SPECIAL RELATIVITY HOMEWORK – WEEK 6

Exercise 1. Define the Fourier transform of functions on \mathbb{R}^3 as:

$$f(\mathbf{r}) = \int d^3 \mathbf{k} \, \tilde{f}(\mathbf{k}) \, e^{i\mathbf{k}\cdot\mathbf{r}} \quad \Longleftrightarrow \quad \tilde{f}(\mathbf{k}) = \int \frac{d^3 \mathbf{r}}{(2\pi)^3} \, f(\mathbf{r}) \, e^{-i\mathbf{k}\cdot\mathbf{r}} \, . \tag{1}$$

Find the Fourier transform $\hat{f}(\mathbf{k})$ of $f(\mathbf{r}) = 1/r$. Hint: take the Fourier transform of the equation $\nabla^2 f(\mathbf{r}) = -4\pi \delta^3(\mathbf{r})$.

Exercise 2. There are 4 linearly-independent ways to complete the function $1/(x_{\mu}x^{\mu})$ into a well-defined distribution on spacetime:

$$\frac{1}{x^{\mu}x^{\mu}+i\varepsilon} , \quad \frac{1}{x^{\mu}x^{\mu}-i\varepsilon} , \quad \frac{1}{x^{\mu}x^{\mu}+i\varepsilon\operatorname{sign}(t)} , \quad \frac{1}{x^{\mu}x^{\mu}-i\varepsilon\operatorname{sign}(t)} .$$
(2)

There is a neat way to diagnose functions f(t) that contain only Fourier modes $e^{-i\omega t}$ with positive frequencies $\omega > 0$: these are the functions that have no singularities at complex values of t with Im t < 0. Which of the "functions" (2) contains only positive frequencies? Which one contains only negative frequencies?

Exercise 3. A free massless quantum field on $\mathbb{R}^{3,1}$ takes the form:

$$\hat{\phi}(x^{\mu}) = \int \frac{d^3 \mathbf{k}}{2|\mathbf{k}|} \left(\hat{a}(\mathbf{k}) \, e^{i(\mathbf{k} \cdot \mathbf{x} - |\mathbf{k}|t)} + \hat{a}^{\dagger}(\mathbf{k}) \, e^{-i(\mathbf{k} \cdot \mathbf{x} - |\mathbf{k}|t)} \right) \quad , \tag{3}$$

where the creation and annihilation operators satisfy the commutator algebra:

$$[\hat{a}(\mathbf{k}), \hat{a}^{\dagger}(\mathbf{k}')] = 2|\mathbf{k}|\delta^{3}(\mathbf{k} - \mathbf{k}') ; \quad [\hat{a}(\mathbf{k}), \hat{a}(\mathbf{k}')] = [\hat{a}^{\dagger}(\mathbf{k}), \hat{a}^{\dagger}(\mathbf{k}')] = 0 .$$
(4)

The vacuum state $|0\rangle$ is defined via $\hat{a}(\mathbf{k}) |0\rangle = 0$ (i.e. you can't remove any more particles from it).

- 1. Find the vacuum expectation value $\langle 0 | \hat{\phi}(x^{\mu}) \hat{\phi}(0) | 0 \rangle$ for $x^{\mu} = (t, \vec{0})$. Hint: reduce the calculation to a single $d^3\mathbf{k}$ integral, then compute it in spherical coordinates.
- 2. Find $\langle 0 | \hat{\phi}(x^{\mu}) \hat{\phi}(0) | 0 \rangle$ for $x^{\mu} = (0, \mathbf{r})$. Hint: use the answer to Exercise 1.
- 3. Using Lorentz symmetry, deduce $\langle 0 | \hat{\phi}(x^{\mu}) \hat{\phi}(0) | 0 \rangle$ for any non-lightlike x^{μ} .
- 4. Using the answer to Exercise 2, write the full expression for $\langle 0 | \hat{\phi}(x^{\mu}) \hat{\phi}(0) | 0 \rangle$ as a distribution on spacetime.
- 5. Find the vacuum expectation values of the opposite ordering $\hat{\phi}(0)\hat{\phi}(x^{\mu})$, of the commutator $[\hat{\phi}(x), \hat{\phi}(0)]$, and of the time-ordered product $T\hat{\phi}(x^{\mu})\hat{\phi}(0) \equiv \theta(t)\hat{\phi}(x^{\mu})\hat{\phi}(0) + \theta(-t)\hat{\phi}(0)\hat{\phi}(x^{\mu})$.