

Diagonal cuts for diagrammatic Cherednik algebras

Liron Speyer

University of Virginia

Background

- ullet The KLR algebra \mathcal{R}_n is a \mathbb{Z} -graded algebra, introduced by Khovanov and Lauda [KL], and by Rouquier [R], to categorify quantum groups.
- In type A, the (level l) cyclotomic quotients \mathcal{R}_n^{Λ} of \mathcal{R}_n are isomorphic to the corresponding (level l) cyclotomic Hecke algebras of type A, via a result of Brundan and Kleshchev [BK] – in particular, this allows us to study the graded representation theory of cyclotomic Hecke algebras.
- Just as the classical Schur algebra is a useful tool for studying the representation theory of the symmetric group, we would like a graded quasi-hereditary cover of \mathcal{R}_n^Λ to assist in studying its representation theory.
- Such covers have been constructed by Webster. For any weighting $\theta \in \mathbb{Z}^l$, Webster constructed a diagrammatic Cherednik algebra $A(n,\theta,\Lambda)$, a graded quasi-hereditary cover of \mathcal{R}_n^{Λ} .
- $A(n, \theta, \Lambda)$ is a graded cellular algebra, with cell modules $\Delta_{\theta}(\lambda)$ indexed by the set \mathscr{P}_n^l of l-multipartitions of n. The cell modules have simple heads $L_{\theta}(\lambda)$. Varying θ and applying a truncation functor leads to different graded cellular structures on \mathcal{R}_n^{Λ} , each with corresponding cell modules $S_{\theta}(\lambda)$ for $\lambda \in \mathscr{P}_{n}^{l}$ and an indexing set $\Theta \subset \mathscr{P}_n^l$ for the simple \mathcal{R}_n^{Λ} -modules $D_{\theta}(\lambda)$.

Decomposition Number Problem

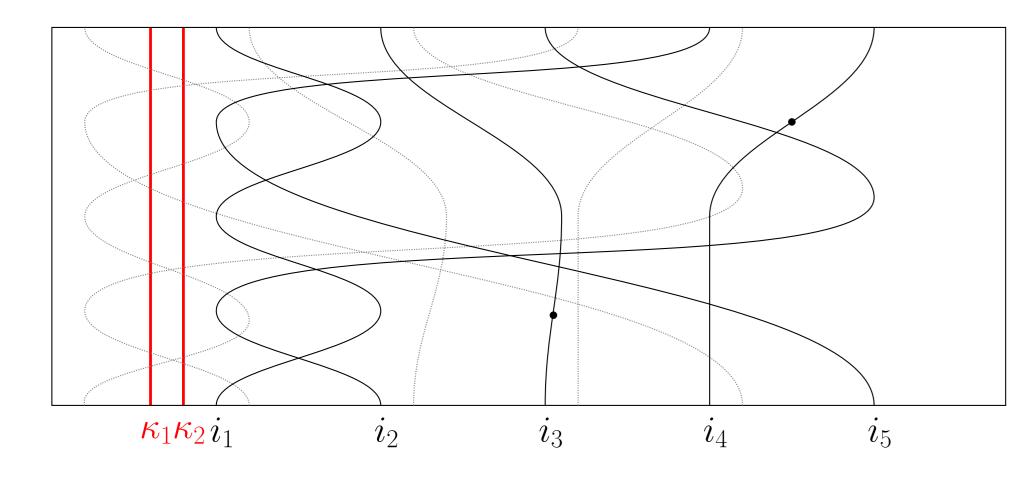
For $A(n, \theta, \Lambda)$, we would like to find the composition multiplicities $d_{\lambda\mu}=[\Delta_{\theta}(\lambda):L_{\theta}(\mu)]$ for all $\lambda, \mu \in \mathscr{P}_n^l$.

For \mathcal{R}_n^{Λ} , we would like to find the composition multiplicities $[S_{\theta}(\lambda):D_{\theta}(\mu)]$ for all $\lambda\in\mathscr{P}_n^l$, $\mu \in \Theta$.

 $[\Delta_{\theta}(\lambda) : L_{\theta}(\mu)] = [S_{\theta}(\lambda) : D_{\theta}(\mu)] \text{ if } \mu \in \Theta.$

The algebra $A(n, \theta, \Lambda)$

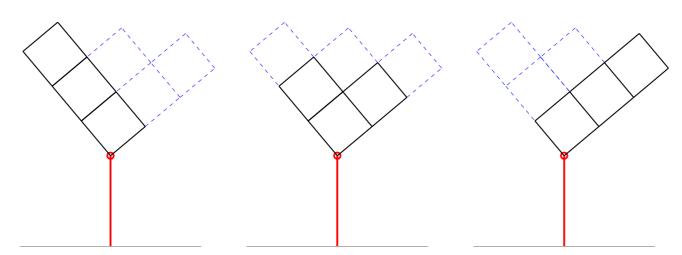
Webster's diagrammatic Cherednik algebra $A(n,\theta,\Lambda)$ is a diagram algebra comprising lvertical red strands, and n black strands which run from top-to-bottom and may carry dots, each possessing a *ghost* to its left. Strands have residues modulo e. Such diagrams look like:



 $A(n, \theta, \kappa)$ has a graded cellular basis indexed by a generalisation of semistandard tableaux. A key part of this is the combinatorics of θ -Young diagrams for multipartitions $\lambda \in \mathscr{P}_n^l$.

θ -Young diagrams

For a partition λ , we draw its Young diagram $[\lambda]$ under a (slightly tilted) mirrored Russian convention, with each box having a diagonal of length 2l,

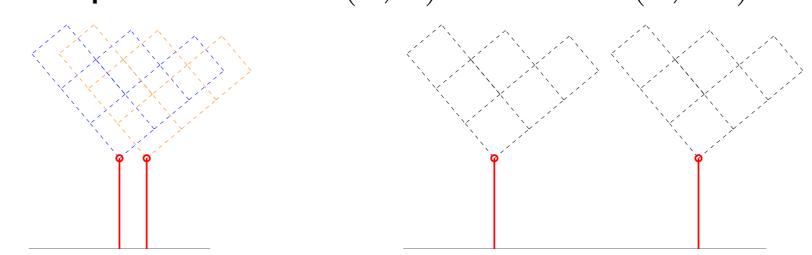


We have an ordering from left-to-right:

$$(3) \geqslant_{\theta} (2,1) \geqslant_{\theta} (1^3).$$

For a multipartition λ , we draw its Young diagram by placing the Young diagram for the mth component at x-coordinate θ_m .

We depict the $\theta = (0, 1)$ and $\theta = (0, 16)$ cases:



These yield different orders on multipartitions, where boxes are weighted depending on how far to the left they appear in the Young diagram.

Diagonal cuts for multipartitions

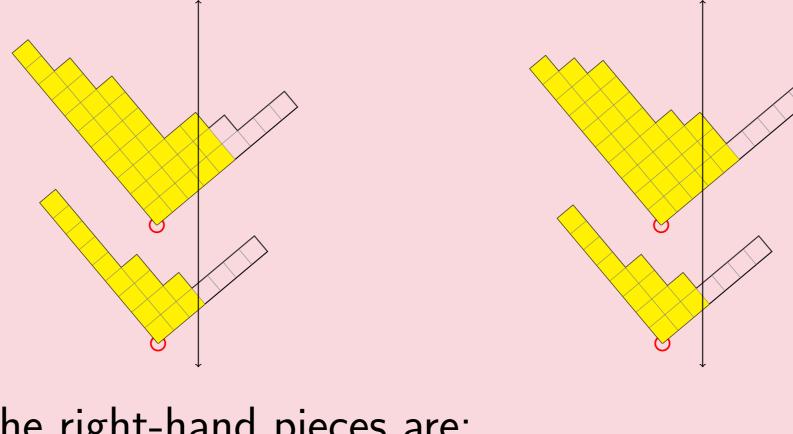
Aim

Produce a reduction-type result for graded decomposition numbers $[\Delta_{\theta}(\lambda) : L_{\theta}(\mu)]$.

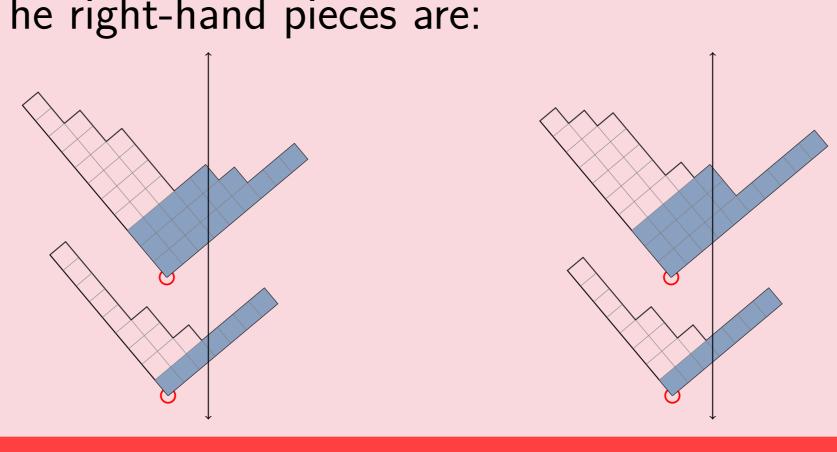
A pair of multipartitions λ, μ admits a diagonal cut at x = a if when we draw the line x = a on $[\lambda]$ and $[\mu]$ we have the same number of boxes to the left of the line in $[\lambda]$ as in $[\mu]$, and likewise to the right of the line. We denote by λ^L and μ^L the minimal multipartitions including all boxes to the left of the line in λ and μ , and by λ^R and μ^R the analogous multipartitions on the right-hand side.

Example

Let $\theta = (0,1)$, and take the bipartitions $\lambda = ((11, 9, 7, 3^2, 2, 1^3), (9, 4, 2, 1^4))$ and $\mu = ((10, 9, 8, 4, 3, 1^5), (8, 4, 2, 1^4))$. Then λ, μ admit a diagonal cut at x=5.5. The left-hand pieces of λ and μ are:



The right-hand pieces are:



Diagonal cuts for $d_{\lambda\mu}$

The main result of [BSa] is the following.

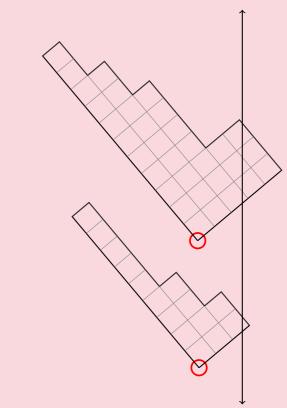
Theorem

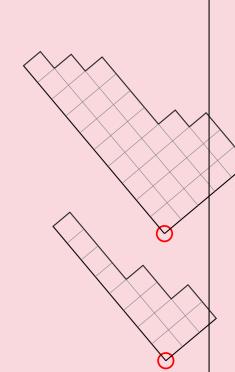
Let (λ, μ) be a pair of l-multipartitions of n and let $a \in \mathbb{R}$. If (λ, μ) admits a diagonal cut at x=a into two pieces (λ^L,μ^L) and (λ^R,μ^R) , then we can factorise the graded decomposition numbers for these algebras as

$$d_{\lambda\mu} = d_{\lambda^L\mu^L} \times d_{\lambda^R\mu^R}$$
.

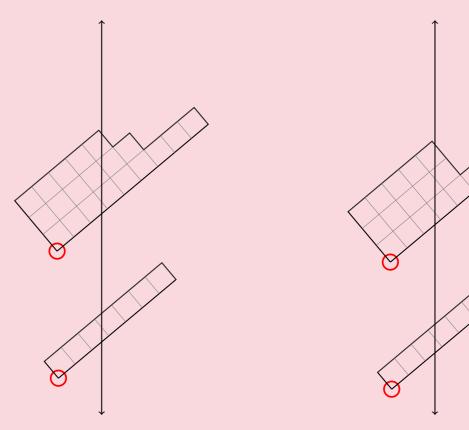
Example

Continuing the previous example, (λ^L, μ^L) are:





 (λ^R,μ^R) are:



Now let e=5 and $\Lambda=\Lambda_0+\Lambda_2$. Then by a theorem in [BSb], we may compute that (over a field of any characteristic)

$$d_{\lambda^L\mu^L}=v^5+v^3 \quad \text{ and } \quad d_{\lambda^R\mu^R}=v^2,$$

so that our above theorem yields

$$d_{\lambda\mu} = v^7 + v^5.$$

The theorem used to calculate the graded decomposition numbers is not applicable to $d_{\lambda \mu}!$

References

- [BK] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. **178** (2009), 451–484.
- [BSa] C. Bowman and L. Speyer, An analogue of row removal for diagrammatic Cherednik algebras, arXiv:1601.05543, 2016, preprint.
- [BSb] C. Bowman and L. Speyer, Kleshchev's decomposition numbers for diagrammatic Cherednik algebras, Trans. Amer. Math. Soc. **370** (2018), no. 5, 3551–3590.
- M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory **13** (2009), 309–347.
- [R] R. Rouquier, 2-Kac-Moody algebras, arXiv:0812.5023, (2008).