The graded representation theory of the symmetric group and dominated homomorphisms

Liron Speyer

Queen Mary University of London

l.speyer@qmul.ac.uk

Joint work with Matthew Fayers.

Let F be a field of characteristic $p \geq 0$ throughout.

Let F be a field of characteristic $p \ge 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Let F be a field of characteristic $p \geq 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A partition of n is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers which sum to n.

Let F be a field of characteristic $p \geq 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A partition of n is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers which sum to n. We write $\lambda \vdash n$.

Let F be a field of characteristic $p \geq 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A partition of n is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers which sum to n. We write $\lambda \vdash n$.

Example:

Let F be a field of characteristic $p \geq 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A partition of n is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers which sum to n. We write $\lambda \vdash n$.

Example: The partitions of 4 are (4) , $(3, 1)$, $(2, 2)$, $(2, 1, 1)$ and $(1, 1, 1, 1).$

Let F be a field of characteristic $p \geq 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A partition of n is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers which sum to n. We write $\lambda \vdash n$.

Example: The partitions of 4 are (4) , $(3, 1)$, $(2, 2)$, $(2, 1, 1)$ and $(1, 1, 1, 1).$

Definition

For each $\lambda \vdash n$, we construct an $\mathbb{F} \mathfrak{S}_n$ -module S_λ , called a Specht module.

Fact

If $p = 0$, $\{S_\lambda \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F} \mathfrak{S}_n$ -modules.

Fact

If $p = 0$, $\{S_\lambda \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F} \mathfrak{S}_n$ -modules.

Definition

If $p > 0$, we say λ is a p-regular partition of n if it does not have p equal parts.

Fact

If $p = 0$, $\{S_\lambda \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F} \mathfrak{S}_n$ -modules.

Definition

If $p > 0$, we say λ is a p-regular partition of n if it does not have p equal parts.

Example:

Fact

If $p = 0$, $\{S_\lambda \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F} \mathfrak{S}_n$ -modules.

Definition

If $p > 0$, we say λ is a p-regular partition of n if it does not have p equal parts.

Example: (4, 3, 3, 1) is p-regular for all $p \neq 2$.

Fact

If $p = 0$, $\{S_\lambda \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $F \mathfrak{S}_n$ -modules.

Definition

If $p > 0$, we say λ is a p-regular partition of n if it does not have p equal parts.

Example: (4, 3, 3, 1) is p-regular for all $p \neq 2$.

Fact

If $p > 0$ and λ is a p-regular partition of n, S_λ has a simple head, which we denote D_{λ} . These form a complete set of pairwise non-isomorphic simple $F \mathfrak{S}_n$ -modules.

Definition

An (F-)algebra A is (Z-)graded if $A=\bigoplus_{i\in\mathbb{Z}}A_i$ as vector spaces and $A_iA_j\subseteq A_{i+j}.$

Definition

An (F-)algebra A is (Z-)graded if $A=\bigoplus_{i\in\mathbb{Z}}A_i$ as vector spaces and $A_iA_j\subseteq A_{i+j}.$ If A is a graded algebra, an A-module M is graded if $M=\bigoplus_{i\in\mathbb{Z}}M_i$ and $A_iM_j\subseteq M_{i+j}.$

Definition

An (F-)algebra A is (Z-)graded if $A=\bigoplus_{i\in\mathbb{Z}}A_i$ as vector spaces and $A_iA_j\subseteq A_{i+j}.$ If A is a graded algebra, an A-module M is graded if $M=\bigoplus_{i\in\mathbb{Z}}M_i$ and $A_iM_j\subseteq M_{i+j}.$

Definition

Let M and N be graded A-modules. $\varphi : M \to N$ is a homogeneous homomorphism of degree r if φ is a homomorphism and $\varphi(M_i) \subseteq N_{i+r}$ for all i.

Definition

An (F-)algebra A is (Z-)graded if $A=\bigoplus_{i\in\mathbb{Z}}A_i$ as vector spaces and $A_iA_j\subseteq A_{i+j}.$ If A is a graded algebra, an A-module M is graded if $M=\bigoplus_{i\in\mathbb{Z}}M_i$ and $A_iM_j\subseteq M_{i+j}.$

Definition

Let M and N be graded A-modules. $\varphi : M \to N$ is a homogeneous homomorphism of degree r if φ is a homomorphism and $\varphi(M_i) \subseteq N_{i+r}$ for all i.

Fact

If M is finitely generated, then $Hom_A(M, N)$ is a graded vector space. In particular, $Hom_A(M, N)$ has a homogeneous basis.

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative F-algebra with generating set

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative F-algebra with generating set

$$
\left\{e(i) \middle| i \in I^n\right\} \cup \left\{y_1, \ldots, y_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}
$$

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative F-algebra with generating set

$$
\left\{e(i) \middle| i \in I^n\right\} \cup \left\{y_1, \ldots, y_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}
$$

$$
e(i)e(j) = \delta_{i,j}e(i); \qquad \sum_{i \in I^n} e(i) = 1; \quad *
$$

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative F-algebra with generating set

$$
\left\{e(i) \middle| i \in I^n\right\} \cup \left\{y_1, \ldots, y_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}
$$

;

$$
e(i)e(j) = \delta_{i,j}e(i); \qquad \sum_{i \in I^n} e(i) = 1; \quad *
$$

$$
y_r e(i) = e(i)y_r; \qquad \psi_r e(i) = e(s_r i)\psi_r
$$

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative F-algebra with generating set

$$
\left\{e(i) \middle| i \in I^n\right\} \cup \left\{y_1, \ldots, y_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}
$$

$$
e(i)e(j) = \delta_{i,j}e(i); \qquad \sum_{i \in I^n} e(i) = 1; \quad *
$$
\n
$$
y_r e(i) = e(i)y_r; \qquad \psi_r e(i) = e(s_r i)\psi_r; \qquad y_r y_s = y_s y_r; \qquad \text{if } s \neq r, r + 1; \qquad \psi_r \psi_s = \psi_s \psi_r \qquad \text{if } |r - s| > 1;
$$

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative F-algebra with generating set

$$
\left\{e(i) \middle| i \in I^n\right\} \cup \left\{y_1, \ldots, y_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}
$$

$$
e(i)e(j) = \delta_{i,j}e(i); \qquad \sum_{i \in I^n} e(i) = 1; \quad *
$$
\n
$$
y_r e(i) = e(i)y_r; \qquad \psi_r e(i) = e(s_r i)\psi_r; \qquad y_r y_s = y_s y_r; \qquad \psi_r y_s = y_s \psi_r \qquad \text{if } s \neq r, r + 1; \qquad \psi_r \psi_s = \psi_s \psi_r \qquad \text{if } |r - s| > 1; \qquad \psi_r \psi_r e(i) = (\psi_r y_{r+1} - \delta_{i_r, i_{r+1}}) e(i); \qquad \forall r_{r+1} \psi_r e(i) = (\psi_r y_r + \delta_{i_r, i_{r+1}}) e(i);
$$

$$
\psi_r^2 e(i) = \begin{cases}\n0 & i_r = i_{r+1}, \\
e(i) & i_{r+1} \neq i_r, i_r \pm 1, \\
(y_{r+1} - y_r)e(i) & i_r = i_{r+1}+1, \\
(y_r - y_{r+1})e(i) & i_r = i_{r+1}-1, \\
(y_{r+1} - y_r)(y_r - y_{r+1})e(i) & i_r = i_{r+1}+1, p = 2;\n\end{cases}
$$

$$
\psi_r^2 e(i) = \begin{cases}\n0 & i_r = i_{r+1}, \\
e(i) & i_{r+1} \neq i_r, i_r \pm 1, \\
(y_{r+1} - y_r)e(i) & i_r = i_{r+1} + 1, \\
(y_r - y_{r+1})e(i) & i_r = i_{r+1} - 1, \\
(y_{r+1} - y_r)(y_r - y_{r+1})e(i) & i_r = i_{r+1} + 1, p = 2;\n\end{cases}
$$

$$
\psi_r \psi_{r+1} \psi_r e(i) = \begin{cases}\n(\psi_{r+1} \psi_r \psi_{r+1} + 1) e(i) & i_{r+2} = i_r = i_{r+1} + 1, \\
(\psi_{r+1} \psi_r \psi_{r+1} - 1) e(i) & i_{r+2} = i_r = i_{r+1} - 1, \\
(\psi_{r+1} \psi_r \psi_{r+1} + y_r - 2y_{r+1} + y_{r+2}) e(i) & \text{if } p = 2, \\
(\psi_{r+1} \psi_r \psi_{r+1}) e(i) & \text{otherwise.}\n\end{cases}
$$

$$
\psi_r^2 e(i) = \begin{cases}\n0 & i_r = i_{r+1}, \\
e(i) & i_{r+1} \neq i_r, i_r \pm 1, \\
(y_{r+1} - y_r)e(i) & i_r = i_{r+1} + 1, \\
(y_r - y_{r+1})e(i) & i_r = i_{r+1} - 1, \\
(y_{r+1} - y_r)(y_r - y_{r+1})e(i) & i_r = i_{r+1} + 1, p = 2;\n\end{cases}
$$

$$
\psi_r \psi_{r+1} \psi_r e(i) = \begin{cases}\n(\psi_{r+1} \psi_r \psi_{r+1} + 1) e(i) & i_{r+2} = i_r = i_{r+1} + 1, \\
(\psi_{r+1} \psi_r \psi_{r+1} - 1) e(i) & i_{r+2} = i_r = i_{r+1} - 1, \\
(\psi_{r+1} \psi_r \psi_{r+1} + y_r - 2y_{r+1} + y_{r+2}) e(i) & \text{if } p = 2, \\
(\psi_{r+1} \psi_r \psi_{r+1}) e(i) & \text{otherwise.}\n\end{cases}
$$

$$
y_1 = 0;
$$

\n
$$
e(i) = 0 \qquad \text{if } i_1 \neq 0;
$$

for all admissible r, s, i, j .

Fact

If $p > 0$, R_n is non-trivially Z-graded by setting

```
deg(e(i)) = 0; deg(y<sub>r</sub>) = 2;\mathsf{deg}(\psi_r e(\mathsf{i})) =\begin{cases} -2 & \text{if } i_r = i_{r+1}, \end{cases}\left\{\right.\begin{array}{c} \hline \end{array}1 if i_r = i_{r+1} \pm 1 and p \neq 2,
                               2 if i_r = i_{r+1} \pm 1 and p = 2,
                               0 otherwise.
```
Fact

If $p > 0$, R_n is non-trivially Z-graded by setting

 $deg(e(i)) = 0;$ deg $(y_r) = 2;$ $\mathsf{deg}(\psi_r e(\mathsf{i})) =$ $\begin{cases} -2 & \text{if } i_r = i_{r+1}, \end{cases}$ $\left\{\right.$ $\begin{array}{c} \hline \end{array}$ 1 if $i_r = i_{r+1} \pm 1$ and $p \neq 2$, 2 if $i_r = i_{r+1} \pm 1$ and $p = 2$, 0 otherwise.

Theorem (Brundan–Kleshchev, '09)

Fact

If $p > 0$, R_n is non-trivially Z-graded by setting

 $deg(e(i)) = 0;$ deg $(y_r) = 2;$ $\mathsf{deg}(\psi_r e(\mathsf{i})) =$ $\begin{cases} -2 & \text{if } i_r = i_{r+1}, \end{cases}$ $\left\{\right.$ $\begin{array}{c} \hline \end{array}$ 1 if $i_r = i_{r+1} \pm 1$ and $p \neq 2$, 2 if $i_r = i_{r+1} \pm 1$ and $p = 2$, 0 otherwise.

Theorem (Brundan–Kleshchev, '09)

 R_n is isomorphic to \mathbb{FS}_n .

Fact

If $p > 0$, R_n is non-trivially Z-graded by setting

 $deg(e(i)) = 0;$ deg $(y_r) = 2;$ $\mathsf{deg}(\psi_r e(\mathsf{i})) =$ $\begin{cases} -2 & \text{if } i_r = i_{r+1}, \end{cases}$ $\left\{\right.$ $\begin{array}{c} \hline \end{array}$ 1 if $i_r = i_{r+1} \pm 1$ and $p \neq 2$, 2 if $i_r = i_{r+1} \pm 1$ and $p = 2$, 0 otherwise.

Theorem (Brundan–Kleshchev, '09)

 R_n is isomorphic to \mathbb{FS}_n .

Corollary

If $p > 0$, $\mathbb{F} \mathfrak{S}_n$ can be non-trivially Z-graded.

Tableaux combinatorics
Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries $1, \ldots, n$ without repeats.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries $1, \ldots, n$ without repeats. Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries $1, \ldots, n$ without repeats. Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Example:

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries $1, \ldots, n$ without repeats. Call T standard (and write T \in Std(λ)) if entries increase along rows and down columns.

Example: Let $\lambda = (3, 2)$.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries $1, \ldots, n$ without repeats. Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Example: Let
$$
\lambda = (3, 2)
$$
. $T = \frac{124}{35}$ and $S = \frac{132}{45}$ are two λ -tableaux;

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries $1, \ldots, n$ without repeats. Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Example: Let
$$
\lambda = (3, 2)
$$
. $T = \frac{124}{35}$ and $S = \frac{132}{45}$ are two λ -tableaux; $T \in \text{Std}(\lambda)$, but $S \notin \text{Std}(\lambda)$.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries $1, \ldots, n$ without repeats. Call T standard (and write T \in Std(λ)) if entries increase along rows and down columns.

Example: Let
$$
\lambda = (3, 2)
$$
. $T = \frac{124}{35}$ and $S = \frac{132}{45}$ are two λ -tableaux; $T \in \text{Std}(\lambda)$, but $S \notin \text{Std}(\lambda)$.

Definition

Define the *initial tableau* $T_{\lambda} \in \text{Std}(\lambda)$ to be the λ -tableau with entries in order down successive columns.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries $1, \ldots, n$ without repeats. Call T standard (and write T \in Std(λ)) if entries increase along rows and down columns.

Example: Let
$$
\lambda = (3, 2)
$$
. $T = \frac{124}{35}$ and $S = \frac{132}{45}$ are two λ -tableaux; $T \in \text{Std}(\lambda)$, but $S \notin \text{Std}(\lambda)$.

Definition

Define the *initial tableau* $T_{\lambda} \in \text{Std}(\lambda)$ to be the λ -tableau with entries in order down successive columns.

Example:

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries $1, \ldots, n$ without repeats. Call T standard (and write T \in Std(λ)) if entries increase along rows and down columns.

Example: Let
$$
\lambda = (3, 2)
$$
. $T = \frac{124}{35}$ and $S = \frac{132}{45}$ are two λ -tableaux; $T \in \text{Std}(\lambda)$, but $S \notin \text{Std}(\lambda)$.

Definition

Define the *initial tableau* $T_{\lambda} \in \text{Std}(\lambda)$ to be the λ -tableau with entries in order down successive columns.

Example:
$$
T_{(3,2)} = \boxed{\frac{1}{2} \cdot \frac{3}{4}}
$$
.

Definition

For $\lambda \vdash n$, and $A = (i, j)$ a node in [λ], define the residue of A to be j – i $(mod p).$

Definition

For $\lambda \vdash n$, and $A = (i, j)$ a node in [λ], define the residue of A to be j – i $(mod p).$

Example:

Definition

For $\lambda \vdash n$, and $A = (i, j)$ a node in [λ], define the residue of A to be j – i $(mod p).$

Example: For $p = 3$, nodes in the Young diagram of $\lambda = (3, 2, 1)$ have

.

residues as follows: 2 0 <u>0 | 1 | 2</u> 1

Definition

For $\lambda \vdash n$, and $A = (i, j)$ a node in [λ], define the residue of A to be j – i $(mod p)$.

Example: For $p = 3$, nodes in the Young diagram of $\lambda = (3, 2, 1)$ have residues as follows: 2 0 <u>0 | 1 | 2</u> 1 .

Definition

For $T \in \text{Std}(\lambda)$, we define the *residue sequence* i_T of T to be the sequence of residues of nodes containing $1, \ldots, n$ in order.

Definition

For $\lambda \vdash n$, and $A = (i, j)$ a node in [λ], define the residue of A to be j – i $(mod p)$.

Example: For $p = 3$, nodes in the Young diagram of $\lambda = (3, 2, 1)$ have residues as follows: 2 0 <u>0 | 1 | 2</u> 1 .

Definition

For $T \in \text{Std}(\lambda)$, we define the *residue sequence* i_T of T to be the sequence of residues of nodes containing $1, \ldots, n$ in order.

Example:

Definition

For $\lambda \vdash n$, and $A = (i, j)$ a node in [λ], define the residue of A to be j – i $(mod p)$.

Example: For $p = 3$, nodes in the Young diagram of $\lambda = (3, 2, 1)$ have residues as follows: 2 0 <u>0 | 1 | 2</u> 1 .

Definition

For $T \in \text{Std}(\lambda)$, we define the *residue sequence* i_T of T to be the sequence of residues of nodes containing $1, \ldots, n$ in order.

Example: For
$$
p = 3
$$
, $T = \frac{\begin{vmatrix} 1 & 2 & 4 \ 3 & 5 & 4 \end{vmatrix}}{\begin{vmatrix} 6 \end{vmatrix}}$, we have $i_T = (012201)$.

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

We define a degree function deg : Std(λ) $\rightarrow \mathbb{Z}$ recursively by setting deg(T) $=$ deg $^{\mathcal{A}}(\lambda) +$ deg(T $_{< n})$ where \mathcal{A} is the node of T containing $n.$

Example:

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

Example: Let
$$
p = 3
$$
, $T = \boxed{\frac{1 \ 2 \ 5}{3 \ 6}}$.

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

We define a degree function deg : Std(λ) $\rightarrow \mathbb{Z}$ recursively by setting deg(T) $=$ deg $^{\mathcal{A}}(\lambda) +$ deg(T $_{< n})$ where \mathcal{A} is the node of T containing $n.$

Example: Let
$$
p = 3
$$
, $T = \begin{array}{|c|c|} 1 & 2 & 5 \\ \hline 3 & 6 \\ \hline 4 \end{array}$. Recursively, 0

 $deg(T_{<2}) = 0$

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

We define a degree function deg : Std(λ) $\rightarrow \mathbb{Z}$ recursively by setting deg(T) $=$ deg $^{\mathcal{A}}(\lambda) +$ deg(T $_{< n})$ where \mathcal{A} is the node of T containing $n.$

Example: Let
$$
p = 3
$$
, $T = \boxed{\frac{1}{3} \frac{2}{6}}$. Recursively, $\boxed{0}$ 1

 $deg(T_{<3}) = 0 + 0$

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

Example: Let
$$
p = 3
$$
, $T = \frac{125}{36}$. Recursively, $\frac{01}{2}$
deg(T _{≤ 4}) = 0 + 0 + 1

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

Example: Let
$$
p = 3
$$
, $T = \frac{125}{36}$. Recursively, $\frac{01}{2}$
deg(T₅) = 0 + 0 + 1 + -1

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

Example: Let
$$
p = 3
$$
, $T = \begin{array}{|c|c|c|} \hline 1 & 2 & 5 \\\hline 3 & 6 & \\\hline 4 & & \\\hline 1 & & \\\hline 1 & & \\\hline \end{array}$

Definition

For $\lambda \vdash n$. A an *i*-node of λ , we define

deg ${}^{\mathcal{A}}(\lambda)=\#\{\text{addable }i\text{-nodes of }\lambda\text{ strictly above } \mathcal{A}\}$ $-\#$ {removable *i*-nodes of λ strictly above A}.

Definition

Example: Let
$$
p = 3
$$
, $T = \begin{array}{|c|c|c|} \hline 1 & 2 & 5 \end{array}$. Recursively, $\begin{array}{|c|c|c|} \hline 0 & 1 & 2 \end{array}$
deg(T) = 0 + 0 + 1 + -1 + 0 + 1 = 1.

For each $\lambda \vdash n$, we can define a Specht module S_λ for R_n by generators and relations.

For each $\lambda \vdash n$, we can define a Specht module S_{λ} for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $deg(z_\lambda) := deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

For each $\lambda \vdash n$, we can define a Specht module S_A for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $deg(z_\lambda) := deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_\lambda := i_{\mathtt{T}_\lambda}.$

For each $\lambda \vdash n$, we can define a Specht module S_A for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $deg(z_\lambda) := deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_\lambda := i_{\mathtt{T}_\lambda}.$

Relations for S_λ

For each $\lambda \vdash n$, we can define a Specht module S_A for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $deg(z_\lambda) := deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_\lambda := i_{\mathtt{T}_\lambda}.$

Relations for S_λ $e(i)z_{\lambda} = \delta_{i\lambda}i z_{\lambda};$

For each $\lambda \vdash n$, we can define a Specht module S_A for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $deg(z_\lambda) := deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_\lambda := i_{\mathtt{T}_\lambda}.$

Relations for S_λ \bullet e(i)z_{λ} = $\delta_{i\lambda}$ jz λ ; • $v_r z_{\lambda} = 0$ for all $r = 1, 2, ..., n$;

For each $\lambda \vdash n$, we can define a Specht module S_A for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $deg(z_\lambda) := deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_\lambda := i_{\mathtt{T}_\lambda}.$

Relations for S_λ \bullet e(i)z_{λ} = $\delta_{i\lambda}$ jz λ ; • $y_r z_{\lambda} = 0$ for all $r = 1, 2, ..., n$; $\bullet \psi_r z_{\lambda} = 0$ whenever $r + 1$ lies below r in T_{λ};

For each $\lambda \vdash n$, we can define a Specht module S_A for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $deg(z_\lambda) := deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_\lambda := i_{\mathtt{T}_\lambda}.$

Relations for S_λ

$$
\bullet \ \ e(i)z_{\lambda}=\delta_{i_{\lambda},i}z_{\lambda};
$$

- $v_r z_{\lambda} = 0$ for all $r = 1, 2, ..., n$;
- $\bullet \psi_r z_{\lambda} = 0$ whenever $r + 1$ lies below r in T_{λ};
- \bullet *some Garnir relations involving ψ generators*.
For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \ldots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \ldots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_TT_\lambda = T$. If $w_{\rm T} = s_{i_1} s_{i_2} \dots s_{i_r}$ then define $\psi_{\rm T} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \ldots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_TT_\lambda = T$. If $w_{\rm T} = s_{i_1} s_{i_2} \dots s_{i_r}$ then define $\psi_{\rm T} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each $T \in \text{Std}(\lambda)$, define $v_T := \psi_T z_\lambda \in S_\lambda$.

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \ldots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_TT_\lambda = T$. If $w_{\rm T} = s_{i_1} s_{i_2} \dots s_{i_r}$ then define $\psi_{\rm T} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each $T \in \text{Std}(\lambda)$, define $v_T := \psi_T z_\lambda \in S_\lambda$.

Example:

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \ldots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_TT_\lambda = T$. If $w_{\rm T} = s_{i_1} s_{i_2} \dots s_{i_r}$ then define $\psi_{\rm T} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each
$$
T \in \text{Std}(\lambda)
$$
, define $v_T := \psi_T z_\lambda \in S_\lambda$.

Example: Take $\lambda = (3, 1)$.

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \ldots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_TT_\lambda = T$. If $w_{\rm T} = s_{i_1} s_{i_2} \dots s_{i_r}$ then define $\psi_{\rm T} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each
$$
T \in \text{Std}(\lambda)
$$
, define $v_T := \psi_T z_\lambda \in S_\lambda$.

Example: Take $\lambda = (3, 1)$. We have three standard λ -tableaux $1 \, | \, 3 \, | \, 4$ 2 , $\frac{1}{3}$ $\frac{2}{4}$ and $\frac{1}{4}$ $\frac{2}{3}$. 3

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \ldots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_TT_\lambda = T$. If $w_{\rm T} = s_{i_1} s_{i_2} \dots s_{i_r}$ then define $\psi_{\rm T} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each
$$
T \in \text{Std}(\lambda)
$$
, define $v_T := \psi_T z_\lambda \in S_\lambda$.

Example: Take $\lambda = (3, 1)$. We have three standard λ -tableaux $1 \, | \, 3 \, | \, 4$ 2 , $\frac{1}{3}$ and $\frac{1}{4}$ $\frac{2}{3}$. The corresponding elements v_T are 3 given by z_λ , $\psi_2 z_\lambda$ and $\psi_3 \psi_2 z_\lambda$ respectively.

Theorem (Brundan–Kleshchev–Wang, '11) Let $T \in \text{Std}(\lambda)$.

Theorem (Brundan–Kleshchev–Wang, '11) Let $T \in \text{Std}(\lambda)$. Then deg(T) = deg(v_T).

Theorem (Brundan–Kleshchev–Wang, '11) Let $T \in \text{Std}(\lambda)$. Then deg(T) = deg(v_T).

Theorem (Brundan–Kleshchev–Wang, '11)

The R_n -module S_λ has a homogeneous basis $\{v_T \mid T \in \text{Std}(\lambda)\}.$

Theorem (Brundan–Kleshchev–Wang, '11) Let $T \in \text{Std}(\lambda)$. Then deg(T) = deg(v_T).

Theorem (Brundan–Kleshchev–Wang, '11)

The R_n -module S_λ has a homogeneous basis $\{v_T \mid T \in \text{Std}(\lambda)\}.$

Example:

Theorem (Brundan–Kleshchev–Wang, '11) Let $T \in \text{Std}(\lambda)$. Then deg(T) = deg(v_T).

Theorem (Brundan–Kleshchev–Wang, '11)

The R_n -module S_λ has a homogeneous basis $\{v_T \mid T \in \text{Std}(\lambda)\}.$

Example: $\{z_\lambda, \psi_2 z_\lambda, \psi_3 \psi_2 z_\lambda\}$ is a homogeneous basis of $S_{(3,1)}$.

We now have enough information to start calculating homomorphisms.

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$.

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$. We'd like to compute a homogeneous basis for $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$. We'd like to compute a homogeneous basis for $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$ **Example 1:**

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$. We'd like to compute a homogeneous basis for $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example 1: $p = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$.

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$. We'd like to compute a homogeneous basis for $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example 1: $p = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. If $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$, then $\varphi(z_\lambda)$ satisfies the same relations as z_λ .

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$. We'd like to compute a homogeneous basis for $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example 1: $p = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. If $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$, then $\varphi(z_\lambda)$ satisfies the same relations as z_λ .

First, look at the relation $e(i)z_{\lambda} = \delta_{i,j}z_{\lambda}$.

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$. We'd like to compute a homogeneous basis for $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example 1: $p = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. If $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$, then $\varphi(z_\lambda)$ satisfies the same relations as z_λ .

First, look at the relation $e(i)z_{\lambda} = \delta_{i\lambda}i z_{\lambda}$. This tells us that

$$
\varphi(z_\lambda)=\sum_{\substack{\text{T}\in\text{Std}(\mu)\\ i_\text{T}=i_\lambda}} a_\text{T} v_\text{T}.
$$

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$. We'd like to compute a homogeneous basis for $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example 1: $p = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. If $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$, then $\varphi(z_\lambda)$ satisfies the same relations as z_λ .

First, look at the relation $e(i)z_{\lambda} = \delta_{i\lambda}i z_{\lambda}$. This tells us that

$$
\varphi(z_\lambda)=\sum_{\substack{\text{T}\in\text{Std}(\mu)\\ i_\text{T}=i_\lambda}} a_\text{T} v_\text{T}.
$$

We can check that T $=$ \mid $\!\!2 \mid$ $\!\!4$ $1|3|5|7$ 6 is the only standard μ -tableau with residue sequence i_{λ} .

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$. We'd like to compute a homogeneous basis for $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example 1: $p = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. If $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$, then $\varphi(z_\lambda)$ satisfies the same relations as z_λ .

First, look at the relation $e(i)z_{\lambda} = \delta_{i\lambda}i z_{\lambda}$. This tells us that

$$
\varphi(z_\lambda)=\sum_{\substack{\text{T}\in\text{Std}(\mu)\\ i_\text{T}=i_\lambda}} a_\text{T} v_\text{T}.
$$

We can check that $\mathtt{T} =$ $1 \mid 3 \mid 5 \mid 7$ $2 \mid 4$ 6 is the only standard μ -tableau with residue sequence i_{λ} . So we check if v_{τ} satisfies the same relations as z_{λ} (y_rs all annihilate it, etc).

We now have enough information to start calculating homomorphisms. Suppose $\lambda, \mu \vdash n$. We'd like to compute a homogeneous basis for $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example 1: $p = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. If $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$, then $\varphi(z_\lambda)$ satisfies the same relations as z_λ .

First, look at the relation $e(i)z_{\lambda} = \delta_{i\lambda}i z_{\lambda}$. This tells us that

$$
\varphi(z_\lambda)=\sum_{\substack{T\in \text{Std}(\mu)\\ i_T=i_\lambda}} a_T v_T.
$$

We can check that $\mathtt{T} =$ $1 \mid 3 \mid 5 \mid 7$ $2 \mid 4$ 6 is the only standard μ -tableau with residue sequence i_{λ} . So we check if v_{I} satisfies the same relations as z_{λ} (y_rs all annihilate it, etc). It does, so there's a (degree 1) homomorphism $S_{\lambda} \rightarrow S_{\mu}$ given by $z_{\lambda} \mapsto v_T$.

Example 2:

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$ {T \in Std(μ) | $i_T = i_\lambda$ }

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$ {T \in Std(μ) | $i_T = i_\lambda$ }

One of these has degree −2.

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$ {T \in Std(μ) | $i_T = i_\lambda$ }

One of these has degree −2. Some have degree 0.

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$ {T \in Std(μ) | $i_T = i_\lambda$ }

One of these has degree −2. Some have degree 0. Some degree 2.

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$ {T \in Std(μ) | $i_T = i_\lambda$ }

One of these has degree −2. Some have degree 0. Some degree 2. One has degree 4.

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1)$. {T \in Std(μ) | $i_T = i_{\lambda}$ }

One of these has degree −2. Some have degree 0. Some degree 2. One has degree 4.

Compute KLR generator actions on v_T s for the above tableaux.

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1)$. {T \in Std(μ) | $i_T = i_{\lambda}$ }

One of these has degree −2. Some have degree 0. Some degree 2. One has degree 4.

Compute KLR generator actions on v_T s for the above tableaux. Splitting across degrees means computation involves linear algebra in 1, 1, 3 and 3 variables, rather than 8.

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1)$. {T \in Std(μ) | $i_T = i_{\lambda}$ }

One of these has degree −2. Some have degree 0. Some degree 2. One has degree 4.

Compute KLR generator actions on v_T s for the above tableaux. Splitting across degrees means computation involves linear algebra in 1, 1, 3 and 3 variables, rather than 8. Can compute that there is only one homomorphism, of degree 1 (T_{λ} has degree 3).
Example 3:

Example 3: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$

Example 3: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$ {T \in Std $(\mu) | i_T = i_{\lambda}$ }

Example 3: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3)$. {T \in Std(μ) | $i_T = i_{\lambda}$ }

32 tableaux. Degrees split them into sets of size 1, 1, 5, 5, 10, 10.

Example 3: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$ {T \in Std(μ) | $i_T = i_{\lambda}$ }

32 tableaux. Degrees split them into sets of size 1, 1, 5, 5, 10, 10.

Computation is getting tough...

Definition

Let $\lambda, \mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Definition

Let $\lambda, \mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:

Definition

Let $\lambda, \mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example: $\lambda = (3, 2), \mu = (3, 1, 1).$

Definition

Let $\lambda, \mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example: $\lambda = (3, 2), \mu = (3, 1, 1).$

$$
T_\lambda=\frac{1\,|\,3\,|\,5\,|}{2\,|\,4\,|}.
$$

Definition

Let $\lambda, \mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda = (3, 2), \mu = (3, 1, 1).
$$

$$
T_{\lambda} = \boxed{\frac{1}{2 \mid 4 \mid 5 \mid}}. \text{ Let } T = \boxed{\frac{1}{2}} \\
$$

Definition

Let $\lambda, \mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda = (3, 2), \mu = (3, 1, 1).
$$

$$
T_{\lambda} = \frac{1 \mid 3 \mid 5}{2 \mid 4}
$$
. Let $T = \frac{1 \mid 3 \mid 5}{4}$ and $S = \frac{1 \mid 3 \mid 4}{5}$.

Definition

Let $\lambda, \mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda = (3, 2), \mu = (3, 1, 1).
$$

$$
T_{\lambda} = \frac{1 \mid 3 \mid 5}{2 \mid 4}
$$
. Let $T = \frac{1 \mid 3 \mid 5}{4}$ and $S = \frac{1 \mid 3 \mid 4}{5}$.

Then T is λ -dominated.

Definition

Let $\lambda, \mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda = (3, 2), \mu = (3, 1, 1).
$$

$$
T_{\lambda} = \frac{1 \mid 3 \mid 5}{2 \mid 4}
$$
. Let $T = \frac{1 \mid 3 \mid 5}{4}$ and $S = \frac{1 \mid 3 \mid 4}{5}$.

Then T is λ -dominated, but S is not.

Definition

Let $\lambda, \mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda = (3, 2), \mu = (3, 1, 1).
$$

$$
T_{\lambda} = \frac{1 \mid 3 \mid 5}{2 \mid 4}
$$
. Let $T = \frac{1 \mid 3 \mid 5}{4}$ and $S = \frac{1 \mid 3 \mid 4}{5}$.

Then T is λ -dominated, but S is not.

Let $\lambda, \mu \vdash n$.

Let $\lambda, \mu \vdash n$.

Definition

Let $\varphi \in \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{\mathtt{T} \in \mathsf{Std}(\mu)} \mathtt{a}_\mathtt{T} \mathsf{v}_\mathtt{T}.$

Let $\lambda, \mu \vdash n$.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$.

Let $\lambda, \mu \vdash n$.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Let $\lambda, \mu \vdash n$.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example:

Let $\lambda, \mu \vdash n$.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $p = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$.

Let $\lambda, \mu \vdash n$.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $p = 3, \lambda = (4, 3), \mu = (4, 2, 1)$. There is a homomorphism $\mathsf{S}_\lambda \to \mathsf{S}_\mu$ given by $\mathsf{z}_\lambda \mapsto \mathsf{v}_{\mathtt{T}}$ for $\mathsf{T}_\lambda = \fbox{1\,3\,5\,7}.$ 2 | 4 | 6

Let $\lambda, \mu \vdash n$.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $p = 3, \lambda = (4, 3), \mu = (4, 2, 1)$. There is a homomorphism $\mathsf{S}_\lambda \to \mathsf{S}_\mu$ given by $\mathsf{z}_\lambda \mapsto \mathsf{v}_{\mathtt{T}}$ for $\mathtt{T}^- = \begin{bmatrix} 1 & 3 & 5 & 7 \end{bmatrix}$. 2 \mid 4 6

Let $\lambda, \mu \vdash n$.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $p = 3, \lambda = (4, 3), \mu = (4, 2, 1)$. There is a homomorphism $\mathsf{S}_\lambda \to \mathsf{S}_\mu$ given by $\mathsf{z}_\lambda \mapsto \mathsf{v}_{\mathtt{T}}$ for $\mathtt{T}^- = \begin{bmatrix} 1 & 3 & 5 & 7 \end{bmatrix}$. 2 \mid 4 6

Theorem (Fayers–S, '14)

Let $\lambda, \mu \vdash n$.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $p = 3, \lambda = (4, 3), \mu = (4, 2, 1)$. There is a homomorphism $\mathsf{S}_\lambda \to \mathsf{S}_\mu$ given by $\mathsf{z}_\lambda \mapsto \mathsf{v}_{\mathtt{T}}$ for $\mathtt{T}^- = \begin{bmatrix} 1 & 3 & 5 & 7 \end{bmatrix}$. 2 \mid 4 6

Theorem (Fayers–S, '14) If $p \neq 2$, then $DHom_{R_n}(S_\lambda, S_\mu) = Hom_{R_n}(S_\lambda, S_\mu)$.

Example 2 revisited:

Example 2 revisited: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

Example 2 revisited: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

 $\{T \in \text{Std}(\mu) \mid i_T = i_\lambda\}$

Example 2 revisited: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

 $\{T \in \text{Std}(\mu) \mid i_T = i_\lambda, T \text{ is } \lambda \text{-dominated}\} =$

Example 2 revisited: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

 $\{T \in \text{Std}(\mu) \mid i_T = i_\lambda, T \text{ is } \lambda \text{-dominated}\} =$

Much easier to find the degree 1 homomorphism now!

Example 3 revisited:

Example 3 revisited: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$

Example 3 revisited: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$ $\{T \in \text{Std}(\mu) \mid i_T = i_\lambda\}$

Example 3 revisited: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$ $\{T \in \text{Std}(\mu) \mid i_T = i_\lambda, T \text{ is } \lambda \text{-dominated}\} =$

Example 3 revisited: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$ $\{T \in \text{Std}(\mu) \mid I_T = I_\lambda$, T is λ -dominated} =

Checking the relations is now much easier, and it's not too difficult to show that there is a homomorphism $z_{\lambda} \mapsto v_{\tau}$.
If $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$, define $\bar{\lambda} := (\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_k - 1)$. i.e. $\bar{\lambda}$ is the result of removing the first column from λ .

If $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$, define $\overline{\lambda} := (\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_k - 1)$. i.e. $\overline{\lambda}$ is the result of removing the first column from λ .

Theorem (Fayers–S,'14)

If λ , μ \vdash n and λ and μ both have a first column of size k, then

$$
\mathsf{DHom}_{R_n}(S_\lambda,S_\mu)\cong \mathsf{DHom}_{R_{n-k}}(S_{\bar\lambda},S_{\bar\mu})
$$

as graded vector spaces over F.

If $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$, define $\bar{\lambda} := (\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_k - 1)$. i.e. $\bar{\lambda}$ is the result of removing the first column from λ .

Theorem (Fayers–S,'14)

If λ , μ \vdash n and λ and μ both have a first column of size k, then

$$
\mathsf{DHom}_{R_n}(S_\lambda,S_\mu)\cong \mathsf{DHom}_{R_{n-k}}(S_{\bar\lambda},S_{\bar\mu})
$$

as graded vector spaces over F.

Corollary

If $p \neq 2$, $\lambda, \mu \vdash n$ and λ and μ both have a first column of size k, then

$$
\text{Hom}_{R_n}(S_\lambda,S_\mu)\cong \text{Hom}_{R_{n-k}}(S_{\bar\lambda},S_{\bar\mu})
$$

as graded vector spaces over F.

Brundan and Kleshchev's isomorphism applies in more generality than we have stated. It applies to Hecke algebras of the symmetric group.

Brundan and Kleshchev's isomorphism applies in more generality than we have stated. It applies to Hecke algebras of the symmetric group. We can also define other cyclotomic quotients of the KLR algebra, which are isomorphic to Ariki–Koike algebras. Similar frameworks apply to this generalisation.

Brundan and Kleshchev's isomorphism applies in more generality than we have stated. It applies to Hecke algebras of the symmetric group. We can also define other cyclotomic quotients of the KLR algebra, which are isomorphic to Ariki–Koike algebras. Similar frameworks apply to this generalisation.

Theorem (Fayers–S,'14)

If $e \neq 2$ and parameters are distinct modulo e, then all homomorphisms are dominated.

Brundan and Kleshchev's isomorphism applies in more generality than we have stated. It applies to Hecke algebras of the symmetric group. We can also define other cyclotomic quotients of the KLR algebra, which are isomorphic to Ariki–Koike algebras. Similar frameworks apply to this generalisation.

Theorem (Fayers–S,'14)

If $e \neq 2$ and parameters are distinct modulo e, then all homomorphisms are dominated.

Corollary

If $e \neq 2$ and parameters are distinct modulo e, all Specht modules for the Ariki–Koike algebra are indecomposable.

Brundan and Kleshchev's isomorphism applies in more generality than we have stated. It applies to Hecke algebras of the symmetric group. We can also define other cyclotomic quotients of the KLR algebra, which are isomorphic to Ariki–Koike algebras. Similar frameworks apply to this generalisation.

Theorem (Fayers–S,'14)

If $e \neq 2$ and parameters are distinct modulo e, then all homomorphisms are dominated.

Corollary

If $e \neq 2$ and parameters are distinct modulo e, all Specht modules for the Ariki–Koike algebra are indecomposable.

Finally, our column removal results apply to this higher level.