Image-charge detection: towards realizing spin qubits using electrons on helium

Okinawa Institute of Science and Technology, Quantum Dynamics Unit (Denis Konstantinov Unit)

He quantum computer

one electron = one quantum bit

P.M. Platzman et al., Science 284, 1967 (1999). Lyon, Phys. Rev. A 74, 052338 (2006).

clean high qubit gate fidelity

 long-range interaction (Coulomb interaction)

Electrons are floating in vacuum

electrons on helium as qubits

I make use of both the Rydberg state and the spin state via the interaction between the spin state and the Rydberg state.

interaction between the Rydberg state and the spin state

- China Colst

Artificial spin-orbital interaction in semiconductor quantum dots: Pioro-Ladriere et al, Nature Phys **4**, 776 (2008).

Spin qubits using electrons on helium

We realize

- Universal one-qubit gate
 A two-qubit gate
- Universal quantum gate • A two-qubit gate
- Read-out and initialization of qubit states

using the Rydberg-spin interaction.

He quantum computer

We realize

- Read-out and initialization of qubit states

using the Rydberg-spin interaction.

We can detect the spin state by measuring if the excitation of the Rydberg state happens.

-How can we detect the excitation of the Rydberg state of one electron?

10

 V_2

-0.15

-0.075

--0.075

-0

-How can we detect the excitation of the Rydberg state of one electron?

-By measuring the change in the image charge on the electrode (image charge detection).

image-charge detection (with many electrons) Kawakami, Elarabi, and Konstantinov, arXiv:1904.01238

Spectroscopy of the Rydberg state of the electrons on helium

image-charge detection Kawakami, Elarabi, and Konstantinov, arXiv:1904.01238

$$|I| = Ne\Delta z\rho\omega_m/D$$

microwave absorption measurement Grimes and Brown, Phys. Rev. Lett. 32, 280, (1974)

$$\Delta P \propto \hbar \omega_{\rm MW} |\langle 1|z|n \rangle|^2$$

How can we detect a single electron?

How can we detect a single electron?

Summary

Motivation: realize spin qubits with electrons on helium using Rydberg-spin interaction

Progress achieved so far: Image-charge detection with many electrons

