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Background

e The KLR algebra R,, is a Z-graded algebra,
introduced by Khovanov and Lauda [KL]|, and
by Rouquier [R], to categorify quantum groups.

o In type A, the (level ) cyclotomic quotients
R of R, are isomorphic to the corresponding
(level 1) cyclotomic Hecke algebras of type A,
via a result of Brundan and Kleshchev [BK] —in
particular, this allows us to study the graded
representation theory of cyclotomic Hecke
algebras.

e Just as the classical Schur algebra is a useful
tool for studying the representation theory of
the symmetric group, we would like a graded
quasi-hereditary cover of R% to assist in
studying its representation theory.

e Such covers have been constructed by Webster.
For any weighting 6 € Z', Webster constructed
a diagrammatic Cherednik algebra A(n,0,A), a
graded quasi-hereditary cover of R..

o A(n,0,\) is a graded cellular algebra, with cell
modules Ag()\) indexed by the set P! of
[-multipartitions of n. The cell modules have
simple heads Ly(A). Varying 6 and applying a
truncation functor leads to different graded
cellular structures on R, each with
corresponding cell modules Sp(\) for A € 2!

and an indexing set © C 22! for the simple
RA-modules Dy(\).

Decomposition Number Problem

For A(n, 8, A), we would like to find the com-
position multiplicities dy, = [Ag(A) : La(u)]
for all \, u € 2.

For R, we would like to find the composition
multiplicities [Sp(\) : Dg(p)] for all X € 2!,
u e .

Ag(A) + Lo(p)] = [Se(A) - Do(p)] if 1 € O,

The algebra A(n, 0, \)

Webster's Cherednik  algebra
A(n,0,\) is a diagram algebra comprising I

diagrammatic

vertical red strands, and n black strands which

run from top-to-bottom and may carry dots,
each possessing a ghost to its left. Strands have
residues modulo e. Such diagrams look like:

A(n, 0, k) has a graded cellular basis indexed
by a generalisation of semistandard tableaux. A
key part of this is the combinatorics of 6-Young
diagrams for multipartitions A € 2!
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f-Young diagrams

For a partition X\, we draw its Young diagram |\
under a (slightly tilted) mirrored Russian conven-
tion, with each box having a diagonal of length 2/,

e.g.

We have an ordering from left-to-right:

(3) 0 (2,1) B¢ (1°).
For a multipartition A, we draw its Young diagram

by placing the Young diagram for the mth com-
ponent at x-coordinate 6,,.

We depict the 8 = (0,1) and 6 = (0, 16) cases:
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These yield different orders on multipartitions,
where boxes are weighted depending on how far
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to the left they appear in the Young diagram.

Diagonal cuts for multipartitions

Aim

Produce a reduction-type result for graded de-
composition numbers [Ag(\) @ Lg(u)].

A pair of multipartitions A, it admits a diagonal
cut at x = a if when we draw the line x = a on
‘Al and || we have the same number of boxes
to the left of the line in [A] as in ||, and like-
wise to the right of the line. We denote by \*
and 1* the minimal multipartitions including
all boxes to the left of the line in A and p, and
by A* and 't the analogous multipartitions on
the right-hand side.

Example

Let & = (0,1), and take the biparti-
tions A = ((11,9,7,3%2,1°),(9,4,2,1%)) and
rw=1((10,9,8,4,3,1°),(8,4,2,1%)). Then A, i1
admit a diagonal cut at x = 5.5. The left-hand
pieces of A and p are:
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The right-hand pieces are:
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Diagonal cuts for diagrammatic Cherednik algebras

Diagonal cuts for d),

The main result of [BSa] is the following.
Theorem

Let (X, i) be a pair of [-multipartitions of n and
let a € R. If (A, ) admits a diagonal cut at
T = a into two pieces (Y, u%) and (A%, u*),
then we can factorise the graded decomposition
numbers for these algebras as

d)\/t — d)\LIuL X d)\RIuR.
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Continuing the previous example, (A", u*) are:
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Now let e = 5 and A = Ay + Ay. Then by a
theorem in [BSb], we may compute that (over

a field of any characteristic)
dyL,r = v’ +v°  and d\r,n = V7,
so that our above theorem yields
T 5
d)\u =V + V.
The theorem used to calculate the graded de-
composition numbers is not applicable to d),!
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