SPECIAL RELATIVITY HOMEWORK – WEEK 7

We will now upgrade from Maxwell to Yang-Mills theory. To avoid confusion, all fields will be classical – nothing is quantum. The charged matter field ϕ is no longer just a complex number, but a vector in some larger complex space – in a unitary representation of the non-Abelian gauge group. ϕ^{\dagger} is the Hermitian conjugate of this vector. The generators of the group are Hermitian matrices $G = G^{\dagger}$, with commutators $[G_1, G_2] = iG_3$. The gauge transformation parameter α , the gauge potential A_{μ} and its field strength $F_{\mu\nu}$ are no longer just real numbers, but elements of this space of generators. To simplify things, we will assume that α is infinitesimal. We no longer need a separate "electric charge" q: the action of gauge transformations on ϕ is already encoded in the generator matrices, i.e. in the structure of the representation. The gauge transformation and the covariant derivative of ϕ read simply:

$$
\phi \to e^{i\alpha}\phi \approx \phi + i\alpha\phi \; ; \tag{1}
$$

$$
\nabla_{\mu}\phi = \partial_{\mu}\phi - iA_{\mu}\phi . \tag{2}
$$

Recall that generators G themselves form a representation of the gauge group – the adjoint representation. We define the gauge transformation and covariant derivative of a generatorvalued field as:

$$
G \rightarrow G + i[\alpha, G] \tag{3}
$$

$$
\nabla_{\mu} G = \partial_{\mu} G - i[A_{\mu}, G] \tag{4}
$$

Exercise 1. Let us define the gauge transformation of A_μ as:

$$
A_{\mu} \to A_{\mu} + \nabla_{\mu} \alpha \tag{5}
$$

Show that this ensures the proper gauge transformation $\nabla_{\mu}\phi \to (1+i\alpha)\nabla_{\mu}\phi$ for the covariant derivative.

Exercise 2. As in electromagnetism, the commutator of covariant derivatives takes the form:

$$
[\nabla_{\mu}, \nabla_{\nu}]\phi = -iF_{\mu\nu}\phi . \qquad (6)
$$

1. Express the field strength $F_{\mu\nu}$ in terms of the potential A_{μ} .

- 2. From the gauge transformation of A_{μ} , derive the gauge transformation of $F_{\mu\nu}$. There are two way to do this: either using the previous answer and the transformation (5), or more abstractly from (6).
- 3. Prove the identity $\nabla_{\mu}F_{\nu\rho]}=0$. Hint: the Jacobi identity on commutators implies $[A_{\mu}, [A_{\nu}, A_{\rho}]] = 0.$
- 4. Prove the identity $\nabla_{\mu} \nabla_{\nu} F^{\mu\nu} = 0$. Hint: use (6), with $F_{\mu\nu}$ in the role of ϕ .

Exercise 3. The Yang-Mills Lagrangian reads:

$$
\mathcal{L} = -\frac{1}{4g^2} \operatorname{tr}(F_{\mu\nu} F^{\mu\nu}) + \mathcal{L}_{matter} \; ; \quad \mathcal{L}_{matter} = -\nabla_{\mu} \phi^{\dagger} \nabla^{\mu} \phi - m^2 \phi^{\dagger} \phi \; , \tag{7}
$$

where, by convention, the coefficient ϵ_0 from electromagnetism is now renamed into $1/g^2$.

- 1. Find the expression for the current $J^{\mu} \equiv \partial \mathcal{L}_{matter}/\partial A_{\mu}$.
- 2. Derive the conservation law $\nabla_{\mu}J^{\mu}=0$ from the equation of motion for ϕ .
- 3. Derive the equation of motion for A_{μ} as $\nabla_{\nu}F^{\mu\nu} = g^2 J^{\mu}$.