Graded column removal for homomorphisms between Specht modules

Liron Speyer

Queen Mary University of London

l.speyer@qmul.ac.uk

Joint work with Matthew Fayers.

Liron Speyer (QMUL)

Definition

For $\lambda \vdash n$ and any $c \ge 0$, define $\lambda_L(c)$ and $\lambda_R(c)$ to be the partitions on the left and right of a vertical cut after column c of $[\lambda]$.

Definition

For $\lambda \vdash n$ and any $c \ge 0$, define $\lambda_L(c)$ and $\lambda_R(c)$ to be the partitions on the left and right of a vertical cut after column c of $[\lambda]$.

Let $\lambda, \mu \vdash n$, and suppose for some $c \ge 0 |\lambda_L(c)| = |\mu_L(c)|$. Then:

Definition

For $\lambda \vdash n$ and any $c \ge 0$, define $\lambda_L(c)$ and $\lambda_R(c)$ to be the partitions on the left and right of a vertical cut after column c of $[\lambda]$.

Let $\lambda, \mu \vdash n$, and suppose for some $c \ge 0 |\lambda_L(c)| = |\mu_L(c)|$. Then:

Theorem (Fayers–Lyle '03, Lyle–Mathas '05)

Suppose $e \neq 2$. Then Hom_{*R_n*(S_{λ}, S_{μ}) \cong Hom_{*R_L*(S_{λ_L}, S_{μ_L}) \otimes Hom_{*R_R*(S_{λ_R}, S_{μ_R}) as \mathbb{F} -vector spaces, where *R_n*, *R_L*, *R_R* are Hecke algebras of type A of the appropriate degrees.}}}

Example:

Example: Let $\lambda = (4, 3, 2, 1)$ and $\mu = (4, 3, 1, 1, 1)$.

 $Hom_{R_{10}}(S_{\lambda},S_{\mu}) = Hom_{R_{7}}(S_{(2^{3},1)},S_{(2^{2},1^{3})}) \otimes Hom_{R_{3}}(S_{(2,1)},S_{(2,1)}).$

F a field of characteristic *p*, *e* ∈ {0,2,3,4,...} and define $I = \mathbb{Z}/e\mathbb{Z}$. The *affine Khovanov–Lauda–Rouquier algebra* or *quiver Hecke algebra* R_n is the unital associative **F**-algebra with generating set

$$\left\{ \boldsymbol{e}(i) \mid i \in I^n \right\} \cup \left\{ y_1, \ldots, y_n \right\} \cup \left\{ \psi_1, \ldots, \psi_{n-1} \right\}$$

F a field of characteristic *p*, *e* ∈ {0,2,3,4,...} and define $I = \mathbb{Z}/e\mathbb{Z}$. The *affine Khovanov–Lauda–Rouquier algebra* or *quiver Hecke algebra* R_n is the unital associative **F**-algebra with generating set

$$\left\{\boldsymbol{e}(i) \mid i \in I^n\right\} \cup \left\{\boldsymbol{y}_1, \ldots, \boldsymbol{y}_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}$$

and relations

$$e(i)e(j) = \delta_{i,j}e(i);$$

$$\sum_{i \in l^n} e(i) = 1; *$$

$$y_r e(i) = e(i)y_r;$$

$$\psi_r e(i) = e(s_r i)\psi_r;$$

F a field of characteristic *p*, *e* ∈ {0,2,3,4,...} and define $I = \mathbb{Z}/e\mathbb{Z}$. The *affine Khovanov–Lauda–Rouquier algebra* or *quiver Hecke algebra* R_n is the unital associative **F**-algebra with generating set

$$\left\{\boldsymbol{e}(i) \mid i \in I^n\right\} \cup \left\{\boldsymbol{y}_1, \ldots, \boldsymbol{y}_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}$$

and relations

 $e(i)e(j) = \delta_{i,j}e(i);$ $\sum_{i \in I^n} e(i) = 1; *$ $y_r e(i) = e(i)y_r;$ $\psi_r e(i) = e(s_r i)\psi_r;$ $y_r y_s = y_s y_r;$ $\psi_r y_s = y_s \psi_r$ $\psi_r \psi_s = \psi_s \psi_r$

if $s \neq r, r + 1$; if |r - s| > 1;

$$y_r\psi_r \boldsymbol{e}(i) = (\psi_r y_{r+1} - \delta_{i_r,i_{r+1}})\boldsymbol{e}(i);$$

$$y_{r+1}\psi_r \boldsymbol{e}(i) = (\psi_r y_r + \delta_{i_r,i_{r+1}})\boldsymbol{e}(i);$$

$$\begin{split} y_{r}\psi_{r}e(i) &= (\psi_{r}y_{r+1} - \delta_{i_{r},i_{r+1}})e(i);\\ y_{r+1}\psi_{r}e(i) &= (\psi_{r}y_{r} + \delta_{i_{r},i_{r+1}})e(i);\\ \psi_{r}^{2}e(i) &= \begin{cases} 0 & \text{if } i_{r} = i_{r+1},\\ e(i) & \text{if } i_{r+1} \neq i_{r},i_{r} \pm 1,\\ (y_{r+1} - y_{r})e(i) & \text{if } i_{r} \rightarrow i_{r+1},\\ (y_{r+1} - y_{r})(y_{r} - y_{r+1})e(i) & \text{if } i_{r} \leftarrow i_{r+1},\\ (\psi_{r+1}\psi_{r}\psi_{r+1} + 1)e(i) & \text{if } i_{r+2} = i_{r} \rightarrow i_{r+1},\\ (\psi_{r+1}\psi_{r}\psi_{r+1} + y_{r} - 2y_{r+1} + y_{r+2})e(i) & \text{if } i_{r+2} = i_{r} \rightleftarrows i_{r+1},\\ (\psi_{r+1}\psi_{r}\psi_{r+1})e(i) & \text{otherwise}; \end{split}$$

for all admissible *r*, *s*, *i*, *j*.

For any "e-multicharge" $\kappa = (\kappa_1, \ldots, \kappa_l) \in l^l$, we define the *cyclotomic KLR algebra* R_n^{κ} to be a quotient of R_n by some extra relations involving generators y_1 and e(i).

For any "e-multicharge" $\kappa = (\kappa_1, \ldots, \kappa_l) \in l^l$, we define the *cyclotomic KLR algebra* R_n^{κ} to be a quotient of R_n by some extra relations involving generators y_1 and e(i).

Theorem (Brundan–Kleshchev, '09)

For any "e-multicharge" $\kappa = (\kappa_1, \ldots, \kappa_l) \in l^l$, we define the *cyclotomic KLR algebra* R_n^{κ} to be a quotient of R_n by some extra relations involving generators y_1 and e(i).

Theorem (Brundan–Kleshchev, '09)

If p = e or $p \nmid e$, R_n^{κ} is isomorphic to an Ariki–Koike algebra of level I.

For any "e-multicharge" $\kappa = (\kappa_1, \ldots, \kappa_l) \in l^l$, we define the *cyclotomic KLR algebra* R_n^{κ} to be a quotient of R_n by some extra relations involving generators y_1 and e(i).

Theorem (Brundan-Kleshchev, '09)

If p = e or $p \nmid e$, R_n^{κ} is isomorphic to an Ariki–Koike algebra of level I.

Corollary

Cyclotomic Hecke algebras can be non-trivially \mathbb{Z} -graded.

Liron Speyer (QMUL)

For each *I*-multipartition λ , we can define a Specht module S_{λ} for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \rightarrow R_n^{\kappa}$.

For each *I*-multipartition λ , we can define a Specht module S_{λ} for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \rightarrow R_n^{\kappa}$.

As an R_n -module, S_λ is cyclic, generated by z_λ .

For each *I*-multipartition λ , we can define a Specht module S_{λ} for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$. As an R_n -module, S_{λ} is cyclic, generated by z_{λ} .

For each *I*-multipartition λ , we can define a Specht module S_{λ} for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$. As an R_n -module, S_{λ} is cyclic, generated by z_{λ} .

•
$$e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda};$$

For each *I*-multipartition λ , we can define a Specht module S_{λ} for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \rightarrow R_n^{\kappa}$. As an R_n -module, S_{λ} is cyclic, generated by z_{λ} .

•
$$e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda};$$

•
$$y_r z_{\lambda} = 0$$
 for all $r = 1, 2, ..., n$;

For each *I*-multipartition λ , we can define a Specht module S_{λ} for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$. As an R_n -module, S_{λ} is cyclic, generated by z_{λ} .

Relations for S_{λ}

•
$$e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda};$$

•
$$y_r z_{\lambda} = 0$$
 for all $r = 1, 2, ..., n$;

• $\psi_r z_{\lambda} = 0$ whenever r + 1 lies below r in the initial tableau;

For each *I*-multipartition λ , we can define a Specht module S_{λ} for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \rightarrow R_n^{\kappa}$. As an R_n -module, S_{λ} is cyclic, generated by z_{λ} .

•
$$e(i)z_{\lambda} = \delta_{i_{\lambda},i}z_{\lambda};$$

- $y_r z_{\lambda} = 0$ for all r = 1, 2, ..., n;
- $\psi_r z_{\lambda} = 0$ whenever r + 1 lies below r in the initial tableau;
- *some Garnir relations involving ψ generators*.

Liron Speyer (QMUL)

Theorem (Brundan–Kleshchev–Wang, '11, Kleshchev–Mathas–Ram, '12)

The R_n -module S_λ has a homogeneous basis indexed by the set of standard λ -tableaux.

Theorem (Brundan–Kleshchev–Wang, '11, Kleshchev–Mathas–Ram, '12)

The R_n -module S_λ has a homogeneous basis indexed by the set of standard λ -tableaux.

This homogeneous basis can be given as $\{\psi_T z_\lambda \mid T \text{ is a standard } \lambda\text{-tableau}\}.$

Theorem (Brundan–Kleshchev–Wang, '11, Kleshchev–Mathas–Ram, '12)

The R_n -module S_λ has a homogeneous basis indexed by the set of standard λ -tableaux.

This homogeneous basis can be given as $\{\psi_T z_\lambda \mid T \text{ is a standard } \lambda\text{-tableau}\}.$

Example: Take $\lambda = (3, 1)$. S_{λ} has a basis indexed by the three standard λ -tableaux 1 3 4, 1 2 4 and 1 2 3.

Theorem (Brundan–Kleshchev–Wang, '11, Kleshchev–Mathas–Ram, '12)

The R_n -module S_λ has a homogeneous basis indexed by the set of standard λ -tableaux.

This homogeneous basis can be given as $\{\psi_T z_\lambda \mid T \text{ is a standard } \lambda\text{-tableau}\}.$

Example: Take $\lambda = (3, 1)$. S_{λ} has a basis indexed by the three standard λ -tableaux $\begin{bmatrix} 1 & 3 & 4 \\ 2 & -1 & -1 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 & 4 \\ -1 & 2 & -1 & -1 \end{bmatrix}$. The $\begin{bmatrix} 1 & 2 & 3 \\ -1 & 2 & -1 & -1 \\ -1 & -1 & -1 & -1 \end{bmatrix}$ corresponding elements of the homogeneous basis are given by z_{λ} , $\psi_2 z_{\lambda}$ and $\psi_3 \psi_2 z_{\lambda}$ respectively.

Dominated tableaux

Liron Speyer (QMUL)
Let λ , μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left.

Let λ , μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example:

Let λ, μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$

Let λ, μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1))$. Then $[\lambda] = \Box \Box \Box$.

Let λ, μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3,2), (1,1))$.Then $[\lambda] = \Box \Box \Box$.

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Let λ , μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1))$.Then $[\lambda] = \Box \Box \Box$.

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1))$.Then $[\lambda] = \Box \Box$.

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example: λ as above, $\mu = ((2, 2), (2, 1))$.

Let λ , μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1))$.Then $[\lambda] = \Box \Box$.

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example: λ as above, $\mu = ((2, 2), (2, 1))$.

$$T_{\lambda} = \frac{ \begin{array}{c} 3 & 5 & 7 \\ 4 & 6 \end{array} }{ \begin{array}{c} 1 \\ 2 \end{array} }.$$

Let λ, μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1))$. Then $[\lambda] = \Box \Box \Box$.

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$\lambda$$
 as above, $\mu = ((2, 2), (2, 1))$
 $T_{\lambda} =$

$$\begin{array}{c} 3 & 5 & 7 \\ 4 & 6 \\ \hline 1 \\ 2 \end{array}$$
. Let $T =$

$$\begin{array}{c} 3 & 5 \\ 6 & 7 \\ \hline 1 \\ 2 \end{array}$$

Let λ, μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3,2), (1,1))$.Then $[\lambda] = \Box \Box \Box$.

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$\lambda$$
 as above, $\mu = ((2, 2), (2, 1)).$

$$T_{\lambda} = \frac{\begin{vmatrix} 3 & 5 & 7 \\ 4 & 6 \end{vmatrix}}{1 & 2}. \text{ Let } T = \frac{\begin{vmatrix} 3 & 5 \\ 6 & 7 \\ 1 & 4 \end{vmatrix}}{1 & 4 & 3 & 3 & 5 \\ \hline 6 & 7 & 7 & 7 \\ \hline 1 & 4 & 2 & 3 & 5 \\ \hline 1 & 7 & 7 & 7 \\ \hline 2 & & & & \\ \hline 1 & 7 & 7 & 7 \\ \hline 2 & & & & \\ \hline 1 & 7 & 7 & 7 \\ \hline 1 & 7 & 7 \\ \hline 1$$

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1))$.Then $[\lambda] = \Box \Box$.

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$\lambda$$
 as above, $\mu = ((2,2), (2,1)).$
 $T_{\lambda} = \frac{\begin{vmatrix} 3 & 5 & 7 \\ 4 & 6 \\ 1 \\ 2 \end{vmatrix}$. Let $T = \frac{\begin{vmatrix} 3 & 5 \\ 6 & 7 \\ 1 \\ 2 \end{vmatrix}$ and $S = \frac{\begin{vmatrix} 3 & 4 \\ 5 & 6 \\ 1 \\ 2 \end{vmatrix}$.

Then T is λ -dominated,

Let λ , μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1))$.Then $[\lambda] = \Box \Box \Box$.

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$\lambda$$
 as above, $\mu = ((2,2), (2,1)).$
 $T_{\lambda} = \frac{\boxed{357}}{46}$. Let $T = \frac{\boxed{35}}{67}$ and $S = \frac{\boxed{34}}{56}$.

Then T is λ -dominated, but S is not.

Let λ , μ be *I*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1))$.Then $[\lambda] = \Box \Box \Box$.

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$\lambda$$
 as above, $\mu = ((2,2), (2,1)).$
 $T_{\lambda} = \frac{\begin{vmatrix} 3 & 5 & 7 \\ 4 & 6 \end{vmatrix}}{\begin{vmatrix} 1 & 2 \end{vmatrix}}$. Let $T = \frac{\begin{vmatrix} 3 & 5 \\ 6 & 7 \end{vmatrix}}{\begin{vmatrix} 1 & 4 \\ 2 \end{vmatrix}}$ and $S = \frac{\begin{vmatrix} 3 & 4 \\ 5 & 6 \end{vmatrix}}{\begin{vmatrix} 1 & 7 \\ 2 \end{vmatrix}}$.

Then T is λ -dominated, but S is not.

Let λ , μ be *I*-multipartitions of *n*.

Let λ , μ be *I*-multipartitions of *n*.

Definition

```
Let \varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu) & suppose \varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T.
```

Let λ , μ be *I*-multipartitions of *n*.

Definition

Let $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T$. Say φ is *dominated* if T is λ -dominated whenever $a_T \neq 0$.

Let λ , μ be *I*-multipartitions of *n*.

Definition

Let $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T$. Say φ is *dominated* if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\text{DHom}_{R_n}(S_\lambda, S_\mu)$.

Let λ , μ be *I*-multipartitions of *n*.

Definition

Let $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T$. Say φ is *dominated* if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\text{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example:

Let λ , μ be *I*-multipartitions of *n*.

Definition

Let $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T$. Say φ is *dominated* if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\text{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let e = 3, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$.

Let λ , μ be *I*-multipartitions of *n*.

Definition

Let $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T$. Say φ is *dominated* if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\text{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let $e = 3, \lambda = (4, 3), \mu = (4, 2, 1)$. There is a homomorphism $S_{\lambda} \rightarrow S_{\mu}$ given by $z_{\lambda} \mapsto v_{T}$ for $T_{\lambda} = \boxed{1 \ 3 \ 5 \ 7}$.

Let λ , μ be *I*-multipartitions of *n*.

Definition

Let $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T$. Say φ is *dominated* if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\text{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let $e = 3, \lambda = (4, 3), \mu = (4, 2, 1)$. There is a homomorphism $S_{\lambda} \to S_{\mu}$ given by $z_{\lambda} \mapsto v_{T}$ for $T = \boxed{1 \ 3 \ 5 \ 7}$.

6

Let λ , μ be *I*-multipartitions of *n*.

Definition

Let $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T$. Say φ is *dominated* if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\text{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let e = 3, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. There is a homomorphism $S_{\lambda} \to S_{\mu}$ given by $z_{\lambda} \mapsto v_{T}$ for $T = \boxed{1 \ 3 \ 5 \ 7}$.

Theorem (Fayers-S, '14)

6

Let λ , μ be *I*-multipartitions of *n*.

Definition

Let $\varphi \in \text{Hom}_{R_n}(S_\lambda, S_\mu)$ & suppose $\varphi(z_\lambda) = \sum_{T \in \text{Std}(\mu)} a_T v_T$. Say φ is *dominated* if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\text{DHom}_{R_n}(S_\lambda, S_\mu)$.

Example: Let e = 3, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. There is a homomorphism $S_{\lambda} \to S_{\mu}$ given by $z_{\lambda} \mapsto v_{T}$ for $T = \boxed{1 \ 3 \ 5 \ 7}$.

Theorem (Fayers–S, '14)

If $e \neq 2$ and $\kappa_i \neq \kappa_j$ whenever $i \neq j$, then DHom_{*R_n*(S_{λ}, S_{μ}) = Hom_{*R_n*(S_{λ}, S_{μ}).}} 6

Let λ , μ be *I*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)

If e \neq 2 and \kappa_i \neq \kappa_j whenever i \neq j, then

\mathsf{DHom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) = \mathsf{Hom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}).
```

Let λ , μ be *I*-multipartitions of *n*.

Theorem (Fayers–S, '14) If $e \neq 2$ and $\kappa_i \neq \kappa_j$ whenever $i \neq j$, then $\mathsf{DHom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) = \mathsf{Hom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}).$

```
Corollary (Fayers–S, '14)
```

Let λ , μ be *I*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)

If e \neq 2 and \kappa_i \neq \kappa_j whenever i \neq j, then

\mathsf{DHom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) = \mathsf{Hom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}).
```

Corollary (Fayers-S, '14)

Let λ , μ be *I*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)

If e \neq 2 and \kappa_i \neq \kappa_j whenever i \neq j, then

\mathsf{DHom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) = \mathsf{Hom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}).
```

Corollary (Fayers-S, '14)

```
• If \operatorname{Hom}_{R_n}(S_{\lambda}, S_{\mu}) \neq \{0\}, then \lambda \ge \mu;
```

Let λ , μ be *I*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)

If e \neq 2 and \kappa_i \neq \kappa_j whenever i \neq j, then

\mathsf{DHom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) = \mathsf{Hom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}).
```

Corollary (Fayers-S, '14)

- If $\operatorname{Hom}_{R_n}(S_{\lambda}, S_{\mu}) \neq \{0\}$, then $\lambda \geqslant \mu$;
- Hom_{R_n}(S_{λ}, S_{λ}) is one dimensional;

Let λ, μ be *I*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)

If e \neq 2 and \kappa_i \neq \kappa_j whenever i \neq j, then

\mathsf{DHom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) = \mathsf{Hom}_{B_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}).
```

Corollary (Fayers-S, '14)

- If $\text{Hom}_{R_n}(S_{\lambda}, S_{\mu}) \neq \{0\}$, then $\lambda \triangleright \mu$;
- Hom_{R_n}(S_{λ}, S_{λ}) is one dimensional;
- S_{λ} is indecomposable.

Definition

For any *I*-multipartition λ of *n* and any $1 \le m \le l$, $c \ge 0$, define $\lambda_L(c, m)$ and $\lambda_R(c, m)$ to be the multipartitions on the left and right of a vertical cut after column *c* of component *m* of $[\lambda]$.

Definition

For any *I*-multipartition λ of *n* and any $1 \le m \le l$, $c \ge 0$, define $\lambda_L(c, m)$ and $\lambda_R(c, m)$ to be the multipartitions on the left and right of a vertical cut after column *c* of component *m* of $[\lambda]$.

Example:

Definition

For any *I*-multipartition λ of *n* and any $1 \le m \le l$, $c \ge 0$, define $\lambda_L(c, m)$ and $\lambda_R(c, m)$ to be the multipartitions on the left and right of a vertical cut after column *c* of component *m* of $[\lambda]$.

Example: $\lambda = ((3, 2), (2), (1, 1)), m = 2, c = 1.$

Definition

For any *I*-multipartition λ of *n* and any $1 \le m \le l$, $c \ge 0$, define $\lambda_L(c, m)$ and $\lambda_R(c, m)$ to be the multipartitions on the left and right of a vertical cut after column *c* of component *m* of $[\lambda]$.

Example: $\lambda = ((3,2), (2), (1,1)), m = 2, c = 1.$

Definition

For any *I*-multipartition λ of *n* and any $1 \le m \le l$, $c \ge 0$, define $\lambda_L(c, m)$ and $\lambda_R(c, m)$ to be the multipartitions on the left and right of a vertical cut after column *c* of component *m* of $[\lambda]$.

Example: $\lambda = ((3,2), (2), (1,1)), m = 2, c = 1.$

Definition

For any *I*-multipartition λ of *n* and any $1 \le m \le l$, $c \ge 0$, define $\lambda_L(c, m)$ and $\lambda_R(c, m)$ to be the multipartitions on the left and right of a vertical cut after column *c* of component *m* of $[\lambda]$.

Example: $\lambda = ((3,2), (2), (1,1)), m = 2, c = 1.$

Definition

For any *I*-multipartition λ of *n* and any $1 \le m \le l$, $c \ge 0$, define $\lambda_L(c, m)$ and $\lambda_R(c, m)$ to be the multipartitions on the left and right of a vertical cut after column *c* of component *m* of $[\lambda]$.

Example: $\lambda = ((3, 2), (2), (1, 1)), m = 2, c = 1.$

Let λ, μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Note that the result factors through to the cyclotomic quotient.

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Note that the result factors through to the cyclotomic quotient. Example:

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Let λ , μ be *I*-multipartitions of *n*, and suppose for some $1 \le m \le I$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R})$, where R_n, R_L and R_R are the affine KLR algebras of the appropriate degrees.

Graded row removal

Liron Speyer (QMUL)

• A similar result holds for row removal (horizontal cuts);

- A similar result holds for row removal (horizontal cuts);
- In the case of row removal, an explicit construction is more elusive.

- A similar result holds for row removal (horizontal cuts);
- In the case of row removal, an explicit construction is more elusive.

Conjecture

If e = 2, $\kappa_i \neq \kappa_j$ whenever $i \neq j$, and λ is *conjugate-Kleshchev*, then $\mathsf{DHom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu}) = \mathsf{Hom}_{R_n}(\mathsf{S}_{\lambda},\mathsf{S}_{\mu})$.