The graded representation theory of the symmetric group and dominated homomorphisms

Liron Speyer

Queen Mary University of London

I.speyer@qmul.ac.uk

Joint work with Matthew Fayers.

Let \mathbb{F} be a field of characteristic $p \ge 0$ throughout.

Let \mathbb{F} be a field of characteristic $p \ge 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Let \mathbb{F} be a field of characteristic $p \ge 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A *partition* of *n* is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers which sum to *n*.

Let \mathbb{F} be a field of characteristic $p \ge 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A partition of n is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, ...)$ of non-negative integers which sum to n. We write $\lambda \vdash n$.

Let \mathbb{F} be a field of characteristic $p \ge 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A *partition* of *n* is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers which sum to *n*. We write $\lambda \vdash n$.

Example:

Let \mathbb{F} be a field of characteristic $p \ge 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A *partition* of *n* is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers which sum to *n*. We write $\lambda \vdash n$.

Example: The partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).

Let \mathbb{F} be a field of characteristic $p \ge 0$ throughout.

We would like to consider the representation theory of the symmetric group \mathfrak{S}_n . i.e. study $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

A partition of n is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of non-negative integers which sum to n. We write $\lambda \vdash n$.

Example: The partitions of 4 are (4), (3,1), (2,2), (2,1,1) and (1,1,1,1).

Definition

For each $\lambda \vdash n$, we construct an $\mathbb{F}\mathfrak{S}_n$ -module S_λ , called a Specht module.

Fact

If p = 0, $\{S_{\lambda} \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F}\mathfrak{S}_n$ -modules.

Fact

If p = 0, $\{S_{\lambda} \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

If p > 0, we say λ is a *p-regular partition* of *n* if it does not have *p* equal parts.

Fact

If p = 0, $\{S_{\lambda} \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

If p > 0, we say λ is a *p-regular partition* of *n* if it does not have *p* equal parts.

Example:

Fact

If p = 0, $\{S_{\lambda} \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

If p > 0, we say λ is a *p-regular partition* of *n* if it does not have *p* equal parts.

Example: (4,3,3,1) is *p*-regular for all $p \neq 2$.

Fact

If p = 0, $\{S_{\lambda} \mid \lambda \vdash n\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

If p > 0, we say λ is a *p-regular partition* of *n* if it does not have *p* equal parts.

Example: (4,3,3,1) is *p*-regular for all $p \neq 2$.

Fact

If p>0 and λ is a p-regular partition of n, S_{λ} has a simple head, which we denote D_{λ} . These form a complete set of pairwise non-isomorphic simple $\mathbb{F}\mathfrak{S}_n$ -modules.

Definition

An (\mathbb{F} -)algebra A is (\mathbb{Z} -)graded if $A=\bigoplus_{i\in\mathbb{Z}}A_i$ as vector spaces and $A_iA_j\subseteq A_{i+j}$.

Definition

An (\mathbb{F} -)algebra A is (\mathbb{Z} -)graded if $A=\bigoplus_{i\in\mathbb{Z}}A_i$ as vector spaces and $A_iA_i\subseteq A_{i+i}$.

If A is a graded algebra, an A-module M is graded if $M = \bigoplus_{i \in \mathbb{Z}} M_i$ and $A_i M_i \subseteq M_{i+i}$.

Definition

An (\mathbb{F} -)algebra A is (\mathbb{Z} -)graded if $A=\bigoplus_{i\in\mathbb{Z}}A_i$ as vector spaces and $A_iA_j\subseteq A_{i+j}$.

If A is a graded algebra, an A-module M is graded if $M = \bigoplus_{i \in \mathbb{Z}} M_i$ and $A_i M_i \subseteq M_{i+1}$.

Definition

Let M and N be graded A-modules. $\varphi: M \to N$ is a homogeneous homomorphism of degree r if φ is a homomorphism and $\varphi(M_i) \subseteq N_{i+r}$ for all i.

Definition

An (\mathbb{F} -)algebra A is (\mathbb{Z} -)graded if $A=\bigoplus_{i\in\mathbb{Z}}A_i$ as vector spaces and $A_iA_j\subseteq A_{i+j}$.

If A is a graded algebra, an A-module M is graded if $M = \bigoplus_{i \in \mathbb{Z}} M_i$ and $A_i M_i \subseteq M_{i+1}$.

Definition

Let M and N be graded A-modules. $\varphi: M \to N$ is a homogeneous homomorphism of degree r if φ is a homomorphism and $\varphi(M_i) \subseteq N_{i+r}$ for all i.

Fact

If M is finitely generated, then $\operatorname{Hom}_A(M,N)$ is a graded vector space. In particular, $\operatorname{Hom}_A(M,N)$ has a homogeneous basis.

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative \mathbb{F} -algebra with generating set

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative \mathbb{F} -algebra with generating set

$$\{e(i) \mid i \in I^n\} \cup \{y_1, \dots, y_n\} \cup \{\psi_1, \dots, \psi_{n-1}\}$$

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative \mathbb{F} -algebra with generating set

$$\{e(i) \mid i \in I^n\} \cup \{y_1, \dots, y_n\} \cup \{\psi_1, \dots, \psi_{n-1}\}$$

$$e(i)e(j) = \delta_{i,j}e(i);$$

$$\sum_{j \in I^n} e(i) = 1; \quad *$$

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative \mathbb{F} -algebra with generating set

$$\{e(i) \mid i \in I^n\} \cup \{y_1, \dots, y_n\} \cup \{\psi_1, \dots, \psi_{n-1}\}$$

$$e(i)e(j) = \delta_{i,j}e(i);$$

$$\sum_{i \in I^n} e(i) = 1; *$$
 $y_r e(i) = e(i)y_r;$
$$\psi_r e(i) = e(s_r i)\psi_r;$$

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative \mathbb{F} -algebra with generating set

$$\left\{e(i) \mid i \in I^n\right\} \cup \left\{y_1, \dots, y_n\right\} \cup \left\{\psi_1, \dots, \psi_{n-1}\right\}$$

$$\begin{split} e(i)e(j) &= \delta_{i,j}e(i); & \sum_{i \in I^n} e(i) = 1; \quad * \\ y_r e(i) &= e(i)y_r; & \psi_r e(i) = e(s_r i)\psi_r; \\ y_r y_s &= y_s y_r; & \text{if } s \neq r, r+1; \\ \psi_r \psi_s &= \psi_s \psi_r & \text{if } |r-s| > 1; \end{split}$$

Define $I := \mathbb{Z}/p\mathbb{Z}$. The cyclotomic Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital, associative \mathbb{F} -algebra with generating set

$$\left\{e(i) \mid i \in I^n\right\} \cup \left\{y_1, \dots, y_n\right\} \cup \left\{\psi_1, \dots, \psi_{n-1}\right\}$$

$$e(i)e(j) = \delta_{i,j}e(i); \qquad \sum_{i \in I^n} e(i) = 1; \quad *$$

$$y_r e(i) = e(i)y_r; \qquad \psi_r e(i) = e(s_r i)\psi_r;$$

$$y_r y_s = y_s y_r;$$

$$\psi_r y_s = y_s \psi_r \qquad \text{if } s \neq r, r+1;$$

$$\psi_r \psi_s = \psi_s \psi_r \qquad \text{if } |r-s| > 1;$$

$$y_r \psi_r e(i) = (\psi_r y_{r+1} - \delta_{i_r, i_{r+1}})e(i);$$

$$y_{r+1} \psi_r e(i) = (\psi_r y_r + \delta_{i_r, i_{r+1}})e(i);$$

$$\psi_r^2 e(i) = \begin{cases} 0 & i_r = i_{r+1}, \\ e(i) & i_{r+1} \neq i_r, i_r \pm 1, \\ (y_{r+1} - y_r)e(i) & i_r = i_{r+1} + 1, \\ (y_r - y_{r+1})e(i) & i_r = i_{r+1} - 1, \\ (y_{r+1} - y_r)(y_r - y_{r+1})e(i) & i_r = i_{r+1} + 1, p = 2; \end{cases}$$

$$\psi_r^2 e(i) = \begin{cases} 0 & i_r = i_{r+1}, \\ e(i) & i_{r+1} \neq i_r, i_r \pm 1, \\ (y_{r+1} - y_r)e(i) & i_r = i_{r+1} + 1, \\ (y_r - y_{r+1})e(i) & i_r = i_{r+1} - 1, \\ (y_{r+1} - y_r)(y_r - y_{r+1})e(i) & i_r = i_{r+1} + 1, p = 2; \end{cases}$$

$$\psi_r\psi_{r+1}\psi_r\mathbf{e}(i) = \begin{cases} (\psi_{r+1}\psi_r\psi_{r+1} + 1)\mathbf{e}(i) & i_{r+2} = i_r = i_{r+1} + 1, \\ (\psi_{r+1}\psi_r\psi_{r+1} - 1)\mathbf{e}(i) & i_{r+2} = i_r = i_{r+1} - 1, \\ (\psi_{r+1}\psi_r\psi_{r+1} + y_r - 2y_{r+1} + y_{r+2})\mathbf{e}(i) & ", p = 2, \\ (\psi_{r+1}\psi_r\psi_{r+1})\mathbf{e}(i) & \text{otherwise}; \end{cases}$$

$$\psi_r^2 e(i) = \begin{cases} 0 & i_r = i_{r+1}, \\ e(i) & i_{r+1} \neq i_r, i_r \pm 1, \\ (y_{r+1} - y_r)e(i) & i_r = i_{r+1} + 1, \\ (y_r - y_{r+1})e(i) & i_r = i_{r+1} - 1, \\ (y_{r+1} - y_r)(y_r - y_{r+1})e(i) & i_r = i_{r+1} + 1, p = 2; \end{cases}$$

$$\psi_r\psi_{r+1}\psi_r\mathbf{e}(i) = \begin{cases} (\psi_{r+1}\psi_r\psi_{r+1} + 1)\mathbf{e}(i) & i_{r+2} = i_r = i_{r+1} + 1, \\ (\psi_{r+1}\psi_r\psi_{r+1} - 1)\mathbf{e}(i) & i_{r+2} = i_r = i_{r+1} - 1, \\ (\psi_{r+1}\psi_r\psi_{r+1} + y_r - 2y_{r+1} + y_{r+2})\mathbf{e}(i) & ", p = 2, \\ (\psi_{r+1}\psi_r\psi_{r+1})\mathbf{e}(i) & \text{otherwise}; \end{cases}$$

$$y_1 = 0;$$

 $e(i) = 0$ if $i_1 \neq 0;$

for all admissible r, s, i, j.

Fact

If p > 0, R_n is non-trivially \mathbb{Z} -graded by setting

$$\deg(e(i)) = 0; \quad \deg(y_r) = 2;$$

$$\deg(\psi_r e(i)) = \begin{cases} -2 & \text{if } i_r = i_{r+1}, \\ 1 & \text{if } i_r = i_{r+1} \pm 1 \text{ and } p \neq 2, \\ 2 & \text{if } i_r = i_{r+1} \pm 1 \text{ and } p = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Fact

If p > 0, R_n is non-trivially \mathbb{Z} -graded by setting

$$\deg(\psi_r e(i)) = \begin{cases} -2 & \text{if } i_r = i_{r+1}, \\ 1 & \text{if } i_r = i_{r+1} \pm 1 \text{ and } p \neq 2, \\ 2 & \text{if } i_r = i_{r+1} \pm 1 \text{ and } p = 2, \\ 0 & \text{otherwise.} \end{cases}$$

 $deg(e(i)) = 0; deg(y_r) = 2;$

Theorem (Brundan-Kleshchev, '09)

Fact

If p > 0, R_n is non-trivially \mathbb{Z} -graded by setting

$$\deg(\psi_r e(i)) = \begin{cases} -2 & \text{if } i_r = i_{r+1}, \\ 1 & \text{if } i_r = i_{r+1} \pm 1 \text{ and } p \neq 2, \\ 2 & \text{if } i_r = i_{r+1} \pm 1 \text{ and } p = 2, \\ 0 & \text{otherwise.} \end{cases}$$

 $deg(e(i)) = 0; deg(y_r) = 2;$

Theorem (Brundan-Kleshchev, '09)

 R_n is isomorphic to $\mathbb{F}\mathfrak{S}_n$.

Fact

If p > 0, R_n is non-trivially \mathbb{Z} -graded by setting

$$deg(e(i)) = 0; \quad deg(y_r) = 2;$$

$$(-2 \quad \text{if } i_r = i_{r+1}.$$

$$\deg(\psi_r e(i)) = \begin{cases} -2 & \text{if } i_r = i_{r+1}, \\ 1 & \text{if } i_r = i_{r+1} \pm 1 \text{ and } p \neq 2, \\ 2 & \text{if } i_r = i_{r+1} \pm 1 \text{ and } p = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem (Brundan-Kleshchev, '09)

 R_n is isomorphic to $\mathbb{F}\mathfrak{S}_n$.

Corollary

If p > 0, $\mathbb{F}\mathfrak{S}_n$ can be non-trivially \mathbb{Z} -graded.

Tableaux combinatorics

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries 1,..., n without repeats.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries 1,..., n without repeats.

Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries 1,..., n without repeats.

Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Example:

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries 1,..., n without repeats.

Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Example: Let $\lambda = (3,2)$.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries 1,..., n without repeats.

Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Example: Let
$$\lambda = (3,2)$$
. $T = \begin{bmatrix} 1 & 2 & 4 \\ \hline 3 & 5 \end{bmatrix}$ and $S = \begin{bmatrix} 1 & 3 & 2 \\ \hline 4 & 5 \end{bmatrix}$ are two

 λ -tableaux;

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries 1,..., n without repeats.

Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries 1,..., n without repeats.

Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Example: Let
$$\lambda = (3,2)$$
. $T = \begin{bmatrix} 1 & 2 & 4 \\ \hline 3 & 5 \end{bmatrix}$ and $S = \begin{bmatrix} 1 & 3 & 2 \\ \hline 4 & 5 \end{bmatrix}$ are two λ -tableaux; $T \in Std(\lambda)$, but $S \notin Std(\lambda)$.

Definition

Define the *initial tableau* $T_{\lambda} \in Std(\lambda)$ to be the λ -tableau with entries in order down successive columns.

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries 1,..., n without repeats.

Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Example: Let
$$\lambda = (3,2)$$
. $T = \begin{bmatrix} 1 & 2 & 4 \\ \hline 3 & 5 \end{bmatrix}$ and $S = \begin{bmatrix} 1 & 3 & 2 \\ \hline 4 & 5 \end{bmatrix}$ are two λ -tableaux; $T \in Std(\lambda)$, but $S \notin Std(\lambda)$.

Definition

Define the *initial tableau* $T_{\lambda} \in Std(\lambda)$ to be the λ -tableau with entries in order down successive columns.

Example:

Definition

For $\lambda \vdash n$, a λ -tableau T is the Young diagram of λ filled with entries 1,..., n without repeats.

Call T standard (and write $T \in Std(\lambda)$) if entries increase along rows and down columns.

Example: Let
$$\lambda = (3,2)$$
. $T = \begin{bmatrix} 1 & 2 & 4 \\ \hline 3 & 5 \end{bmatrix}$ and $S = \begin{bmatrix} 1 & 3 & 2 \\ \hline 4 & 5 \end{bmatrix}$ are two λ -tableaux; $T \in Std(\lambda)$, but $S \notin Std(\lambda)$.

Definition

Define the *initial tableau* $T_{\lambda} \in Std(\lambda)$ to be the λ -tableau with entries in order down successive columns.

Example:
$$T_{(3,2)} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$$
.

Definition

For $\lambda \vdash n$, and A = (i, j) a *node* in $[\lambda]$, define the *residue* of A to be $j - i \pmod{p}$.

Definition

For $\lambda \vdash n$, and A = (i, j) a *node* in $[\lambda]$, define the *residue* of A to be $j - i \pmod{p}$.

Example:

Definition

For $\lambda \vdash n$, and A = (i, j) a *node* in $[\lambda]$, define the *residue* of A to be $j - i \pmod{p}$.

Example: For p=3, nodes in the Young diagram of $\lambda=(3,2,1)$ have

residues as follows: $\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 \\ 1 \end{bmatrix}$

Definition

For $\lambda \vdash n$, and A = (i, j) a *node* in $[\lambda]$, define the *residue* of A to be $j - i \pmod{p}$.

Example: For p=3, nodes in the Young diagram of $\lambda=(3,2,1)$ have $\boxed{0\ 1\ 2}$

residues as follows: 2 0 1

Definition

For $T \in Std(\lambda)$, we define the *residue sequence* i_T of T to be the sequence of residues of nodes containing $1, \ldots, n$ in order.

Definition

For $\lambda \vdash n$, and A = (i, j) a *node* in $[\lambda]$, define the *residue* of A to be $j - i \pmod{p}$.

Example: For p = 3, nodes in the Young diagram of $\lambda = (3, 2, 1)$ have

residues as follows: $\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 \\ 1 \end{bmatrix}$

Definition

For $T \in Std(\lambda)$, we define the *residue sequence* i_T of T to be the sequence of residues of nodes containing $1, \ldots, n$ in order.

Example:

Definition

For $\lambda \vdash n$, and A = (i, j) a *node* in $[\lambda]$, define the *residue* of A to be $j - i \pmod{p}$.

Example: For p = 3, nodes in the Young diagram of $\lambda = (3, 2, 1)$ have

residues as follows: $\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 \end{bmatrix}$.

Definition

For $T \in Std(\lambda)$, we define the *residue sequence* i_T of T to be the sequence of residues of nodes containing $1, \ldots, n$ in order.

Example: For
$$p = 3$$
, $T = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 \\ 6 \end{bmatrix}$, we have $i_T = (012201)$.

Definition

For $\lambda \vdash n$, A an *i*-node of λ , we define

$$deg^{A}(\lambda) = \#\{addable i-nodes of \lambda \text{ strictly above } A\}$$
 $-\#\{removable i-nodes of \lambda \text{ strictly above } A\}.$

Definition

For $\lambda \vdash n$, A an *i*-node of λ , we define

$$\deg^{A}(\lambda) = \#\{\text{addable } i\text{-nodes of } \lambda \text{ strictly above } A\}$$
 $-\#\{\text{removable } i\text{-nodes of } \lambda \text{ strictly above } A\}.$

Definition

Definition

For $\lambda \vdash n$, A an *i*-node of λ , we define

$$\deg^{A}(\lambda) = \#\{\text{addable } i\text{-nodes of } \lambda \text{ strictly above } A\}$$
 $-\#\{\text{removable } i\text{-nodes of } \lambda \text{ strictly above } A\}.$

Definition

We define a degree function deg : $Std(\lambda) \to \mathbb{Z}$ recursively by setting $deg(T) = deg^A(\lambda) + deg(T_{< n})$ where A is the node of T containing n.

Example:

Definition

For $\lambda \vdash n$, A an i-node of λ , we define

$$\deg^{A}(\lambda) = \#\{\text{addable } i\text{-nodes of } \lambda \text{ strictly above } A\}$$
 $-\#\{\text{removable } i\text{-nodes of } \lambda \text{ strictly above } A\}.$

Definition

Example: Let
$$p = 3$$
, $T = \begin{bmatrix} 1 & 2 & 5 \\ \hline 3 & 6 \\ \hline 4 \end{bmatrix}$.

Definition

For $\lambda \vdash n$, A an *i*-node of λ , we define

$$\deg^{A}(\lambda) = \#\{\text{addable } i\text{-nodes of } \lambda \text{ strictly above } A\}$$
 $-\#\{\text{removable } i\text{-nodes of } \lambda \text{ strictly above } A\}.$

Definition

Example: Let
$$p = 3$$
, $T = \begin{bmatrix} 1 & 2 & 5 \end{bmatrix}$. Recursively, $\begin{bmatrix} \mathbf{0} \\ 3 & 6 \end{bmatrix}$

$$deg(T_{<2}) = 0$$

Definition

For $\lambda \vdash n$, A an *i*-node of λ , we define

$$\deg^{A}(\lambda) = \#\{\text{addable } i\text{-nodes of } \lambda \text{ strictly above } A\}$$
 $-\#\{\text{removable } i\text{-nodes of } \lambda \text{ strictly above } A\}.$

Definition

Example: Let
$$p = 3$$
, $T = \begin{bmatrix} 1 & 2 & 5 \\ \hline 3 & 6 \\ \hline 4 \end{bmatrix}$. Recursively, $\begin{bmatrix} 0 & 1 \\ \hline \end{bmatrix}$

$$deg(T_{<3}) = 0 + 0$$

Definition

For $\lambda \vdash n$, A an *i*-node of λ , we define

$$\deg^{A}(\lambda) = \#\{\text{addable } i\text{-nodes of } \lambda \text{ strictly above } A\}$$
 $-\#\{\text{removable } i\text{-nodes of } \lambda \text{ strictly above } A\}.$

Definition

$$deg(T_{<4}) = 0 + 0 + 1$$

Definition

For $\lambda \vdash n$, A an *i*-node of λ , we define

$$\deg^{A}(\lambda) = \#\{\text{addable } i\text{-nodes of } \lambda \text{ strictly above } A\}$$
 $-\#\{\text{removable } i\text{-nodes of } \lambda \text{ strictly above } A\}.$

Definition

Definition

For $\lambda \vdash n$, A an *i*-node of λ , we define

$$\deg^{A}(\lambda) = \#\{\text{addable } i\text{-nodes of } \lambda \text{ strictly above } A\}$$
 $-\#\{\text{removable } i\text{-nodes of } \lambda \text{ strictly above } A\}.$

Definition

Example: Let
$$p = 3$$
, $T = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 6 \\ 4 \end{bmatrix}$. Recursively, $\begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 \end{bmatrix}$ deg $(T_{<6}) = 0 + 0 + 1 + -1 + 0$

Definition

For $\lambda \vdash n$, A an *i*-node of λ , we define

$$\deg^{A}(\lambda) = \#\{\text{addable } i\text{-nodes of } \lambda \text{ strictly above } A\}$$
 $-\#\{\text{removable } i\text{-nodes of } \lambda \text{ strictly above } A\}.$

Definition

Example: Let
$$p = 3$$
, $T = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 6 \\ 4 \end{bmatrix}$. Recursively, $\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 \\ 1 \end{bmatrix}$ deg $(T) = 0 + 0 + 1 + -1 + 0 + 1 = 1$.

For each $\lambda \vdash n$, we can define a Specht module S_{λ} for R_n by generators and relations.

For each $\lambda \vdash n$, we can define a Specht module S_{λ} for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $\deg(z_\lambda) := \deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

For each $\lambda \vdash n$, we can define a Specht module S_{λ} for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $\deg(z_\lambda) := \deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_{\lambda} := i_{T_{\lambda}}$.

For each $\lambda \vdash n$, we can define a Specht module S_{λ} for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $\deg(z_\lambda) := \deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_{\lambda} := i_{T_{\lambda}}$.

For each $\lambda \vdash n$, we can define a Specht module S_{λ} for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $\deg(z_\lambda) := \deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_{\lambda} := i_{T_{\lambda}}$.

•
$$e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda};$$

For each $\lambda \vdash n$, we can define a Specht module S_{λ} for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $\deg(z_\lambda) := \deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_{\lambda} := i_{T_{\lambda}}$.

- $e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda};$
- $y_r z_{\lambda} = 0$ for all r = 1, 2, ..., n;

For each $\lambda \vdash n$, we can define a Specht module S_{λ} for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $\deg(z_\lambda) := \deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_{\lambda} := i_{T_{\lambda}}$.

- $e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda};$
- $y_r z_{\lambda} = 0$ for all r = 1, 2, ..., n;
- $\psi_r z_{\lambda} = 0$ whenever r + 1 lies below r in T_{λ} ;

For each $\lambda \vdash n$, we can define a Specht module S_{λ} for R_n by generators and relations.

As an R_n -module, S_λ is cyclic, generated by z_λ , with $\deg(z_\lambda) := \deg(T_\lambda)$. (Recall that T_λ is the initial λ -tableau – filled down consecutive columns.)

We write $i_{\lambda} := i_{T_{\lambda}}$.

- $e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda};$
- $y_r z_{\lambda} = 0$ for all r = 1, 2, ..., n;
- $\psi_r z_{\lambda} = 0$ whenever r + 1 lies below r in T_{λ} ;
- *some Garnir relations involving ψ generators*.

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \dots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \dots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_T T_{\lambda} = T$.

If $\mathbf{w}_{\mathtt{T}} = \mathbf{s}_{i_1} \mathbf{s}_{i_2} \dots \mathbf{s}_{i_r}$ then define $\psi_{\mathtt{T}} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \dots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_T T_\lambda = T$.

If $\mathbf{w}_{\mathrm{T}} = \mathbf{s}_{i_1} \mathbf{s}_{i_2} \dots \mathbf{s}_{i_r}$ then define $\psi_{\mathrm{T}} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each $T \in Std(\lambda)$, define $v_T := \psi_T z_{\lambda} \in S_{\lambda}$.

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \dots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_T T_{\lambda} = T$.

If $\mathbf{w}_{\mathrm{T}} = \mathbf{s}_{i_1} \mathbf{s}_{i_2} \dots \mathbf{s}_{i_r}$ then define $\psi_{\mathrm{T}} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each $T \in Std(\lambda)$, define $v_T := \psi_T z_{\lambda} \in S_{\lambda}$.

Example:

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \dots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_T T_{\lambda} = T$.

If $\mathbf{w}_{\mathrm{T}} = \mathbf{s}_{i_1} \mathbf{s}_{i_2} \dots \mathbf{s}_{i_r}$ then define $\psi_{\mathrm{T}} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each $T \in Std(\lambda)$, define $v_T := \psi_T z_{\lambda} \in S_{\lambda}$.

Example: Take $\lambda = (3, 1)$.

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \dots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_T T_{\lambda} = T$.

If $\mathbf{w}_{\mathtt{T}} = \mathbf{s}_{i_1} \mathbf{s}_{i_2} \dots \mathbf{s}_{i_r}$ then define $\psi_{\mathtt{T}} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each $T \in Std(\lambda)$, define $v_T := \psi_T z_{\lambda} \in S_{\lambda}$.

Example: Take $\lambda = (3, 1)$. We have three standard λ -tableaux

		•				· · /								
1	3	4		1	2	4	and	1	2	3				
2			,	3			and	4			•			

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} s_{i_2} \dots s_{i_r}$ in the Coxeter generators of \mathfrak{S}_n .

Definition

Denote by w_T the element of \mathfrak{S}_n satisfying $w_T T_\lambda = T$.

If $\mathbf{w}_{\mathtt{T}} = \mathbf{s}_{i_1} \mathbf{s}_{i_2} \dots \mathbf{s}_{i_r}$ then define $\psi_{\mathtt{T}} := \psi_{i_1} \psi_{i_2} \dots \psi_{i_r}$.

For each $T \in Std(\lambda)$, define $v_T := \psi_T z_{\lambda} \in S_{\lambda}$.

Example: Take $\lambda = (3,1)$. We have three standard λ -tableaux

$$\begin{bmatrix} 1 & 3 & 4 \\ 2 & \end{bmatrix}$$
, $\begin{bmatrix} 1 & 2 & 4 \\ 3 & \end{bmatrix}$ and $\begin{bmatrix} 1 & 2 & 3 \\ 4 & \end{bmatrix}$. The corresponding elements v_T are given by z_λ , $\psi_2 z_\lambda$ and $\psi_3 \psi_2 z_\lambda$ respectively.

Theorem (Brundan-Kleshchev-Wang, '11)

Let $T \in Std(\lambda)$.

Theorem (Brundan-Kleshchev-Wang, '11)

Let $T \in Std(\lambda)$. Then $deg(T) = deg(v_T)$.

Theorem (Brundan-Kleshchev-Wang, '11)

Let $T \in Std(\lambda)$. Then $deg(T) = deg(v_T)$.

Theorem (Brundan-Kleshchev-Wang, '11)

The R_n -module S_λ has a homogeneous basis $\{v_T \mid T \in Std(\lambda)\}$.

Theorem (Brundan-Kleshchev-Wang, '11)

Let $T \in Std(\lambda)$. Then $deg(T) = deg(v_T)$.

Theorem (Brundan-Kleshchev-Wang, '11)

The R_n -module S_λ has a homogeneous basis $\{v_T \mid T \in Std(\lambda)\}$.

Example:

Theorem (Brundan-Kleshchev-Wang, '11)

Let $T \in Std(\lambda)$. Then $deg(T) = deg(v_T)$.

Theorem (Brundan-Kleshchev-Wang, '11)

The R_n -module S_λ has a homogeneous basis $\{v_T \mid T \in Std(\lambda)\}$.

Example: $\{z_{\lambda}, \psi_2 z_{\lambda}, \psi_3 \psi_2 z_{\lambda}\}$ is a homogeneous basis of $S_{(3,1)}$.

We now have enough information to start calculating homomorphisms.

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$.

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$. We'd like to compute a homogeneous basis for $\operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$.

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$. We'd like to compute a homogeneous basis for $\operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$.

Example 1:

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$. We'd like to compute a homogeneous basis for $\operatorname{Hom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$.

Example 1: p = 3, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$.

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$. We'd like to compute a homogeneous basis for $\operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$.

Example 1: p=3, $\lambda=(4,3)$, $\mu=(4,2,1)$. If $\varphi\in \operatorname{Hom}_{R_n}(S_\lambda,S_\mu)$, then $\varphi(z_\lambda)$ satisfies the same relations as z_λ .

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$. We'd like to compute a homogeneous basis for $\operatorname{Hom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$.

Example 1: p=3, $\lambda=(4,3)$, $\mu=(4,2,1)$. If $\varphi\in \operatorname{Hom}_{R_n}(S_\lambda,S_\mu)$, then $\varphi(z_\lambda)$ satisfies the same relations as z_λ .

First, look at the relation $e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda}$.

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$. We'd like to compute a homogeneous basis for $\operatorname{Hom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$.

Example 1: $p=3, \lambda=(4,3), \mu=(4,2,1).$ If $\varphi\in \operatorname{Hom}_{R_n}(S_\lambda,S_\mu),$ then $\varphi(z_\lambda)$ satisfies the same relations as $z_\lambda.$

First, look at the relation $e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda}$. This tells us that

$$\varphi(\mathsf{z}_\lambda) = \sum_{\substack{\mathsf{T} \in \mathsf{Std}(\mu) \\ i_\mathsf{T} = i_\lambda}} \mathsf{a}_\mathsf{T} \mathsf{v}_\mathsf{T}.$$

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$. We'd like to compute a homogeneous basis for $\operatorname{Hom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$.

Example 1: $p=3, \lambda=(4,3), \mu=(4,2,1).$ If $\varphi\in \operatorname{Hom}_{R_n}(S_\lambda,S_\mu),$ then $\varphi(z_\lambda)$ satisfies the same relations as $z_\lambda.$

First, look at the relation $e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda}$. This tells us that

$$\varphi(z_{\lambda}) = \sum_{\substack{\mathtt{T} \in \mathsf{Std}(\mu) \\ i_{\mathtt{T}} = i_{\lambda}}} a_{\mathtt{T}} \mathsf{v}_{\mathtt{T}}.$$

We can check that $T = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 \\ \hline 6 \end{bmatrix}$ is the only standard μ -tableau with residue sequence i_{λ} .

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$. We'd like to compute a homogeneous basis for $\operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$.

Example 1: $p=3, \lambda=(4,3), \mu=(4,2,1).$ If $\varphi\in \operatorname{Hom}_{R_n}(S_\lambda,S_\mu),$ then $\varphi(z_\lambda)$ satisfies the same relations as $z_\lambda.$

First, look at the relation $e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda}$. This tells us that

$$\varphi(\mathsf{z}_\lambda) = \sum_{\substack{\mathsf{T} \in \mathsf{Std}(\mu) \\ i_\mathsf{T} = i_\lambda}} \mathsf{a}_\mathsf{T} \mathsf{v}_\mathsf{T}.$$

residue sequence i_{λ} . So we check if $v_{\rm T}$ satisfies the same relations as z_{λ} ($y_r s$ all annihilate it, etc).

We now have enough information to start calculating homomorphisms. Suppose λ , $\mu \vdash n$. We'd like to compute a homogeneous basis for $\operatorname{Hom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$.

Example 1: $p=3, \lambda=(4,3), \mu=(4,2,1).$ If $\varphi\in \operatorname{Hom}_{R_n}(S_\lambda,S_\mu),$ then $\varphi(z_\lambda)$ satisfies the same relations as $z_\lambda.$

First, look at the relation $e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda}$. This tells us that

$$\varphi(\mathsf{z}_\lambda) = \sum_{\substack{\mathsf{T} \in \mathsf{Std}(\mu) \\ \mathsf{i}_\mathsf{T} = \mathsf{i}_\lambda}} \mathsf{a}_\mathsf{T} \mathsf{v}_\mathsf{T}.$$

We can check that T = $\begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 \end{bmatrix}$ is the only standard μ -tableau with

residue sequence i_{λ} . So we check if v_{T} satisfies the same relations as z_{λ} ($y_{r}s$ all annihilate it, etc). It does, so there's a (degree 1) homomorphism $S_{\lambda} \to S_{\mu}$ given by $z_{\lambda} \mapsto v_{T}$.

Example 2:

Example 2: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

Example 2:
$$\lambda = (5,4,3), \, \mu = (5,4,2,1). \, \{ T \in Std(\mu) \mid i_T = i_{\lambda} \} =$$

,	1	3	6	9	1:	2	Ţ.	1	3	6	10	12		1	3	7	9	12		1	3	7	10	12	1	4	6	9	12	
	2	5	8	11	Г	_	[2	2	5	8	11			2	5	8	11			2	5	8	11	_	2	5	8	11		
ĺ	4	7			_	′		4	7				,	4	6				,	4	6			,	3	7				,
(10						9	9						10						9					10					

1	4	6	10	12		1	4	7	9	12		1	4	7	10	12	
2	5	8	11			2	5	8	11			2	5	8	11		
3	7				′	3	6				′	3	6				Ì.
9						10						9					,

Example 2:
$$\lambda = (5, 4, 3), \, \mu = (5, 4, 2, 1). \, \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (5, 4, 2, 1). \, \{T \in Std(\mu) \mid$$

One of these has degree -2.

Example 2:
$$\lambda = (5,4,3), \, \mu = (5,4,2,1). \, \{ T \in Std(\mu) \mid i_T = i_{\lambda} \} =$$

One of these has degree -2. Some have degree 0.

Example 2:
$$\lambda = (5, 4, 3), \, \mu = (5, 4, 2, 1). \, \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (5, 4, 2, 1). \, \{T \in Std(\mu) \mid$$

```
    1
    3
    6
    9
    12
    1
    3
    6
    10
    12
    1
    3
    7
    9
    12
    2
    5
    8
    11
    4
    6
    9
    12
    2
    5
    8
    11
    4
    6
    9
    12
    2
    5
    8
    11
    4
    6
    9
    12
    2
    5
    8
    11
    3
    7
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    <td
```

One of these has degree -2. Some have degree 0. Some degree 2.

Example 2:
$$\lambda = (5, 4, 3), \, \mu = (5, 4, 2, 1). \, \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = 0$$

```
\[
\begin{pmatrix}
1 & 3 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
4 & 7 \\
10 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 3 & 6 & 10 & 12 \\
2 & 5 & 8 & 11 \\
4 & 7 \\
10 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 3 & 6 & 10 & 12 \\
2 & 5 & 8 & 11 \\
4 & 7 \\
10 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 3 & 7 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 7 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 7 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
10 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
10 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 4 & 6
```

One of these has degree -2. Some have degree 0. Some degree 2. One has degree 4.

Example 2:
$$\lambda = (5, 4, 3), \, \mu = (5, 4, 2, 1). \, \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = 0$$

```
\[ \begin{pmatrix} 1 & 3 & 6 & 9 & 12 \\ 2 & 5 & 8 & 11 \\ 4 & 7 \\ 10 \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 3 & 6 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 4 & 7 \\ 10 \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 3 & 6 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 4 & 7 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 3 & 7 & 9 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 7 \\ 10 \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 6 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 7 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 6 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2
```

One of these has degree -2. Some have degree 0. Some degree 2. One has degree 4.

Compute KLR generator actions on v_T s for the above tableaux.

Example 2:
$$\lambda = (5, 4, 3), \, \mu = (5, 4, 2, 1). \, \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (5, 4, 2, 1). \, \{T \in Std(\mu) \mid$$

```
\[ \begin{pmatrix} 1 & 3 & 6 & 9 & 12 \\ 2 & 5 & 8 & 11 \\ 4 & 7 \\ 10 \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 3 & 6 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 4 & 7 \\ 10 \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 3 & 6 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 4 & 7 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 3 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 7 \\ 10 \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 6 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 7 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 6 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 9 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ 3 & 6 \\ 10 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 4 & 7 & 10 & 12 \\ 2
```

One of these has degree -2. Some have degree 0. Some degree 2. One has degree 4.

Compute KLR generator actions on v_T s for the above tableaux. Splitting across degrees means computation involves linear algebra in 1, 1, 3 and 3 variables, rather than 8.

Example 2:
$$\lambda = (5, 4, 3), \mu = (5, 4, 2, 1). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = 0$$

```
\begin{pmatrix}
1 & 3 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
4 & 7 \\
10 \end{pmatrix}
\begin{pmatrix}
1 & 3 & 6 & 10 & 12 \\
2 & 5 & 8 & 11 \\
4 & 7 \\
10 \end{pmatrix}
\begin{pmatrix}
1 & 3 & 6 & 10 & 12 \\
2 & 5 & 8 & 11 \\
4 & 6 \\
10 \end{pmatrix}
\begin{pmatrix}
1 & 3 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 7 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 7 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\begin{pmatrix}
1 & 4 & 6 & 9 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 \\
9 \end{pmatrix}
\beg
```

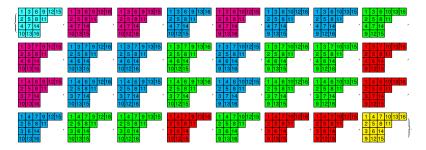
One of these has degree -2. Some have degree 0. Some degree 2. One has degree 4.

Compute KLR generator actions on v_T s for the above tableaux. Splitting across degrees means computation involves linear algebra in 1, 1, 3 and 3 variables, rather than 8. Can compute that there is only one homomorphism, of degree 1 (T_λ has degree 3).

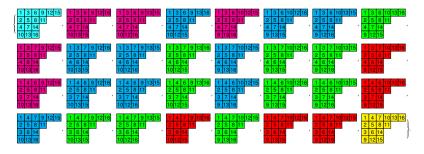
Example 3:

Example 3: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$

Example 3:
$$\lambda = (6, 5, 5), \mu = (6, 4, 3, 3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6, 4, 4, 3, 3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6, 4, 4, 3, 3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6, 4, 4, 3, 3). \{T \in Std(\mu)$$

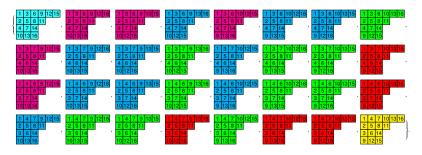


Example 3:
$$\lambda = (6,5,5), \mu = (6,4,3,3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6,5,5), \mu = (6,5,5), \mu = (6,4,3,3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6,5,5), \mu = (6,5,5), \mu = (6,4,3,3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6,5,5), \mu = (6,5,5), \mu = (6,4,3,3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6,5,5), \mu = (6,5,5),$$



32 tableaux. Degrees split them into sets of size 1, 1, 5, 5, 10, 10.

Example 3:
$$\lambda = (6,5,5), \mu = (6,4,3,3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6,5,5), \mu = (6,5,5), \mu = (6,4,3,3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6,5,5), \mu = (6,5,5), \mu = (6,4,3,3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6,5,5), \mu = (6,5,5), \mu = (6,4,3,3). \{T \in Std(\mu) \mid i_T = i_{\lambda}\} = (6,5,5), \mu = (6,5,5),$$



32 tableaux. Degrees split them into sets of size 1, 1, 5, 5, 10, 10.

Computation is getting tough...

Definition

Let λ , $\mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Definition

Let λ , $\mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:

Definition

Let λ , $\mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Definition

Let λ , $\mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

$$T_{\lambda} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}.$$

Definition

Let λ , $\mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

$$T_{\lambda} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$$
. Let $T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$

Definition

Let λ , $\mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Definition

Let λ , $\mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example: $\lambda = (3,2), \mu = (3,1,1).$

Then T is λ -dominated.

Definition

Let λ , $\mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example: $\lambda = (3,2), \mu = (3,1,1).$

Then T is λ -dominated, but S is not.

Definition

Let λ , $\mu \vdash n$. A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example: $\lambda = (3,2), \mu = (3,1,1).$

Then T is λ -dominated, but S is not.

Let λ , $\mu \vdash n$.

Let λ , $\mu \vdash n$.

Definition

Let $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T$.

Let λ , $\mu \vdash n$.

Definition

Let $\varphi \in \operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \operatorname{Std}(\mu)} a_T v_T$. Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$.

Let λ , $\mu \vdash n$.

Definition

Let $\varphi \in \operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \operatorname{Std}(\mu)} a_T v_T$. Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\operatorname{DHom}_{R_n}(S_\lambda, S_\mu)$.

Let λ , $\mu \vdash n$.

Definition

Let $\varphi \in \operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \operatorname{Std}(\mu)} a_T v_T$. Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\operatorname{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example:

Let λ , $\mu \vdash n$.

Definition

Let $\varphi \in \operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \operatorname{Std}(\mu)} a_T v_T$. Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\operatorname{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let p = 3, $\lambda = (4,3)$, $\mu = (4,2,1)$.

Let λ , $\mu \vdash n$.

Definition

Let $\varphi \in \operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \operatorname{Std}(\mu)} a_T v_T$. Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\operatorname{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let $p=3, \lambda=(4,3), \mu=(4,2,1)$. There is a homomorphism $S_{\lambda} \to S_{\mu}$ given by $z_{\lambda} \mapsto v_{T}$ for $T_{\lambda}= 1 \ 3 \ 5 \ 7$.

Let λ , $\mu \vdash n$.

Definition

Let $\varphi \in \operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \operatorname{Std}(\mu)} a_T v_T$. Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\operatorname{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let $p = 3, \lambda = (4,3), \mu = (4,2,1)$. There is a homomorphism $S_{\lambda} \to S_{\mu}$ given by $z_{\lambda} \mapsto v_{T}$ for $T = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 \end{bmatrix}$.

Let λ , $\mu \vdash n$.

Definition

Let $\varphi \in \operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \operatorname{Std}(\mu)} a_T v_T$. Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\operatorname{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let
$$p = 3, \lambda = (4,3), \mu = (4,2,1)$$
. There is a homomorphism $S_{\lambda} \to S_{\mu}$ given by $z_{\lambda} \mapsto v_{T}$ for $T = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 \end{bmatrix}$.

Theorem (Fayers-S, '14)

Let λ , $\mu \vdash n$.

Definition

Let $\varphi \in \operatorname{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \operatorname{Std}(\mu)} a_T v_T$. Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\operatorname{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let
$$p = 3, \lambda = (4,3), \mu = (4,2,1)$$
. There is a homomorphism $S_{\lambda} \to S_{\mu}$ given by $z_{\lambda} \mapsto v_{T}$ for $T = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 \end{bmatrix}$.

Theorem (Fayers-S, '14)

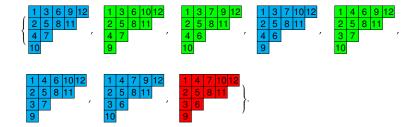
If $p \neq 2$, then $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$.

Example 2 revisited:

Example 2 revisited: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

Example 2 revisited: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

$$\{T \in Std(\mu) \mid i_T = i_{\lambda}\} =$$



Example 2 revisited: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

 $\{T \in Std(\mu) \mid i_T = i_{\lambda}, T \text{ is } \lambda\text{-dominated}\} =$

$$\left\{
\begin{array}{c|cccc}
1 & 4 & 7 & 10 & 12 \\
2 & 5 & 8 & 11 \\
3 & 6 & & & \\
9 & & & & &
\end{array}
\right\}$$

Example 2 revisited: $\lambda = (5, 4, 3), \mu = (5, 4, 2, 1).$

$$\{T \in Std(\mu) \mid i_T = i_\lambda, T \text{ is } \lambda\text{-dominated}\} =$$

$$\left\{\begin{array}{c|cccc} 1 & 4 & 7 & 10 & 12 \\ 2 & 5 & 8 & 11 \\ \hline 3 & 6 & \\ 9 & & \end{array}\right\}.$$

Much easier to find the degree 1 homomorphism now!

Example 3 revisited:

Example 3 revisited: $\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$

Example 3 revisited:
$$\lambda = (6,5,5), \mu = (6,4,3,3).$$
 $\{T \in Std(\mu) \mid i_T = i_{\lambda}\} =$



Example 3 revisited:
$$\lambda = (6,5,5), \mu = (6,4,3,3).$$
 $\{T \in Std(\mu) \mid i_T = i_\lambda, T \text{ is } \lambda\text{-dominated}\} =$

Example 3 revisited:
$$\lambda = (6, 5, 5), \mu = (6, 4, 3, 3).$$
 {T ∈ Std(μ) | $i_T = i_\lambda$, T is λ -dominated} =

$$\left\{
\begin{array}{c|ccccc}
1 & 4 & 7 & 10 & 13 & 16 \\
2 & 5 & 8 & 11 & & & \\
3 & 6 & 14 & & & & \\
9 & 12 & 15 & & & & \\
\end{array}
\right\}.$$

Checking the relations is now much easier, and it's not too difficult to show that there is a homomorphism $z_{\lambda} \mapsto v_{T}$.

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$, define $\bar{\lambda} := (\lambda_1 - 1, \lambda_2 - 1, \dots, \lambda_k - 1)$. i.e. $\bar{\lambda}$ is the result of removing the first column from λ .

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$, define $\bar{\lambda} := (\lambda_1 - 1, \lambda_2 - 1, \dots, \lambda_k - 1)$. i.e. $\bar{\lambda}$ is the result of removing the first column from λ .

Theorem (Fayers-S,'14)

If $\lambda, \mu \vdash n$ and λ and μ both have a first column of size k, then

$$\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_{n-k}}(\mathsf{S}_{\bar{\lambda}},\mathsf{S}_{\bar{\mu}})$$

as graded vector spaces over \mathbb{F} .

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$, define $\bar{\lambda} := (\lambda_1 - 1, \lambda_2 - 1, \dots, \lambda_k - 1)$. i.e. $\bar{\lambda}$ is the result of removing the first column from λ .

Theorem (Fayers-S,'14)

If $\lambda, \mu \vdash n$ and λ and μ both have a first column of size k, then

$$\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_{n-k}}(\mathsf{S}_{\bar{\lambda}},\mathsf{S}_{\bar{\mu}})$$

as graded vector spaces over \mathbb{F} .

Corollary

If $p \neq 2$, λ , $\mu \vdash n$ and λ and μ both have a first column of size k, then

$$\mathsf{Hom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{Hom}_{R_{n-k}}(\mathsf{S}_{\bar{\lambda}},\mathsf{S}_{\bar{\mu}})$$

as graded vector spaces over \mathbb{F} .