Graded column removal for homomorphisms between Specht modules

Liron Speyer

Queen Mary University of London

l.speyer@qmul.ac.uk

Joint work with Matthew Fayers.

Definition

For $\lambda \vdash n$ and any $c \ge 0$, define $\lambda_L(c)$ and $\lambda_R(c)$ to be the partitions on the left and right of a vertical cut after column c of $[\lambda]$.

Definition

For $\lambda \vdash n$ and any $c \ge 0$, define $\lambda_L(c)$ and $\lambda_R(c)$ to be the partitions on the left and right of a vertical cut after column c of $[\lambda]$.

Let $\lambda, \mu \vdash n$, and suppose for some $c \ge 0$ $|\lambda_L(c)| = |\mu_L(c)|$. Then:

Definition

For $\lambda \vdash n$ and any $c \ge 0$, define $\lambda_L(c)$ and $\lambda_R(c)$ to be the partitions on the left and right of a vertical cut after column c of $[\lambda]$.

Let $\lambda, \mu \vdash n$, and suppose for some $c \ge 0$ $|\lambda_L(c)| = |\mu_L(c)|$. Then:

Theorem (Fayers–Lyle '03, Lyle–Mathas '05)

Suppose $e \neq 2$. Then $\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{Hom}_{\mathsf{R}_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{Hom}_{\mathsf{R}_\mathsf{R}}(\mathsf{S}_{\lambda_\mathsf{R}},\mathsf{S}_{\mu_\mathsf{R}})$ as $\mathbb{F}\text{-vector}$ spaces, where R_n, R_l, R_R are Hecke algebras of type A of the appropriate degrees.

Example:

Example: Let $\lambda = (4, 3, 2, 1)$ and $\mu = (4, 3, 1, 1, 1)$.

 $\mathsf{Hom}_{R_{10}}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{R_7}(\mathsf{S}_{(2^3,1)},\mathsf{S}_{(2^2,1^3)}) \otimes \mathsf{Hom}_{R_3}(\mathsf{S}_{(2,1)},\mathsf{S}_{(2,1)}).$

F a field of characteristic $p, e \in \{0, 2, 3, 4, ...\}$ and define $I = \mathbb{Z}/e\mathbb{Z}$. The affine Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital associative \mathbb{F} -algebra with generating set

$$
\left\{e(i) \middle| i \in I^n\right\} \cup \left\{y_1, \ldots, y_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}
$$

F a field of characteristic $p, e \in \{0, 2, 3, 4, ...\}$ and define $I = \mathbb{Z}/e\mathbb{Z}$. The affine Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital associative \mathbb{F} -algebra with generating set

$$
\left\{e(i) \middle| i \in I^n\right\} \cup \left\{y_1, \ldots, y_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}
$$

and relations

$$
e(i)e(j) = \delta_{i,j}e(i);
$$

\n
$$
\sum_{i \in F'} e(i) = 1; \quad *
$$

\n
$$
y_r e(i) = e(i)y_r;
$$

\n
$$
\psi_r e(i) = e(s_r i)\psi_r;
$$

F a field of characteristic $p, e \in \{0, 2, 3, 4, ...\}$ and define $I = \mathbb{Z}/e\mathbb{Z}$. The affine Khovanov–Lauda–Rouquier algebra or quiver Hecke algebra R_n is the unital associative F-algebra with generating set

$$
\left\{e(i) \middle| i \in I^n\right\} \cup \left\{y_1, \ldots, y_n\right\} \cup \left\{\psi_1, \ldots, \psi_{n-1}\right\}
$$

and relations

 $e(i)e(j) = \delta_{i,j}e(i);$ $\sum e(i) = 1; *$ i∈I n $y_r e(i) = e(i) y_r;$ $\psi_r e(i) = e(s_r i) \psi_r$; $y_r y_s = y_s y_r;$ $\psi_r v_s = v_s \psi_r$ $\psi_r \psi_s = \psi_s \psi_r$

if $s \neq r, r + 1$: if $|r - s| > 1$:

$$
y_r \psi_r e(i) = (\psi_r y_{r+1} - \delta_{i_r, i_{r+1}}) e(i);
$$

$$
y_{r+1} \psi_r e(i) = (\psi_r y_r + \delta_{i_r, i_{r+1}}) e(i);
$$

$$
y_r \psi_r e(i) = (\psi_r y_{r+1} - \delta_{i_r, i_{r+1}}) e(i);
$$

\n
$$
y_{r+1} \psi_r e(i) = (\psi_r y_r + \delta_{i_r, i_{r+1}}) e(i);
$$

\nif $i_r = i_{r+1}$,
\n
$$
\psi_r^2 e(i) = \begin{cases} 0 & \text{if } i_r = i_{r+1}, \\ e(i) & \text{if } i_{r+1} \neq i_r, i_r \pm 1, \\ (y_{r+1} - y_r) e(i) & \text{if } i_r \rightarrow i_{r+1}, \\ (y_r - y_{r+1}) e(i) & \text{if } i_r \leftarrow i_{r+1}, \\ (y_{r+1} - y_r) (y_r - y_{r+1}) e(i) & \text{if } i_r \rightleftarrows i_{r+1}; \\ (y_{r+1} \psi_r \psi_{r+1} + 1) e(i) & \text{if } i_{r+2} = i_r \rightarrow i_{r+1}, \\ (\psi_{r+1} \psi_r \psi_{r+1} + y_r - 2y_{r+1} + y_{r+2}) e(i) & \text{if } i_{r+2} = i_r \rightleftarrows i_{r+1}, \\ (\psi_{r+1} \psi_r \psi_{r+1}) e(i) & \text{otherwise}; \end{cases}
$$

for all admissible r , s , i , j .

For any "e-multicharge" $\kappa = (\kappa_1, \ldots, \kappa_l) \in I^l,$ we define the cyclotomic KLR algebra R_n^{κ} to be a quotient of R_n by some extra relations involving generators y_1 and $e(i)$.

For any "e-multicharge" $\kappa = (\kappa_1, \ldots, \kappa_l) \in I^l,$ we define the cyclotomic KLR algebra R_n^{κ} to be a quotient of R_n by some extra relations involving generators v_1 and $e(i)$.

Theorem (Brundan–Kleshchev, '09)

For any "e-multicharge" $\kappa = (\kappa_1, \ldots, \kappa_l) \in I^l,$ we define the cyclotomic KLR algebra R_n^{κ} to be a quotient of R_n by some extra relations involving generators v_1 and $e(i)$.

Theorem (Brundan–Kleshchev, '09)

If $p = e$ or $p \nmid e$, R_n^{κ} is isomorphic to an Ariki–Koike algebra of level I.

For any "e-multicharge" $\kappa = (\kappa_1, \ldots, \kappa_l) \in I^l,$ we define the cyclotomic KLR algebra R_n^{κ} to be a quotient of R_n by some extra relations involving generators v_1 and $e(i)$.

Theorem (Brundan–Kleshchev, '09)

If $p = e$ or $p \nmid e$, R_n^{κ} is isomorphic to an Ariki–Koike algebra of level I.

Corollary

Cyclotomic Hecke algebras can be non-trivially Z-graded.

For each *l*-multipartition λ , we can define a Specht module S_λ for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$.

For each *l*-multipartition λ , we can define a Specht module S_λ for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$.

As an R_n -module, S_λ is cyclic, generated by z_λ .

For each *l*-multipartition λ , we can define a Specht module S_λ for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$. As an R_n -module, S_λ is cyclic, generated by z_λ .

Relations for S_λ

For each *l*-multipartition λ , we can define a Specht module S_λ for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$. As an R_n -module, S_λ is cyclic, generated by z_λ .

Relations for S_λ $e(i)z_{\lambda} = \delta_{i\lambda}i z_{\lambda};$

For each *l*-multipartition λ , we can define a Specht module S_λ for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$. As an R_n -module, S_λ is cyclic, generated by z_λ .

Relations for S_λ

$$
\bullet \ \ e(i)z_{\lambda}=\delta_{i_{\lambda},i}z_{\lambda};
$$

•
$$
y_r z_\lambda = 0
$$
 for all $r = 1, 2, \ldots, n$;

For each *l*-multipartition λ , we can define a Specht module S_λ for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$. As an R_n -module, S_λ is cyclic, generated by z_λ .

Relations for S_λ

$$
\bullet \ \ e(i)z_{\lambda}=\delta_{i_{\lambda},i}z_{\lambda};
$$

•
$$
y_r z_\lambda = 0
$$
 for all $r = 1, 2, \ldots, n$;

 $\bullet \psi_r z_\lambda = 0$ whenever $r + 1$ lies below r in the initial tableau;

For each *l*-multipartition λ , we can define a Specht module S_λ for R_n by generators and relations. These Specht modules factor through the natural surjection $R_n \twoheadrightarrow R_n^{\kappa}$. As an R_n -module, S_λ is cyclic, generated by z_λ .

Relations for S_λ

- $e(i)z_{\lambda} = \delta_{i\lambda}i z_{\lambda};$
- $y_r z_{\lambda} = 0$ for all $r = 1, 2, ..., n$;
- $\mathbf{v}_r = v_r = 0$ whenever $r + 1$ lies below r in the initial tableau;
- \bullet *some Garnir relations involving ψ generators*.

Theorem (Brundan–Kleshchev–Wang, '11, Kleshchev–Mathas–Ram, '12)

The R_n -module S_λ has a homogeneous basis indexed by the set of standard λ -tableaux.

Theorem (Brundan–Kleshchev–Wang, '11, Kleshchev–Mathas–Ram, '12)

The R_n -module S_λ has a homogeneous basis indexed by the set of standard λ -tableaux.

This homogeneous basis can be given as $\big\{\psi_\mathtt{T} \mathsf{z}_\lambda \bigm| \mathtt{T} \text{ is a standard } \lambda\text{-tableau} \big\}.$

Theorem (Brundan–Kleshchev–Wang, '11, Kleshchev–Mathas–Ram, '12)

The R_n -module S_λ has a homogeneous basis indexed by the set of standard λ -tableaux.

This homogeneous basis can be given as $\big\{\psi_\mathtt{T} \mathsf{z}_\lambda \bigm| \mathtt{T} \text{ is a standard } \lambda\text{-tableau} \big\}.$

Example: Take $\lambda = (3, 1)$. S_{λ} has a basis indexed by the three standard λ -tableaux $\lfloor 1 \rfloor 3 \rfloor 4$, $\lfloor 1 \rfloor 2 \rfloor 4$ and $\lfloor 1 \rfloor 2 \rfloor 3$. 2 3 4

Theorem (Brundan–Kleshchev–Wang, '11, Kleshchev–Mathas–Ram, '12)

The R_n -module S_λ has a homogeneous basis indexed by the set of standard λ -tableaux.

This homogeneous basis can be given as $\big\{\psi_\mathtt{T} \mathsf{z}_\lambda \bigm| \mathtt{T} \text{ is a standard } \lambda\text{-tableau} \big\}.$

Example: Take $\lambda = (3, 1)$. S_{λ} has a basis indexed by the three standard λ -tableaux $\lfloor 1 \rfloor 3 \rfloor 4$, $\lfloor 1 \rfloor 2 \rfloor 4$ and $\lfloor 1 \rfloor 2 \rfloor 3$ The 2 $\overline{3}$ 4 corresponding elements of the homogeneous basis are given by z_{λ} , $\psi_2 z_\lambda$ and $\psi_3 \psi_2 z_\lambda$ respectively.

Dominated tableaux

Liron Speyer (QMUL) [Column removal](#page-0-0) 6 and 2011 19 / 14
Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left.

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example:

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example: λ as above, $\mu = ((2,2),(2,1))$.

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example: λ as above, $\mu = ((2,2),(2,1))$. $\mathbf{T}_{\lambda} =$ <u>3 5 7</u> <u>4 | 6</u> 1 .

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda
$$
 as above, $\mu = ((2, 2), (2, 1))$.
\n
$$
T_{\lambda} = \frac{3 \ 5 \ 7}{4 \ 6}
$$
\nLet $T = \frac{1}{2}$

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda
$$
 as above, $\mu = ((2, 2), (2, 1)).$
\n
$$
T_{\lambda} = \frac{3 \cdot 5 \cdot 7}{4 \cdot 6} \cdot \text{Let } T = \frac{3 \cdot 5}{6 \cdot 7} \text{ and } S = \frac{3 \cdot 4}{5 \cdot 6}.
$$

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda
$$
 as above, $\mu = ((2, 2), (2, 1))$.
\n
$$
T_{\lambda} = \frac{3 \ 5 \ 7}{4 \ 6}
$$
\nLet $T = \frac{3 \ 14}{6 \ 7}$ and $S = \frac{3 \ 4}{5 \ 6}$.
\nLet $T = \frac{114}{2}$ and $S = \frac{117}{2}$.

Then T is λ -dominated.

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda
$$
 as above, $\mu = ((2, 2), (2, 1)).$
\n
$$
T_{\lambda} = \frac{3 \cdot 5 \cdot 7}{4 \cdot 6} \cdot \text{Let } T = \frac{3 \cdot 5}{6 \cdot 7} \text{ and } S = \frac{3 \cdot 4}{5 \cdot 6}.
$$
\n
$$
\frac{3 \cdot 5}{2} \cdot \frac{7}{2} \cdot \frac{3 \cdot 4}{5 \cdot 6}.
$$

Then T is λ -dominated, but S is not.

Let λ , μ be *l*-multipartitions of *n*. We display Young diagrams for multipartitions by placing components from top right to bottom left. Example: $\lambda = ((3, 2), (1, 1)).$ Then $[\lambda] =$

Definition

A μ -tableau T is λ -dominated if every entry of T appears at least as far left as it does in T_{λ} .

Example:
$$
\lambda
$$
 as above, $\mu = ((2, 2), (2, 1)).$
\n
$$
T_{\lambda} = \frac{3 \cdot 5 \cdot 7}{4 \cdot 6} \cdot \text{Let } T = \frac{3 \cdot 5}{6 \cdot 7} \text{ and } S = \frac{3 \cdot 4}{5 \cdot 6}.
$$
\n
$$
\frac{3}{2} \cdot \frac{4 \cdot 6}{2} \cdot \frac{3 \cdot 4}{2} \cdot \frac{3 \cdot 4}{2}.
$$

Then T is λ -dominated, but S is not.

Let λ , μ be *l*-multipartitions of *n*.

Let λ , μ be *l*-multipartitions of *n*.

Definition

```
Let \varphi \in \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) & suppose \varphi(z_\lambda) = \sum_{\mathtt{T} \in \mathsf{Std}(\mu)} \mathtt{a}_{\mathtt{T}} \mathsf{v}_{\mathtt{T}}.
```
Let λ , μ be *l*-multipartitions of *n*.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$.

Let λ , μ be *l*-multipartitions of *n*.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Let λ , μ be *l*-multipartitions of *n*.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example:

Let λ , μ be *l*-multipartitions of *n*.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $e = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$.

Let λ , μ be *l*-multipartitions of *n*.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $e = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. There is a homomorphism $\mathsf{S}_\lambda \to \mathsf{S}_\mu$ given by $\mathsf{z}_\lambda \mapsto \mathsf{v}_{\mathtt{T}}$ for $\mathsf{T}_\lambda = \fbox{1\,3\,5\,7}.$ 2 | 4 | 6

Let λ , μ be *l*-multipartitions of *n*.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $e = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. There is a homomorphism $\mathsf{S}_\lambda \to \mathsf{S}_\mu$ given by $\mathsf{z}_\lambda \mapsto \mathsf{v}_{\mathtt{T}}$ for $\mathtt{T}_\lambda = \fbox{1\,3\,5\,7}.$ 2 | 4

Let λ , μ be *l*-multipartitions of *n*.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $e = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. There is a homomorphism $\mathsf{S}_\lambda \to \mathsf{S}_\mu$ given by $\mathsf{z}_\lambda \mapsto \mathsf{v}_{\mathtt{T}}$ for $\mathtt{T}_\lambda = \fbox{1\,3\,5\,7}.$ 2 | 4

Theorem (Fayers–S, '14)

Let λ , μ be *l*-multipartitions of *n*.

Definition

Let $\varphi\in\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu)$ & suppose $\varphi(\mathsf{z}_\lambda)=\sum_{\mathtt{T}\in\mathsf{Std}(\mu)}\mathsf{a}_\mathtt{T}\mathsf{v}_\mathtt{T}.$ Say φ is dominated if T is λ -dominated whenever $a_T \neq 0$. Denote set of all such homs by $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Example: Let $e = 3$, $\lambda = (4, 3)$, $\mu = (4, 2, 1)$. There is a homomorphism $\mathsf{S}_\lambda \to \mathsf{S}_\mu$ given by $\mathsf{z}_\lambda \mapsto \mathsf{v}_{\mathtt{T}}$ for $\mathtt{T}_\lambda = \fbox{1\,3\,5\,7}.$ 2 | 4

Theorem (Fayers–S, '14)

If $e \neq 2$ and $\kappa_i \neq \kappa_j$ whenever $i \neq j$, then $\mathsf{D}\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Let λ , μ be *l*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)
If e \neq 2 and \kappa_i \neq \kappa_j whenever i \neq j, then
\mathsf{D}\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).
```
Let λ , μ be *l*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)
```
If $e \neq 2$ and $\kappa_i \neq \kappa_j$ whenever $i \neq j$, then $\mathsf{D}\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

```
Corollary (Fayers–S, '14)
```
Let λ , μ be *l*-multipartitions of *n*.

Theorem (Fayers–S, '14)

If $e \neq 2$ and $\kappa_i \neq \kappa_j$ whenever $i \neq j$, then $\mathsf{D}\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Corollary (Fayers–S, '14)

Let λ , μ be *l*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)
```
If $e \neq 2$ and $\kappa_i \neq \kappa_j$ whenever $i \neq j$, then $\mathsf{D}\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Corollary (Fayers–S, '14)

```
If \mathsf{Hom}_{R_n}(S_\lambda,S_\mu)\neq\{0\}, then \lambda\geqslant\mu;
```
Let λ , μ be *l*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)
```
If $e \neq 2$ and $\kappa_i \neq \kappa_j$ whenever $i \neq j$, then $\mathsf{D}\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Corollary (Fayers–S, '14)

- If Hom $_{R_n}(S_\lambda, S_\mu) \neq \{0\}$, then $\lambda \geq \mu$;
- Hom $_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\lambda)$ is one dimensional;

Let λ , μ be *l*-multipartitions of *n*.

```
Theorem (Fayers–S, '14)
```
If $e \neq 2$ and $\kappa_i \neq \kappa_j$ whenever $i \neq j$, then $\mathsf{D}\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$

Corollary (Fayers–S, '14)

- If Hom $_{R_n}(S_\lambda, S_\mu) \neq \{0\}$, then $\lambda \geq \mu$;
- Hom $_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\lambda)$ is one dimensional;
- \bullet S_{λ} is indecomposable.

Definition

For any *l*-multipartition λ of n and any $1 \le m \le l$, $c \ge 0$, define λ_l (c, m) and $\lambda_B(c,m)$ to be the multipartitions on the left and right of a vertical cut after column c of component m of $[\lambda]$.

Definition

For any *l*-multipartition λ of n and any $1 \le m \le l$, $c \ge 0$, define λ_l (c, m) and $\lambda_B(c, m)$ to be the multipartitions on the left and right of a vertical cut after column c of component m of $[\lambda]$.

Example:

Definition

For any *l*-multipartition λ of n and any $1 \le m \le l$, $c \ge 0$, define λ_l (c, m) and $\lambda_B(c, m)$ to be the multipartitions on the left and right of a vertical cut after column c of component m of $[\lambda]$.

Example: $\lambda = ((3, 2), (2), (1, 1)), m = 2, c = 1.$

Definition

For any *l*-multipartition λ of n and any $1 \le m \le l$, $c \ge 0$, define λ_l (c, m) and $\lambda_B(c, m)$ to be the multipartitions on the left and right of a vertical cut after column c of component m of $[\lambda]$.

Example: $\lambda = ((3, 2), (2), (1, 1)), m = 2, c = 1.$

Definition

For any *l*-multipartition λ of n and any $1 \le m \le l$, $c \ge 0$, define λ_l (c, m) and $\lambda_B(c, m)$ to be the multipartitions on the left and right of a vertical cut after column c of component m of $[\lambda]$.

Example: $\lambda = ((3, 2), (2), (1, 1)), m = 2, c = 1.$

Definition

For any *l*-multipartition λ of n and any $1 \le m \le l$, $c \ge 0$, define λ_l (c, m) and $\lambda_B(c, m)$ to be the multipartitions on the left and right of a vertical cut after column c of component m of $[\lambda]$.

Example: $\lambda = ((3, 2), (2), (1, 1)), m = 2, c = 1.$

Definition

For any *l*-multipartition λ of n and any $1 \le m \le l$, $c \ge 0$, define λ_l (c, m) and $\lambda_B(c,m)$ to be the multipartitions on the left and right of a vertical cut after column c of component m of $[\lambda]$.

Example: $\lambda = ((3, 2), (2), (1, 1)), m = 2, c = 1.$

Let λ , μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Let λ , μ be l-multipartitions of n, and suppose for some $1 \leq m \leq l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Let λ, μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Note that the result factors through to the cyclotomic quotient.

Let λ, μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Note that the result factors through to the cyclotomic quotient. Example:

Let λ, μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Let λ, μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Let λ, μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Let λ, μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Let λ, μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Let λ, μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Let λ, μ be *l*-multipartitions of *n*, and suppose for some $1 \le m \le l$ and $c \ge 0$ we have $|\lambda_L(c, m)| = |\mu_L(c, m)|$. Then:

Theorem (Fayers–S, '14)

 $\mathsf{DHom}_{R_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) \cong \mathsf{DHom}_{R_L}(\mathsf{S}_{\lambda_L},\mathsf{S}_{\mu_L}) \otimes \mathsf{DHom}_{R_R}(\mathsf{S}_{\lambda_R},\mathsf{S}_{\mu_R}),$ where R_n , R_l and R_R are the affine KLR algebras of the appropriate degrees.

Graded row removal

Liron Speyer (QMUL) [Column removal](#page-0-0) 2008 Column removal 2008 14 / 14

A similar result holds for row removal (horizontal cuts);

- A similar result holds for row removal (horizontal cuts);
- In the case of row removal, an explicit construction is more elusive.
- A similar result holds for row removal (horizontal cuts);
- In the case of row removal, an explicit construction is more elusive.

Conjecture

If $e = 2$, $\kappa_i \neq \kappa_j$ whenever $i \neq j$, and λ is conjugate-Kleshchev, then $\mathsf{D}\mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu) = \mathsf{Hom}_{\mathsf{R}_n}(\mathsf{S}_\lambda,\mathsf{S}_\mu).$