Strong Coupling of Hybrid Nuclear-Electron Magnons to a Microwave Resonator

Leonid V. Abdurakhimov^{1,*}, J. Chen¹, Yu.M. Bunkov², D. Konstantinov¹

¹Okinawa Institute of Science and Technology (OIST) Graduate University, Japan ²Institute Neel, CNRS, Grenoble, France

*Current address: Microelectronics group, Cavendish Laboratory, University of Cambridge, UK

Strong coupling in classical and quantum systems

Classical example

L. Novotny, Am. J. Phys. 78, 1199 (2010)

Cavity quantum electrodynamics

Seminal works by Serge Haroche, David J. Wineland, *et al.*

Cavity QED with spin systems

- a) paramagnetic systems
 - D. Schuster et al, PRL 105, 140501 (2010)
 - Y. Kubo et al, PRL 105, 140502 (2010)
 - etc.

b) ferrimagnetic YIG

- Y. Tabuchi et al, PRL 113, 083603 (2014)
- X. Zhang et al, PRL 113, 156401 (2014)
- M. Goryachev et al, Phys. Rev. Applied 2, 054002 (2014)
- N.J. Lambert, J.A. Haigh, and A.J. Ferguson, J. Appl. Phys. **117**, 053910 (2015)
- etc.

(a)

$$g = g_0 \sqrt{N}$$

Coupling rate vs Coherence time. Hybrid quantum computing.

R.J. Schoelkopf and S.M. Girvin, Nature 451, 664 (2008)

Strong coupling between hybrid nuclear-electron magnons and a microwave resonator

Outline

- 1. Strong coupling of hybrid magnons with a split-ring resonator (CW)
 - 1. Magnetic structure of MnCO₃
 - 2. Experimental setup
 - 3. Observation of avoided crossing
- 2. Pulse measurements (new results)
 - 1. Rabi-like oscillations
 - 2. Spin echo, measurements of T_2

Materials with strong hyperfine interaction between nuclear and electron spins

MnCO₃, CsMnF₃, RbMnF₃, RbMnCl₃, MnO, KMnF₃, MnF₂, MnFe₂O₄, FeBO₃, CoCO₃, He³

(A. S. Borovik-Romanov et al., Sov. Phys. Usp. 27, 235 (1984))

Hyperfine interaction :

 $\mathcal{H}(r) = A \, \boldsymbol{M}_{\boldsymbol{e}}(r) \cdot \boldsymbol{m}_{\boldsymbol{n}}(r)$

Effective hyperfine magnetic field acting on nuclear spins:

 $H_n = -AM_e(r)$

Very strong interaction: $\mu_0 H_n \approx 60 \text{ T}$

Effect of microwave field enhancement: $H_{n\perp} \approx \varphi H_n = \frac{H_n}{H_0} h_1$, $\eta = \frac{H_n}{H_0} \approx 100$

MnCO₃ crystal

Hybridized nuclear-electron magnons

Magnetic structure of MnCO3

- a) canted antiferromagnetism / weak ferromagnetism below $T_n = 32.5$ K :
 - exchange field :

$$\mu_0 H_E = 34 \text{ T}$$

• Dzyaloshinskii-Morya field :

$$\mu_0 H_{DM} \approx 0.44 \text{ T}$$

b) hyperfine effective field: $\mu_0 H_n \approx 60 \text{ T}$

Low-frequency collective spin excitation (magnon) is the hybridized oscillation of nuclear and electron spins

$$\omega_n^2 \approx \omega_{n0}^2 \left(1 - \frac{2 H_E A \langle m_z \rangle}{H_0 (H_0 + H_{DM}) M} \right)$$

P.G. de Gennes et al., Phys. Rev. **129**, 1105 (1963) D. Shaltiel, Phys. Rev. **142**, 300 (1966)

Experimental setup

Measurement scheme

3D split-ring resonator

 $Q\approx 100$

Cavity size: \emptyset 7 mm x 10 mm Sample size: 2.4 x 2.7 x 0.7 mm³

Avoided crossing (at T=1.15K)

Results of fitting

Fitting equation (input-output formalism theory):

$$|S_{12}|^{2} = \left| \frac{\sqrt{\kappa_{1}\kappa_{2}}}{i(\omega - \omega_{c}) - \frac{\kappa_{1} + \kappa_{2} + \kappa_{i}}{2} + \frac{g_{m}^{2}}{i(\omega - \omega_{m}) - \frac{\gamma_{m}}{2}} \right|^{2}$$

- coupling strength $g_m/2\pi pprox 1~{
 m MHz}$
- magnon mode linewidth $\gamma_m/2\pi pprox 3~{
 m MHz}$
- total resonator linewidth $\kappa / 2\pi = (\kappa_1 + \kappa_2 + \kappa_i)/2\pi \approx 6 \text{ MHz}$

Cooperativity $C = 4g_m^2/\kappa\gamma_m \approx 0.2$

Theoretical estimations of coupling strength

nuclear spin $I = \frac{5}{2}$

number of spins $N pprox 4 imes 10^{19}$

Measurements of microwave reflection (at 300mK)

+ new resonator

Q-factor was improved from 100 to 1000

 $P_{in} \approx -70 \text{ dBm}$

Pulse measurements. Free induction decay after single pulse.

Spin echo measurements. Two-pulse echo.

pulse duration 240 ns, $P_{in} \approx 30 \text{ dBm}$

Conclusions

- strong coupling between nuclear spins and photons is mediated by electron spins via the hyperfine interaction ("double hybridization")
- T₂ is quite long, but not as long as was expected.
 More systematic studies are required.
- similar strong coupling phenomena could be realized in other systems with strong hyperfine interaction

Appendix

Estimation of T₂

Y. M. Bunkov and B. S. Dumesh *Sov. Phys. JETP* **41**, 576 (1975)

 $T_2 \approx 5 \,\mu \text{sec}$

Classical model

Bloch equation: $d\vec{M}/dt = \gamma[\vec{M} \times \vec{B}]$

Magnetic flux through the coil:

$$\Phi = B_y(t) \times A = \mu_0 (H_y + \eta M_y) A$$

Faraday's law: $\varepsilon = -d\Phi/dt$

LC-circuit equation:
$$I = -C\ddot{\Phi} = -C(L\ddot{I} + \mu_0\eta A\dot{M_y})$$

Eigenmodes equation:

Solution ($\omega_m \approx \omega_c \approx \omega_0, \eta \chi_0 \ll 1$): $\omega_{1,2}^2 = \omega_0^2 (1 \pm \sqrt{\eta \chi_0})$

Splitting value: $\Delta \omega = \omega_0 \sqrt{\eta \chi_0}$

Classical model:
$$\Delta \omega = \omega_0 \sqrt{\eta \chi_0}$$

But
$$\eta = V/V_c$$
, $\chi_0 = \frac{M}{H_0} = \frac{N\mu_B}{H_0V} = \frac{N(\hbar\gamma\backslash g)}{\left(\frac{\omega_0}{\gamma\mu_0}\right)V}$

Thus
$$\Delta \omega = 2g_{eff} = \omega_0 \sqrt{\frac{V}{V_c} \frac{N\hbar\mu_0 \gamma^2}{\omega_0 V}} =$$

 $=\gamma\sqrt{\mu_0\hbar\omega_c/2V_c}\sqrt{N}$

N spins in a cavity

Quantum model:

$$g_{eff} = g_0 \sqrt{N} = \frac{\gamma}{2} \sqrt{\mu_0 \hbar \omega_c / V_c} \sqrt{N}$$