

Jason Ball¹, Yu Yamashiro^{1,2}, Jun-ichi Isoya³, Shinobu Onoda⁴, Takeshi Ohshima⁴, Denis Konstantinov¹ Yuimaru Kubo^{1,5}

¹OIST Quantum Dynamics Unit, ²University of the Ryukyus, ³University of Tsukuba, ⁴QST Takasaki, ⁵JST-PRESTO

Superconducting quantum circuits

5 GHz (=250 mK) >> 10 mK

Quantum microwave (microwave photon)

- Versatile
- Designable
- Scalable [up to 22 (72?) qubits in 2018]
- Relatively short coherence
- Impossible to send quantum information out of a dilution
 fridge to elsewhere

Kelly et al., Nature 519, Wigner function of $|0\rangle + |5\rangle$

M. Hofheinz et al. Nature 459, 546 (2009)

Towards quantum communication network

This project: transducer with spins in solids

Microwave cavity

- Broadband transduction possible (~1-10 MHz)
- Quiet @10 mK
 ->No active cooling
- Frequency tunable (microwave regime)

Operating principle

Proposed Quantum Transducer

Spins in diamond

- Very good coherence in "silent" environment (e.g., ¹²C)
- Both microwave (spin) and optical (orbital) transitions inside
- Scalability?
- Designability?

Complementing superconducting circuits

NV centers in diamond

Loop-Gap Microwave Resonator

 Highly homogenous Bfield:

 $\delta B_0 \approx 14 \text{ pT}$

- Filling factors of up to 0.5
- $\omega_R/2\pi \approx 5.3 \text{ GHz}$
- Qint ~ 600 at RT, 1500 at 10 mK

APS March Meeting - March 6th, 2018

Loop-Gap Microwave Resonator

Tunable coupling

- Change length of SMA pin
 extending into cavity
- Tuning between critical coupling and undercoupled regimes
- Can be used for CQED and conventional ESR experiments

APS March Meeting - March 6th, 2018

Experimental Setup

Ball et al., Appl. Phys. Lett. 112 204102 (2018)

Transmission Data – Sample 2

Ball et al., Appl. Phys. Lett. 112 204102 (2018)

Summary and perspectives

- Designed and tested loopgap resonator compatible with optical setup
- Demonstrated strong coupling to ensembles of spin defects in diamond.
- Next step coupling SiV ensemble to the same 3D microwave cavity

Ball et al., Appl. Phys. Lett. 112 204102 (2018)

WANEB

- Both microwave and optical transitions
- Narrow line widths of both microwave and optical transition
- Large optical dipole moment

SiV centers in diamond

Müller et al. Nat. Comm. 2014

- Strong (and stable) zero phonon line
- Large dipole (10³ bigger than Er)

SiV centers in diamond

Homogeneous optical transition:

~10 GHz in ensemble (cf. NV >> 100 GHz)

Arend et al. PRB 94, 045203 (2016)

Recent work on SiV

- Coherence time strongly limited by orbit flipflopping at T ~ 4K
- However, ground state spin transition $|1\rangle \rightarrow |2\rangle$ is not forbidden! (Gali and Maze, PRB 2013)
- Recently, T_{2,CPMG} has been measured to exceed 1 ms at 100 mK.

Summary and perspectives

- Good optical properties potential use for SiV as a quantum transducer
- Long coherence time @ mK may be a promising quantum memory as well
- Next step coupling SiV ensemble to the same 3D microwave cavity

