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Celestial Amplitudes

* The Lorentz group in 4-d Minkowski space acts on the celestial sphere at null
infinity as 2-d conformal transformations. S-matrix elements can be expressed in a
basis which makes this manifest. [S. Pasterski, S.H. Shao, A. Strominger; hep-th/1701.00049]

[S. Pasterski, S.H. Shao; hep-th/1705.01027]
[see Stephan Stieberger’s Talk @ RDST, ICTS, 2020]

* For massless particles this basis change is implemented by a Mellin transform.
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* By construction the L.H.S. transforms in the same fashion as a n-pt. function of
primary operators in a 2-d CFT.

* Provides a setup for understanding holography for quantum theories of gravity in
asymptotically flat spacetimes.



Celestial OPE

» We would like to understand the properties of this putative dual celestial CFT.

» A fundamental aspect of any CFT is the existence of an operator product
expansion (OPE).

# The celestial OPE can be extracted from collinear limits of scattering amplitudes. In
Feynman diagrams collinear limit (for massless particles) gives singularities of the form

Ii I
p1||p2 5 ’
D1-P2 212 PP =w(l+2z,z4+2,—i(z—2),1 — 22)

[W. Fan, A. Fotopoulos, T. R. Taylor, hep-th/1903.01676]
[A. Fotopoulos, S. Stieberger, T. R. Taylor, B. Zhu; hep-th/1912.10973]

+ Asymptotic symmetries impose powerful constraints on the OPE. Global symmetries
associated to subleading soft gluon and sub-sub-leading soft graviton theorems,
together with global space-time translation symmetries were used to completely fix the

leading OPE coetficients of gluons and gravitons respectively in
[M. Pate, A. M. Raclariu, A. Strominger, E. Y. Yuan; hep-th/1910.07424]

+ Constraints from Poincare symmetries for massless as well massive particles have also
been explored in [Y. T. A. Law, M. Zlotnikov; hep-th/1910.04356, 2004.04309]



Celestial OPE

* What is the structure of higher order terms in the celestial OPE ?

# Usually in 2-d CFTs, the OPE can be organised into representations of the underlying
Virasoro symmetry algebra.

+ In this talk we will see that for tree level MHV graviton amplitudes, the OPE in
the dual celestial CFT can be organised into representations of an infinite dimensional

local symmetry algebra.

# This symmetry algebra will comprise of a current algebra, constructed using the
subleading soft graviton theorem, and supertranslations.



Outline

« Current algebra from subleading soft graviton theorem.

+ Celestial OPE of gravitons.
+ Extracting OPE from tree level MHYV graviton amplitudes.

* OPE coeftficients from extended symmetry algebra.



Conformal Soft theorems &
Current Algebra




Conformal Soft Theorems in Gravity

* Soft theorems play an integral role in the study of scattering amplitudes in QFT. Here
we will be interested in soft limits of gravitational amplitudes.

« Tree level gravity amplitudes have been shown to exhibit soft factorisation [Weinberg, 1965]

[F. Cachazo, A. Strominger; hep-th/1404.4091]
[see also Ashoke Sen’s talk @ RDST, ICTS, 2020]
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* In the conformal basis, analog of soft limit is [L. Donnay, A. Puhm, A. Strominger; hep-th/1810.05219]

e | [W. Fan, A. Fotopoulos, T. R. Taylor, hep-th/1903.01676]
— 1,0, —1,... [D. Nandan, A. Schreiber, A. Volovich, M. Zlotnikov;

/ \ \ hep-th/1904.10940]
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[A. Puhm; hep-th/1905.09799]

[A. Guevara; hep-th/1906.07810]



Subleading Conformal Soft Limit

Consider -
<Gg(z, 2) | [ ¢ 5. (2, zz)>
T
positive helicity graviton matter conformal
primary primaries

# In the subleading conformal soft limit
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Subleading conformal soft limit

« Treat z and z as independent variables and expand the subleading soft factor in
powers of 2

ST (2,2) = =J'(2) +22J°(2) — 22 T (2)

where
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Current Algebra

+ We can define modes of these currents. Their commutation relations are

e =g bhJE e b=0 %1 T

m-+n?

Level zero SL(2,C) current algebra.

+ The zero modes {J5,J5,J5 '} = {L1,Lo,L_1} are generators of SL(2,C)

: antiholomorphic Lorentz transformations.

+ Commutators with primary field

Doz 20 T2hao, e 1o 22l 220 thlo, 27

i Onp(2,2)] = 2" 020 (2, 2)
+ Commutators with SL(2,C) generators
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Interpretation as diffeomorphism

+ Consider infinitesimal diffeomorphisms of the form

S g A L e e
A, B,C : analytic functions

* Mode expanding these functions we can define a basis of vector fields

d d d
o S S B ) OEssagc = g sir g2
Je = ol 22 - 2=
# Their commutators are identical to that of a level zero SL(2,C) current algebra

e =] b= 10

YR 1 m—+n?

* So the current algebra mentioned before can be geometrically interpreted as
the subalgebra of the algebra of diffeomorphisms on the plane with analytic singularities.

# This interpretation is potentially useful for relating the current algebra to asymptotic

symmetries. [M. Campiglia, A. Laddha; hep-th/1408.2228]
[L. Donnay, S. Pasterski, A. Puhm; hep-th/2005.08990]



OPE with subleading soft graviton

It is useful to consider the OPE between the subleading soft graviton operator
and a matter primary. This can be derived by starting from

<5f(zaz)¢h1,h1 (21721)g¢hi,hi(ziazi)> = é (i:?k)Q LZ_h;;k - 524 <£[1 Op (Zz‘azi)>
and expanding the R.H.S. in powers of (z — 21), (z — z1)
# The OPE turns out to be
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Current algebra descendants

J én7(2, %), p>1are current algebra descendants of the primary operator ¢ 5 (%, %)

Correlation functions with other primary operators
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Current algebra primaries

* The OPE with the subleading soft graviton operator implies

G e 0 e o a1

(J(} gbh,ﬁ)(za Z) = Ll(Z)th’B(Z, Z) =0

Thus conformal primaries are also primaries of the SL(2,C) current algebra.



Leading conformal soft limit & supertranslations

+ The leading soft graviton theorem is related to supertranslation Ward identities.

+ In order to consider this in the conformal basis, it will be useful to introduce the
retarded time coordinates.

* In that case we can use the following modified version of the Mellin transform

L —1 f: EiWwWiUg 4
O, b, Uiy 25, 2Z3) ) = dw; witle = An (5,2, 2:) 05 £iWig;
hzahz 0 (2 {(/
p=1:

i=1 i1l
[S. Banerjee; hep-th/1801.10171]

[S. Banerjee, S.G., P. Pandey, A. P. Saha; hep-th/1909.03075]

* Now under the leading conformal soft limit
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[S. Banerjee; hep-th/1804.06646] = — Z e Hord <H ¢hi,ﬁi e Zz)>
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[S. Banerjee, S.G.,R. Gonzo; hep-th/2002.00975]



Leading soft graviton theorem and supertranslations

+ Expanding the leading soft factor in the R.H.S. in powers of Z we get

S 2 Bylg) 2P )

+ These are Ward identities for infinitesimal global space-time translations

Uu— Uu-+€ez u— u-+e€



Modes of supertranslation currents

+ We can consider modes of the supertranslation currents : P, o, P, 1
[Pn,()) Pm,—l] —

Global space-time translation generators {FP-1,—1, Fo,—1, P-1,0, Fo,0}

+ Commutators with primary fields

[Pn,07 ¢h,ﬁ(u7 2 Z)] = zn+12iau¢h,ﬁ(ua 2 Z)
[Pn,—la ¢h,ﬁ(u7 2 2)] = Zn_'_l iau¢h,ﬁ(u7 2 Z)

* Note that if we consider conformal primaries which do not depend on the retarded
time coordinate then

10u, 5 (u, 2, 2) — e¢z+%,5+% (2, 2)

e = £1 (outgoing/incoming particles)



OPE with leading soft graviton

+ Let us now consider the OPE between a positive helicity leading soft graviton
operator and a generic conformal primary. This can be derived following the same
procedure as in the subleading soft graviton case.

S(SI_ (27 2)¢h1,71,1 (U’l? <1 21)
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+ Note that this OPE implies



Supertranslation Descendants

(P—a,Ogbh,E)(u? z, %), (P—a,lgbh,fz)(u? e 0

are supertranslation descendants of ¢n,i(u, 2, Z)

# Correlation functions with other primary operators
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Current algebra & Supertranslation commutators

+ The generators defined using the leading soft graviton theorem ( for positive helicity
graviton) have the following commutation relations with the current algebra
generators

1

[J,,%,L, Pn,—l] o Pm—l—n,Oa [Jrgq,a Pn,—l] == §Pm—|—n,—17 [']771,17 Pn,—l] =0

1
[Jnlq,apn,O] =0, [Jgn,apn,O] == _5 m+n,0 [']n_q,lapn,O] o _Pm—|—n,—1

* The global space-time translation generators

By B Euo

a

are part of the extended algebra generated by {Pn,—1, Pn0,Jn}

In the rest of the talk we will see how this extended algebra features in the celestial OPE
of gravitons.



Summary (so far)

SL(2,C) Current Algebra

el =a—bJ°" . ab=0+tl muopc?
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Defimition of primary states under extended algebra

(Jnonp)(2,2) =0, ¥Yn>0, a=0,=%1

(Jo Onn)(2,2) = L1(2)dp, 1 (2,2) =0
L1(2)¢n,5(2,2) =0

Bovsrllz 2 — 00—
(Pn,_lgbhﬁ)(z, Z) = O, n >0

Lo(2)dp 1(2,2) = hoy (2,2), Lo(2)dp n(2,2) = Eﬁbh,ﬁ(%z)



Celestial OPE from MHV
Amplitudes




4-point MHV graviton amplitude

+ Celestial OPE of positive helicity gravitons was studied using the (modified) Mellin

transform of 4-pt. tree level MHV graviton amplitude in Einstein gravity in
[S. Banerjee, S.G., R. Gonzo, hep-th/2002.00975]

» Upto the first subleading order in the OPE limit it was shown that

GA, (21, 2)G4, (22, %)

7 : : =
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+ Let's consider the subleading soft limit iA; — —1 in the above,

lim (1+4M)GRK, (21,21)GL, (22, 22)
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Constraints from subleading soft limit

+ Now recall that consistency with the subleading conformal soft theorem requires

lim (1+14M)GRK, (21,21)GR, (22, 22)

’I:>\1 ——1
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— 2_12 [(z)\g — 1P 1 _14+225 J91P—1,—1] GZQ—l(Zé, Z2)
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+ So we must have
Beee e g e e

Shifting Ay — Ay +1 gives,

[L—lp—l,—l -+ 2J91P_1,_1 = (1 —+ AQ)P_27_1] GZ2 (ZQ, 52) ()

+ Thus
[LoaPo1, 1 +2F°,Poy,m1— L+ Ag)P_o 1] (GE G2 ,Ga,) =0

We thus have a first order linear partial differential equation for the 3-pt. amplitude. This can be
explicitly verified by computing the 3-pt. Mellin amplitude.



Limitations of 3-pt. function

+ In order to see the action of the all the current algebra and supertranslation generators
in the OPE from MHYV graviton amplitudes we need to start from n > 4 point
amplitude.

« This is because the generators P_,,a > 2, J!,,n> 1 annihilate the 3-pt Mellin
amplitude due to

<GZ1 GZ2 GX3> X 5(213)5(223)
+ The delta function is a consequence of energy-momentum conservation.

+ Here we will consider n=6 point graviton amplitudes.



Higher point MHV graviton amplitudes

+ There are many available representations of n-point tree-level MHV graviton
amplitudes. For our purposes the most useful is the one due to Hodges

det(®ik) [A. Hodges; hep-th/1108.2227; 1204.1930]

par

(ig)(ik)(Jk) (pg) (pT)(qr)

@Y% :(n —3) x (n—3) matrix obtained by removing rows {i, j, k} and columns

=

{p,q,r} from the n x n matrix ®

; oy i # ]
= ke
- Z<ak<:m> Gy

+ Salient features:

e manifests S, permutation symmetry of the amplitude.

e manifests soft limits.



6-point MHV amplitude

+ For n = 6 letus choose the rows and columns to be removed to be
s 281 and Ap gt — 1156

» 6-graviton MHV amplitude is then

12)* det (#123)

- (12)(13)(23) (45) (46) (56)

» In terms of (wi,Zz‘,Zi)

<Z]> = —28i8j1/wiwj' Zij [’L]] = 2\/wiwj 5ij
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>-point MHV amplitude

+ For studying the celestial OPE we will also need the 5-point MHV graviton
amplitude. Using Hodge's formula this is

(12)° det (2333)
(12)(13)(23)(34) (35) (45)

Ag =

# Transforming to (ws, 2, 2;) variables we get

As = 4 e169e4€5

g 8 s =
Wi Wy <12 <2’14225 215224>
£14225 215224

2
W3WaWs 2£12<13423<34435%45



6-point Mellin amplitude

+ Modified Mellin transform of 6-pt. MHV amplitude
0o 6 = 6
Mg = / H dw; wiA’i_l e i1 Aelw;, 2;, 2;) 5@ (Z a;w?;qf)
925 i
» Let's take gravitons (57,6™) to be outgoing. It's also useful to change variables as follows
il — il wGZWP(l—t) = [O, 1]

* Then the delta function can be represented as

6 3 4
5(251%(];‘):%( : Hé(wz‘—&);)
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r12,34 — T12,34)213213224 224 g

* i o 5
Ww; =& WwWp (0'7;’1 o Z56t0'z',2 e 256t0'2"3 S tUi,4) = cle ) 3

0i,j : explicit functions of zij,Zij, (4, 7) € (1,2,3,4,6)



6-point Mellin amplitude

# The delta function localises integral over w;, i€ (1,2,3,4)

Doing the integral over wp gives

1 4
MG = N.F(Zz, 21') / dt t7'>\5_1(1 e t)w\6_1 H © (8@ (0'7;,1 =f 256t0-i,2 S 256t0-i,3 =+ 256556t0-i,4)) I(t)
0 =
where
2 = - - 3+i)\; 4 2 Pl
It):H<1+Z56t = L ) H(1+Z56t = +55675 ® 4 256256t z4) X
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Extracting the celestial OPE: General strategy

« In order to extract the celestial OPE of gravitons (57,6") we expand the Mellin

amplitude around
z56 = 0,256 = 0, us6 = 0

* The remaining (zij, Z:j,ui;), (4,7) € (1,2,3,4,6) are kept fixed and non-zero in
this OPE limit.

* While expanding the Mellin amplitude in the OPE limit we can drop the terms
that come from differentiating the theta functions w.r.t. zs6, Z56. Such terms are
proportional to delta functions whose arguments are functions of
(25, Zi), (4,7) € (1,2,3,4,6) and so don't contribute in the OPE limit.



OPE decomposition: Leading term

» Leading term from amplitude

Z
M6 56 N/ dtt'l)\5 ]_ g ’1)\6 11_:[@ 57,0-7,1

= —@ B(i)\5, i>\6) R e
<56

where M5 : (modified) Mellin transform of 5-pt. MHV amplitude
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# This implies the leading OPE

Z ; : =~
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OPE decomposition: Subleading terms

O(1) term 4 5
= —B(i)\5,i)\6) Z L 0i,1 P_1,_1M5 = B(i)\57 Z)\G) P—2,0M5

O(1) i—1 ~i6

M

# Consistency with subleading conformal soft limit requires

— ey
O(1)

lim (1 4+ iXs)Ms

i>\5—>—1

where /\/1/5 = /\/l5]

tAs=—1

— e
o(1)

+ From the amplitude we get, ; Aliin_l(l +iAs) Mg

+ Thus we must have the relation
P e

Replacing iXg — (iAg + iX5 + 1) yields the relation

TP 1 Mg = (ids + idg)P_soMs = (Ag — 1)P_s o M35




OPE decomposition: Subleading terms

O(zs6) term from amplitude

M

e B(iA5, 1\ s L=pPe
. z56 B(iAs5, 1)) [i)\5+i)\67) 3’0+i)\5+i)\6 1P 2,0] M

* As before, consistency with subleading conformal soft limit requires

£_173_2,0M5 — (2 + 15 + 7;)\6)73_3,()./\/15 == j_1273_1,_1./\/l5

+ Consequently the O(zs6) term can also be written as

IA5

M — s B(i)\57 7;)‘6) (1 T i)\5)7)_3’0 = A5 + 1A

0(256)

j_lgp—l,—l M5
6



OPE decomposition: Subleading terms

O(Zs6) term from amplitude

IA5
1IA5 + 1 Ag

M (L_1P_20— L_1P_1,1) + - =

69(556)

+ In this case consistency with subleading conformal soft limit requires

(L_1P_20— L_1P-_1,-1+ (2+iXs + i) P—-2,-1) M5 =2T°,P_1 1. M5

Note that compared to the 3-pt case we now have the non-trivial action of the generator P_3 o

+ This allows us to re-write the O(zs¢) term as

215
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69(556)
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OPE decomposition: Subleading terms

Finally let us consider the O(z56256) term from amplitude

M

O(z56256)

As5(1 4+ 2A
:Z56,§56B(i)\5,i>\6)[ : 5( +Z 5)

(i)\5 = i)\6)(1 + 15 + Z)\@)
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<£—177—2,—1 = il st P e 552_173_1,—1)

iXs i) 2 >
= e g
( e 75)\6) G G D ol 1]M5

# This is already in a form that is manifestly consistent with leading and subleading
conformal soft limits.



Celestial OPE coetticients from
Extended Symmetry Algebra




Primary Descendants

+ From the explicit amplitude computations we have seen that certain linear combinations
of descendants vanish when acting on MHV amplitudes. In fact such combinations
must also be primaries under the extended symmetry algebra. This is analogous to
null state relations in ordinary 2d CFTs.

» We can determine these primary descendants purely from symmetry considerations
as follows. Consider the linear combination

\IJJ(Z,Z) = (J£1P_17_1 == CP_Q,O) GUA(Z,Z) Gi=it)

Both states in the above are individually primaries under Poincare.

Demanding this to be a primary under the current algebra implies: J;¥° =0, n2>1

In particular applying J; 1 gives, €= —(2h + 1)| —— precisely agrees with the amplitude
calculation

[t can also be easily verified that this state is also annihilated by P,9,a >0, P, _1,n>1

Consequently W° is a primary descendant of the extended symmetry algebra.



Primary Descendants

* Let us consider another instance of a primary descendant. For this consider the
linear combination

b = (L—lp—l,—l == cnglP_l,_l = C2P_3,_1 = Cgi_lp_g,o) GZ(Z, Z)

Demanding that
LLWO=L1®=P _1P=P 109=0

and using the previous vanishing condition we get

Cie—2¢ 62:—(A—|—1), o=l e — ),

The values of these coefficients again precisely match with those found from the amplitude.

Then it can be verified that for the above values ® is also annihilated by
Jon U, o o0 gl

Thus & is a primary descendant of the extended symmetry algebra.



Differential equations for MHV amplitudes

+ These primary descendants when inserted in Mellin transformed MHV graviton

amplitudes yield

— [j_llp_l,_l — (ZE e 1)73_2,0] <GJA(Z, 5) H Gzzz (Z,L', Zz)>

<[J11P1,1 = Qe g e 2 H GA, (2, Zz’)>

MHV

MHYV

=0

—10

G== =)

<[L_1P_1,—1 = 2J91P_1,_1 = (A b 1)P—2,—1 5 E—IP—Q,O] GX(Z7 Z) HGZZ (Ziv ZZ)>

== [,C_lp_l,_l e 2._7_0173_1,_1 = (A T 1)P—2,—1 s Z—IP—Q,O] <Gz(zv 5) HGZLZ(ZM Zz)>

7

MHYV

=0

=0

MHYV




Some comments on the differential equations

# The first equation can be analytically verified using Hodge's representation of n-pt.
MHYV graviton amplitudes. We have analytically checked the second equation
for 5-pt MHV amplitudes and numerically for 6-points.

« The 2 sets of differential equations are not independent. The second equation can be
derived from the first using special conformal transformations.

+ The presence of both holomorphig, i.e., z-derivatives and anti-holomorphig, i.e,
z -derivatives reflects the fact that the underlying infinite dimensional symmetry algebra
does not admit holomorphic factorisation.

+ We will now see that these equations can be used to fully determine the structure
of the leading OPE coefficients for gravitons primaries.

+ Here will only deal with the case where both gravitons considered in the OPE are
outgoing in the S-matrix. Analogous techniques can be used to determine the leading
OPE structure for the case where one graviton is incoming and the other outgoing.



Leading OPE coellicient from differential equations

* Let the leading OPE for (outgoing) graviton primaries be of the form

GX(Z, Z)Gzll (21, 21) = Cpq(A, Al, 0'1)(2 e Zl)p(z = Zl)qGZé (21, 51)

+ Consider the differential equation involving J1;, P2,

TP <GJA(Z> 2) | [ GX (=, Zq;)> =2 i <GZ(27 2 165 s Zz’)>

MHYV MHYV

Then take the holomorphic collinear limit z — 21

» Expand the differential operators and keep the singular terms in this limit.

Insert the above form of the OPE inside the correlator corresponding to the MHV
amplitude.

Match coefficients of (z — z1)? ' (2 — z1)9"™ on both sides.



Leading OPE coellicient from differential equations

# This yields the relation

(A o= 1)Cpq(A,A1 e 1,0’1) — (Al = O Q)Cpq(A = 1,A1,0’1)

* The same procedure for the other differential equation gives

(A —q)Cpe(A, A1+ 1,01) = (A1 — 01 + 2 + p)Cpe(A + 1,Aq,01)

* These equations have non trivial solutions iff

e

# The leading OPE then has the form

G
GZ(sz)Gzll (21721) = 1

o Ao /G N e 2]

2k
This is precisely the structure of the leading OPE in a 2-derivative theory of gravity. So, this

analysis suggests that the bulk gravitational theory that is dual to the MHYV sector of the
celestial CFT must be a 2-derivative theory.



Leading OPE coeflicient

+ From the differential equations we have the relation
(A= 1O (A A Fl,01) = (A1 —01 +1C 5 1(A+1,18.0;)

+ Now demanding invariance of the OPE under global u-translations gives

C il Al o= C oA El Ao B0 5 (A ANy gy

* These equations are solved by

0_1,1(A,A1,O'1) = OéB(A —1,A1 — 01+ 1)

Pz Ely) .
B = :
(v B Euler Beta function
* The constant can be determined from the leading soft limit and this gives a = —1

So we have

i
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Recursion relations for descendant OPE coetficients

* Let us consider the subleading terms in the OPE corresponding to descendants.
For positive helicity (outgoing) gravitons this has the structure

z . : z
GXl (Zl,zl)GZ2 (22,22) = —Z—EB(Z)\LZ)\Q)P_l,_lGZ1+A2_1(22,22)

s (041 P—z,o = 042J£1P—1,—1) GZ1+A2_1(2’2, 52)
+212 (043 b otk 044J£2P—1,—1 5 045L—1P—2,0) GZ1+A2_1(22, 52)

+z12 (@ Pa,_1 + o L BE it aoLl_1P_1,_1) GX1+A2_1(Z2, Za) + -

+ Demanding invariance of the above OPE under the extended symmetry algebra yields
recursion relations for the descendant OPE coefficients. Taking into account the
vanishing conditions mentioned before, these recursion relations can be solved in terms

of the leading OPE coefficient.

+ Upto the order shown above, we have checked that the solutions to such recursion
relations precisely agree with corresponding results obtained by expanding the
Mellin transform of the 6-pt MHV graviton amplitude in the OPE limit.



Conclusions

+ We constructed a current algebra using the subleading soft graviton theorem for
a positive helicity outgoing graviton.

+ We showed that for MHV amplitudes the celestial OPE of positive helicity
gravitons can be organised into representations of an extended symmetry algebra

comprising of the SL(2,C) current algebra, supertranslations and holomorphic
Lorentz generators.

+ We showed that there exist null-state relations which lead to partial differential
equations for celestial correlators dual to MHV graviton amplitudes.

# QOur analysis suggests that the celestial CFT that computes MHYV graviton amplitudes
can be treated as a decoupled sector which is entirely governed by the SL(2,C)
current algebra and supertranslations.




Future Directions

+ Understand the structure of celestial CFT correlators dual to NMHYV graviton amplitudes.
In this case the current algebras corresponding to both positive as well as negative
helicity soft gravitons are likely to play an important role.

# Does there exist similar structure in other cases such as Einstein-Yang Mills
amplitudes ?

+ Implications for double copy structures for celestial correlators.
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