3$ & $p\geqslant 0$. If the char 0 graded decomposition matrix has one of the following as a submatrix, and $d_{\lambda\mu}^{e,p}(1)=d_{\lambda\mu}^{e,0}(1)\in\{0,1\}$ for all row labels λ,μ of the submatrix, then the block is Schurian-infinite.

$$\begin{pmatrix} 1 & & & \\ v & 1 & & \\ 0 & v & 1 & \\ v & v^2 & v & 1 \end{pmatrix} \qquad (\dagger) \qquad \begin{pmatrix} 1 & & & \\ v & 1 & & \\ v & 0 & 1 & \\ v^2 & v & v & 1 \end{pmatrix} \qquad (\ddagger)$$

Why these matrices? Take the matrix (\ddagger), with rows and columns labelled by four e-regular partitions $\lambda, \mu, \nu, \omega$. Then if p=0, the previous lemma gives subquiver

$$\lambda - \mu$$
 \downarrow
 \downarrow
 \downarrow
 \downarrow

which is $A_3^{(1)} \sim$ the result (in characteristic 0).

Main results

(It is known that a block of \mathcal{H}_n of weight 0 or 1 is representation-finite and therefore Schurian-finite.)

Theorem (Ariki-S.)

Suppose $e \ge 3$, and that B is any block of weight 2 or 3. Then B is Schurian-infinite in any characteristic.

Hidden in this theorem is A LOT of work. Ingredients include James–Mathas's runner removal, LLT algorithm, a graded analogue of Scopes equivalences, work on (graded) decomposition numbers and Ext¹ by Richards, Fayers, Fayers-Tan, analysis of Specht homomorphisms, ...

Theorem (Lyle–S.)

Suppose $e \ge 3$, and that B is any block of \mathcal{H}_n with weight ≥ 4 . Then B is Schurian-infinite in any characteristic.