Energy eigenstates of electrons on liquid helium in tilted magnetic fields

Quantum Dynamics Unit Okinawa Institute of Science and Technology (OIST)

QFS2019, Edmonton

Quantum Dynamics Unit (QDU)

Alexei Chepelianskii (University Paris-Sud)

Funded by Okinawa Institute of Science and Technology (OIST)

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

2D Electrons on Helium

- Wigner solid: Coulomb energy $>> k_B T$

C.C. Grimes and G. Adams (1979)

- Collective excitations

D.C. Glattli et al (1985), A. Dahm et al (1985)

- Possibility for quantum melting

P. Leiderer et al. Surface Science (1996)

- Many-electron transport

M. Lea and M. Dykman (1997)

- *K. Kono and K. Shirahama (1996)*
- Quantum computing

M. Dykman and P. Platzman (1998)

S. Lyon (2006), D. Shuster et al (2010)

iawa institute of science and technology graduate university

Rydberg States of Electrons on Helium

Electrons in Tilted *B*-field

Effective Jaynes-Cummings Model (JCM)

Jaynes-Cummings Hamiltonian

$$
\hat{H} = (E_2 - E_1)\hat{s}_z + \hbar \omega_c \left(\hat{a}^+\hat{a} + \frac{1}{2}\right) + \hbar g(\hat{a}^+ + a)\hat{s}_x
$$

$$
\widehat{s}_z = \frac{1}{2} (2\lambda \langle 2| - |1\rangle \langle 1|), \quad \widehat{s}_x = \frac{1}{2} (|1\rangle \langle 2| + |2\rangle \langle 1|).
$$

Electron in tilted *B*-field $(B_y\neq 0)$

$$
\hat{H} = \sum_{n} E_{n} |n\rangle\langle n| + \hbar \omega_{c} \left(\hat{a}^{+}\hat{a} + \frac{1}{2}\right) + \frac{\hbar \omega_{y}}{\sqrt{2}l_{B}} (\hat{a}^{+} + \hat{a}) \sum_{nn'} z_{nn'} |n\rangle\langle n'|\n\begin{array}{c}\ng_{nn'} = \sqrt{\frac{\hbar m \omega_{z} \omega_{y}^{2}}{2}} z_{nn'} \\
\text{compling strength} \\
\text{motion}\n\end{array}
$$
\n
$$
\text{Equation: } \text
$$

Energy eigenvalues of electrons in tilted B-field

Can be described by two numbers

- *n*=1,2,3, … for the bound states in z
- *l*=0,1,2,… for cyclotron motion in xy

For <u>uncoupled</u> motion $(B_v=0)$

Energy eigenvalues of electrons in tilted B-field

Can be described by two numbers

- *n*=1,2,3, … for the bound states in z
- *l*=0,1,2,… for cyclotron motion in xy *Jiabao Chen (PhD thesis)*

For <u>uncoupled</u> motion $(B_v=0)$

$$
E_{n,l} = E_n + \hbar \omega_c l + \frac{\hbar \omega_c}{2}
$$

vacuum energy

For coupled motion $(B_v\neq 0)$

numerical diagonalization

- $1 \le n \le 10$ Rydberg levels
- $0 \le l \le 50$ Landau levels

INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Shifts of energy levels

Second-order perturbation theory (light shift or ac Stark shift in JCM)

$$
\Delta E_{n,l}^{(2)} = \frac{\hbar^2 \omega_y^2}{2l_B^2} \sum_{(n',l')\neq (n,l)} \frac{|z_{nn'}|^2 | \langle l' | \hat{a}^+ + \hat{a} | l \rangle|^2}{E_n - E_{n'} + \hbar \omega_c (l-l')},
$$
\n
$$
n = 2
$$
\n
$$
l = 3
$$
\n
$$
l = 2
$$
\n
$$
l = 0
$$

8

Anti-crossings of energy levels

Consider subspace n=1,2 and $I=0,1$:

$$
\hat{H} = \sum_{n} E_n |n\rangle\langle n| + \hbar \omega_c \left(\hat{a}^+ \hat{a} + \frac{1}{2}\right) + \frac{\hbar \omega_y}{\sqrt{2}l_B} \left(\hat{a}^+ + \hat{a}\right) \hat{z}
$$

Sideband transitions between Rydberg levels

First-order perturbation theory (mixing of states)

Experiment (Stark spectroscopy method)

Linear DC Stark shift
$$
E_n = -\frac{R_e}{n^2} + eE_z \langle n | \hat{z} | n \rangle
$$
, $n = 1, 2,...$

Stark shift in DC electric field E_z

AND TECHNOLOGY GRADUATE UNIVERSITY

Lamb shift (*l*=0 vacuum state)

Measure n=1-2 transition line in tilted *B*-field

Oleksiy Zadorozhko (experiment)

No adjustable parameters!

Jiabao Chen (PhD thesis)

Sideband transitions

Mixing of energy eigenstates leads to sideband transitions!

Oleksiy Zadorozhko (experiment)

Level anti-crossing

Consider energy crossing between $|n = 2, l = 1 \rangle$ and $|n = 3, l = 0 \rangle$

Oleksiy Zadorozhko (experiment)

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Vacuum Rabi splitting

Vacuum Rabi splitting -
$$
2g_{23} = \sqrt{2\hbar m \omega_z \omega_y^2 z_{nn}} \propto B_y
$$

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Electrons in cavity

Strong non-linearity of cyclotron spectrum due to coupling!

Cavity QED -type experiments with electrons on helium!

L. Abdurakhimov, R. Yamashiro, A. Badrutdinov, DK, PRL (2016)

J. Chen, O. Zadorozhko, DK, PRB (2019)

Electrons on helium

Unique compliment to 2DEG in semiconductors

- Quantum transport
- Many-electron effects
- Topological effects

Model quantum systems (1D Rydberg atom)

- Coherent control of states
- Quantum engineering
- Cavity QED

Quantum computing