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The cyclotomic Hecke algebra

The cyclotomic Hecke algebra

• Given n, ` ∈ N, ∃ complex reflection group G (`, 1, n) = (Z/`Z) oSn.

• Let P`
n denote the set of `-multipartitions of n.

• Semisimple over C, with simple modules {Sλ | λ ∈P`
n}.

• For e ∈ {2, 3, . . . }(∪{∞}), κ ∈ (Z/eZ)`, q ∈ F a primitive eth root
of 1, Hκ

n is the F-algebra with generators T0,T1, . . . ,Tn−1 subject to
relations

(T0 − qκ1) . . . (T0 − qκ`) = 0 (Ti − q)(Ti + 1) = 0 for i > 1

T0T1T0T1 = T1T0T1T0 TiTi+1Ti = Ti+1TiTi+1 for i > 1

TiTj = TjTi for i 6= j ± 1.

• Hκ
n is a deformation of F((Z/`Z) oSn).

• What does the representation theory of Hκ
n look like?
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The cyclotomic Hecke algebra

• Given θ ∈ Z`, we have a corresponding

• θ-dominance order on P`
n,

• subset Θ ⊆P`
n of Uglov multipartitions.

• We now know that each θ gives a corresponding cellular structure on
Hκ
n .

• In particular, for any θ ∈ Z`, we obtain a complete set of simple
Hκ
n -modules {Dλ

θ | λ ∈ Θ} as heads of some of the cell modules
{Sλθ | λ ∈P`

n}.

• So how do these cellular structures arise, and what is the structure of
Sλθ?
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The cyclotomic KLR algebra

The cyclotomic KLR algebra

F a field, e ∈ {2, 3, . . . } ∪ {∞}, I := Z/eZ (or I := Z if e =∞). For
κ ∈ I `, the cyclotomic Khovanov–Lauda–Rouquier algebra Rκn is the
unital, associative F-algebra with generating set

{e(i) | i ∈ I n} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1} and relations

e(i)e(j) = δi ,je(i);
∑
i∈I n

e(i) = 1;

yre(i) = e(i)yr ; ψre(i) = e(sr i)ψr ;

yrys = ysyr ;

ψrys = ysψr if s 6= r , r + 1;

ψrψs = ψsψr if |r − s| > 1;

yrψre(i) = (ψryr+1 − δir ,ir+1)e(i);

yr+1ψre(i) = (ψryr + δir ,ir+1)e(i);
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The cyclotomic KLR algebra

ψ2
r e(i) =



0 ir = ir+1,

e(i) ir+1 6= ir , ir ± 1,

(yr+1 − yr )e(i) ir = ir+1+1,

(yr − yr+1)e(i) ir = ir+1−1,

(yr+1 − yr )(yr − yr+1)e(i) ir = ir+1+1, e = 2;

ψrψr+1ψre(i) =


(ψr+1ψrψr+1+1)e(i) ir+2 = ir = ir+1+1,

(ψr+1ψrψr+1−1)e(i) ir+2 = ir = ir+1−1,

(ψr+1ψrψr+1+yr−2yr+1+yr+2)e(i) ”, e = 2,

(ψr+1ψrψr+1)e(i) otherwise;

y
〈Λκ,αi1

〉
1 e(i) = 0;

for all admissible r , s, i , j .
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Cylotomic KLR algebras and Hecke algebras

Cylotomic KLR algebras and Hecke algebras

Fact

Rκn is Z-graded by setting

deg(e(i)) = 0; deg(yr ) = 2;

deg(ψre(i)) =


−2 if ir = ir+1,

1 if ir = ir+1 ± 1 and e 6= 2,

2 if ir = ir+1 ± 1 and e = 2,

0 otherwise.

Theorem (Brundan–Kleshchev, ’09)

Suppose e = p or p - e. Then Rκn is isomorphic to the cyclotomic Hecke
algebra Hκ

n .
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Graded Schur algebras?

Graded Schur algebras?

The representation theory of (cyclotomic) Hecke algebras is greatly aided
by the studying their quasi-hereditary covers, the (cyclotomic) q-Schur
algebras.

Now that we may study the graded representation theory of the former, we
would like a graded quasi-hereditary cover of Rκn .

In fact, Webster constructed a whole family of graded quasi-hereditary
covers of Rκn , indexed by an extra parameter, θ ∈ Z`.
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θ-weighted combinatorics of multipartitions

θ-weighted combinatorics of multipartitions

Identify λ ∈P`
n with its θ-weighted Young diagram [λ]θ. Each box has

diagonal of width 2`. Fix the x-coordinate of the box (1, 1,m) to be
θm ∈ Z. Identify each box with the x-coordinate of its top vertex.

Example

Let ` = 1 and n = 3 and θ = (0).

We have an ordering from left-to-right:

(3) Qθ (2, 1) Qθ (13).
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θ-weighted combinatorics of multipartitions

Example

For ` = 2 we have the FLOTW (0 < θ2 − θ1 < `) and well-separated
(n` < θ2 − θ1) cases below.

Any θ weighting corresponds to a θ-dominance ordering on P`
n as follows.
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θ-weighted combinatorics of multipartitions

Definition

We write λ Pθ µ if for any x ∈ R the number of boxes in [λ]θ to the left
of x is less than or equal to the number of points in [µ]θ to the left of x .

Example

For ` = 2 and n = 3, and let e = 3, κ = (0, 2), and θ = (0, 14).

((3), ∅) Qθ ((2, 1), ∅) Qθ ((2), (1)) Qθ · · ·
• This dominance ordering is due to Dipper–James–Mathas.

• We call such a weighting “well separated”.
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The diagrammatic Cherednik algebra

The diagrammatic Cherednik algebra

The diagrammatic Cherednik algebra, A(n, θ, κ), is a unital, associative,
graded F-algebra defined via generators and relations.

• It has a diagrammatic description (similar to Khovanov and Lauda’s
description of RΛ

n );

• It is a finite dimensional graded cellular algebra with respect to the
θ-dominance order;

• For ω = (∅, . . . ,∅, (1n)), we have an idempotent 1ω ∈ A(n, θ, κ)
such that

1ωA(n, θ, κ)1ω ∼= Rκn .

• The simple modules surviving under this idempotent truncation are
labelled by Θ.
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The diagrammatic Cherednik algebra

• For any weighting θ ∈ Z`, the diagrammatic Cherednik algebra
A(n, θ, κ) is a graded quasi-hereditary cover of the cyclotomic KLR
algebra, and in particular

[∆(λ) : L(µ)] = [Sλθ : Dµ
θ ]

for µ ∈ Θ and λ ∈P`
n.

• It is in fact the truncation from A(n, θ, κ) that gives rise to the
corresponding cellular structure on Rκn (and Hκ

n ).
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Decomposition numbers

Graded decomposition numbers for A(n, θ, κ)

To understand the representation theory of A(n, θ, κ), a fundamental
problem is determining the (graded) decomposition numbers.

i.e. we want
to know the composition multiplicities of graded shifts of simple modules
L(µ) in ∆(λ), in arbitrary characteristic.

• For the symmetric group Sn, Kleshchev calculated the decomposition
numbers [S(λ) : D(µ)] when λ and µ differ only by moving a node of
a fixed residue r ∈ Z/eZ.

• This was graded by Chuang, Miyachi, and Tan and generalised to
many boxes of the same residue by Tan and Teo.

• These graded decomposition numbers depend only on the ‘relative
configurations’ of addable and removable r -nodes, not on n or e.
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Decomposition numbers

• We want to generalise this result to A(n, θ, κ), and therefore to Rκn .

• We achieve this by constructing isomorphisms between some
corresponding subquotients of these algebras.

• These isomorphism are independent of the

• level ` ∈ N,
• the rank n ∈ N,
• the multicharge κ ∈ (Z/eZ)`,
• the weighting θ ∈ Z`,
• (most surprisingly!) the quantum characteristic e ∈ Z.

• We hence deduce that the decomposition numbers (and certain
higher extension groups) for A(n, θ, κ) (and Rκn ) are preserved.
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Decomposition numbers

Example

Let θ = (0), e = 4, and κ = (1).

The partition (7, 4, 13) has four addable
nodes of residue 0. We want to add two of the four nodes (there are six
ways of doing this). Two possibilities are λ = (8, 5, 13) and
µ = (7, 4, 2, 12), marked by X and ×, respectively.
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Decomposition numbers

Example

Let θ̄ = (0, 1), ē = 5, and κ̄ = (0, 1).

The bipartition ((4), (3, 2)) has four
addable nodes of residue 4. We want to add two of the four nodes (there
are six ways of doing this). Two possibilities are λ̄ = ((5), (4, 2)) and
µ̄ = ((4, 1), (3, 2, 1)), marked by X and ×, respectively.
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Decomposition numbers

Noting the similarities between these two previous example is the key idea
behind our isomorphisms of subquotients.
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In particular, it allows us to reduce many situations to Tan and Teo’s level
1 result, and deduce in the above example that

dλ̄µ̄ = dλµ = v4.
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Decomposition numbers

• Next, we want to define ways of ‘cutting pairs of multipartitions’ in
two, to reduce computations to smaller examples.

• For example, let θ = (0, 1), λ = ((11, 9, 7, 32, 2, 13), (9, 4, 2, 14)) and
µ = ((10, 9, 8, 4, 3, 15), (8, 4, 2, 14)).
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Decomposition numbers

Then we are able to cut λ and µ into some ‘left-hand pieces’ and
‘right-hand pieces’, which have some nodes in common.
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Decomposition numbers

• One can define these ‘θ-diagonal cuts’ for pairs of `-multipartitions of
n.

Theorem

Let (λ, µ) be a pair of `-multipartitions of n and let a ∈ R. If (λ, µ) admits
a θ-diagonal cut at x = a into two pieces (λL, µL) and (λR , µR), then we
can factorise the graded decomposition numbers for these algebras as

dλµ = dλLµL × dλRµR

and the (graded) higher extension groups ExtkA(n,θ,κ)(∆(λ),∆(µ)) can be
decomposed as⊕

i+j=k

Ext iA(nL,θ,κ)(∆(λL),∆(µL))⊗ Ext jA(nR ,θ,κ)(∆(λR),∆(µR)),

where nL = |λL| = |µL| and nR = |λR | = |µR |.
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Decomposition numbers

Example

e = 3, κ = (0, 1), λ = ((52, 42, 3, 2, 1), (9, 6, 42, 3, 23, 1)),
µ = ((5, 42, 33), (9, 6, 5, 42, 22, 13)) with a well-separated weighting θ.

The
pair admits a diagonal cut at (5, 3, 2).

[λ] = [µ] =
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Decomposition numbers

[λT] = [µT] =

[λB] =
∅

[µB] =
∅
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Decomposition numbers

This reduction yields multipartitions amenable to available techniques
(whereas λ and µ are not).

We can see that

dλTµT = v11 + 2v9 + 2v7 + v5 and dλBµB = v .

Thus, we have dλµ = v12 + 2v10 + 2v8 + v6.
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