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Column removal

Definition
For λ ` n and any c > 0, define λL (c) and λR(c) to be the partitions on
the left and right of a vertical cut after column c of [λ].

Let λ, µ ` n, and suppose for some c > 0 |λL (c)| = |µL (c)|. Then:

Theorem (Fayers–Lyle ’03, Lyle–Mathas ’05)
Suppose e , 2. Then
HomRn(Sλ,Sµ) � HomRL (SλL ,SµL ) ⊗ HomRR (SλR ,SµR ) as F-vector
spaces, where Rn,RL ,RR are Hecke algebras of type A of the
appropriate degrees.
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Column removal

Example:

Let λ = (4,3,2,1) and µ = (4,3,1,1,1).

[λ] = [µ] =

HomR10(Sλ,Sµ) = HomR7(S(23,1),S(22,13)) ⊗ HomR3(S(2,1),S(2,1)).

Liron Speyer (QMUL) Column removal 3 / 14



Column removal

Example: Let λ = (4,3,2,1) and µ = (4,3,1,1,1).

[λ] = [µ] =

HomR10(Sλ,Sµ) = HomR7(S(23,1),S(22,13)) ⊗ HomR3(S(2,1),S(2,1)).

Liron Speyer (QMUL) Column removal 3 / 14



Column removal

Example: Let λ = (4,3,2,1) and µ = (4,3,1,1,1).

[λ] = [µ] =

HomR10(Sλ,Sµ) = HomR7(S(23,1),S(22,13)) ⊗ HomR3(S(2,1),S(2,1)).

Liron Speyer (QMUL) Column removal 3 / 14



Column removal

Example: Let λ = (4,3,2,1) and µ = (4,3,1,1,1).

[λ] = [µ] =

HomR10(Sλ,Sµ) = HomR7(S(23,1),S(22,13)) ⊗ HomR3(S(2,1),S(2,1)).

Liron Speyer (QMUL) Column removal 3 / 14



Column removal

Example: Let λ = (4,3,2,1) and µ = (4,3,1,1,1).

[λ] = [µ] =

HomR10(Sλ,Sµ) = HomR7(S(23,1),S(22,13)) ⊗ HomR3(S(2,1),S(2,1)).

Liron Speyer (QMUL) Column removal 3 / 14



Column removal

Example: Let λ = (4,3,2,1) and µ = (4,3,1,1,1).

[λ] = [µ] =

HomR10(Sλ,Sµ) = HomR7(S(23,1),S(22,13)) ⊗ HomR3(S(2,1),S(2,1)).

Liron Speyer (QMUL) Column removal 3 / 14



The KLR algebra

F a field of characteristic p, e ∈ {0,2,3,4, . . . } and define I = Z/eZ.
The affine Khovanov–Lauda–Rouquier algebra or quiver Hecke
algebra Rn is the unital associative F-algebra with generating set{

e(i)
∣∣∣ i ∈ In

}
∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}

and relations

e(i)e(j) = δi,je(i);∑
i∈In

e(i) = 1; ∗

yre(i) = e(i)yr ;

ψre(i) = e(sr i)ψr ;

yrys = ysyr ;

ψrys = ysψr if s , r , r + 1;
ψrψs = ψsψr if |r − s| > 1;

Liron Speyer (QMUL) Column removal 4 / 14



The KLR algebra
F a field of characteristic p, e ∈ {0,2,3,4, . . . } and define I = Z/eZ.
The affine Khovanov–Lauda–Rouquier algebra or quiver Hecke
algebra Rn is the unital associative F-algebra with generating set{

e(i)
∣∣∣ i ∈ In

}
∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}

and relations

e(i)e(j) = δi,je(i);∑
i∈In

e(i) = 1; ∗

yre(i) = e(i)yr ;

ψre(i) = e(sr i)ψr ;

yrys = ysyr ;

ψrys = ysψr if s , r , r + 1;
ψrψs = ψsψr if |r − s| > 1;

Liron Speyer (QMUL) Column removal 4 / 14



The KLR algebra
F a field of characteristic p, e ∈ {0,2,3,4, . . . } and define I = Z/eZ.
The affine Khovanov–Lauda–Rouquier algebra or quiver Hecke
algebra Rn is the unital associative F-algebra with generating set{

e(i)
∣∣∣ i ∈ In

}
∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}

and relations

e(i)e(j) = δi,je(i);∑
i∈In

e(i) = 1; ∗

yre(i) = e(i)yr ;

ψre(i) = e(sr i)ψr ;

yrys = ysyr ;

ψrys = ysψr if s , r , r + 1;
ψrψs = ψsψr if |r − s| > 1;

Liron Speyer (QMUL) Column removal 4 / 14



The KLR algebra
F a field of characteristic p, e ∈ {0,2,3,4, . . . } and define I = Z/eZ.
The affine Khovanov–Lauda–Rouquier algebra or quiver Hecke
algebra Rn is the unital associative F-algebra with generating set{

e(i)
∣∣∣ i ∈ In

}
∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}

and relations

e(i)e(j) = δi,je(i);∑
i∈In

e(i) = 1; ∗

yre(i) = e(i)yr ;

ψre(i) = e(sr i)ψr ;

yrys = ysyr ;

ψrys = ysψr if s , r , r + 1;
ψrψs = ψsψr if |r − s| > 1;

Liron Speyer (QMUL) Column removal 4 / 14



yrψre(i) = (ψryr+1 − δir ,ir+1)e(i);
yr+1ψre(i) = (ψryr + δir ,ir+1)e(i);

ψ2
r e(i) =



0 if ir = ir+1,

e(i) if ir+1 , ir , ir ± 1,
(yr+1 − yr)e(i) if ir → ir+1,

(yr − yr+1)e(i) if ir ← ir+1,

(yr+1 − yr)(yr − yr+1)e(i) if ir � ir+1;

ψrψr+1ψr =


(ψr+1ψrψr+1 + 1)e(i) if ir+2 = ir → ir+1,

(ψr+1ψrψr+1 − 1)e(i) if ir+2 = ir ← ir+1,

(ψr+1ψrψr+1 + yr − 2yr+1 + yr+2)e(i) if ir+2 = ir � ir+1,

(ψr+1ψrψr+1)e(i) otherwise;

for all admissible r , s, i, j.
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Cylotomic KLR algebras and Hecke algebras

For any “e-multicharge” κ = (κ1, . . . , κl) ∈ Il , we define the cyclotomic
KLR algebra Rκ

n to be a quotient of Rn by some extra relations
involving generators y1 and e(i).

Theorem (Brundan–Kleshchev, ’09)
If p = e or p - e, Rκ

n is isomorphic to an Ariki–Koike algebra of level l.

Corollary
Cyclotomic Hecke algebras can be non-trivially Z-graded.
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Specht modules

For each l-multipartition λ, we can define a Specht module Sλ for Rn
by generators and relations. These Specht modules factor through the
natural surjection Rn � Rκ

n .
As an Rn-module, Sλ is cyclic, generated by zλ.

Relations for Sλ

e(i)zλ = δiλ,izλ;
yrzλ = 0 for all r = 1,2, . . . ,n;
ψrzλ = 0 whenever r + 1 lies below r in the initial tableau;
*some Garnir relations involving ψ generators*.
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Specht modules

Theorem (Brundan–Kleshchev–Wang, ’11,
Kleshchev–Mathas–Ram, ’12)
The Rn-module Sλ has a homogeneous basis indexed by the set of
standard λ-tableaux.

This homogeneous basis can be given as{
ψTzλ

∣∣∣ T is a standard λ-tableau
}
.

Example: Take λ = (3,1). Sλ has a basis indexed by the three
standard λ-tableaux 1 3 4

2
, 1 2 4

3
and 1 2 3

4
.The

corresponding elements of the homogeneous basis are given by zλ,
ψ2zλ and ψ3ψ2zλ respectively.
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Dominated tableaux

Let λ, µ be l-multipartitions of n. We display Young diagrams for
multipartitions by placing components from top right to bottom left.
Example: λ = ((3,2), (1,1)).Then [λ] = .

Definition
A µ-tableau T is λ-dominated if every entry of T appears at least as far
left as it does in Tλ.

Example: λ as above, µ = ((2,2), (2,1)).

Tλ =

3 5 7
4 6

1
2

. Let T =

3 5
6 7

1 4
2

and S =

3 4
5 6

1 7
2

4

.

Then T is λ-dominated, but S is not.
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Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for Tλ = 1 3 5 7

2 4 6
.T = 1 3 5 7

2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for Tλ = 1 3 5 7

2 4 6
.T = 1 3 5 7

2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT.

Say ϕ is
dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for Tλ = 1 3 5 7

2 4 6
.T = 1 3 5 7

2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0.

Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for Tλ = 1 3 5 7

2 4 6
.T = 1 3 5 7

2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for Tλ = 1 3 5 7

2 4 6
.T = 1 3 5 7

2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example:

Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for Tλ = 1 3 5 7

2 4 6
.T = 1 3 5 7

2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1).

There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for Tλ = 1 3 5 7

2 4 6
.T = 1 3 5 7

2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for Tλ = 1 3 5 7

2 4 6
.

T = 1 3 5 7
2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for

Tλ = 1 3 5 7
2 4 6

.

T = 1 3 5 7
2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for

Tλ = 1 3 5 7
2 4 6

.

T = 1 3 5 7
2 4
6

.

Theorem (Fayers–S, ’14)

If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Definition
Let ϕ ∈ HomRn(Sλ,Sµ) & suppose ϕ(zλ) =

∑
T∈Std(µ) aTvT. Say ϕ is

dominated if T is λ-dominated whenever aT , 0. Denote set of all such
homs by DHomRn(Sλ,Sµ).

Example: Let e = 3, λ = (4,3), µ = (4,2,1). There is a
homomorphism Sλ → Sµ given by zλ 7→ vT for

Tλ = 1 3 5 7
2 4 6

.

T = 1 3 5 7
2 4
6

.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Liron Speyer (QMUL) Column removal 10 / 14



Dominated homomorphisms

Let λ, µ be l-multipartitions of n.

Theorem (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).

Corollary (Fayers–S, ’14)
If e , 2 and κi , κj whenever i , j then:
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Graded column removal

Definition
For any l-multipartition λ of n and any 1 6 m 6 l, c > 0, define λL (c,m)
and λR(c,m) to be the multipartitions on the left and right of a vertical
cut after column c of component m of [λ].

Example: λ = ((3,2), (2), (1,1)),m = 2, c = 1.

[λ] =

λL

λR
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Graded column removal
Let λ, µ be l-multipartitions of n, and suppose for some 1 6 m 6 l and
c > 0 we have |λL (c,m)| = |µL (c,m)|. Then:

Theorem (Fayers–S, ’14)
DHomRn(Sλ,Sµ) � DHomRL (SλL ,SµL ) ⊗ DHomRR (SλR ,SµR ), where
Rn,RL and RR are the affine KLR algebras of the appropriate degrees.

Note that the result factors through to the cyclotomic quotient.
Example: Let e = 3, κ = (0,1,2), λ = ((3,2), (2), (1,1)) and
µ = ((3,1), (3), (1,1)). |λL (1,2)| = |µL (1,2)|.

Tλ =

5 7 9
6 8

3 4

1
2

5 7 9
6

3 4 8

1
2

5 7 9
6 8

3 4

1
2

5 7 9
6

3 4 8

1
2

2 4 6
3 5

3 1

1
2

2 4 6
3

3 1 5

1
2

⊗ ⊗
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Example: Let e = 3, κ = (0,1,2), λ = ((3,2), (2), (1,1)) and
µ = ((3,1), (3), (1,1)). |λL (1,2)| = |µL (1,2)|.
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Graded column removal
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Graded row removal

A similar result holds for row removal (horizontal cuts);
In the case of row removal, an explicit construction is more elusive.

Conjecture
If e = 2, κi , κj whenever i , j, and λ is conjugate-Kleshchev, then
DHomRn(Sλ,Sµ) = HomRn(Sλ,Sµ).
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