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Motivation
Feynman diagrams and the associated integrals are at the
computational core of quantum field theory and their
evaluation attracts considerable attention.
For example it is necessary for experimental design and data
analysis including at the LHC.
Bhabha Scattering

e+ + e− → e+ + e−
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Motivation
Loops represent virtual quantum process and involve integrals.
For example, Quantum Correction to electron gyro-magnetic
ratio.

Growing usage throughout physics. Current-Current effective
potential between two black holes.
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Motivation

Several important and well-known methods for their
computation are Integration By Parts (IBP), Differential
Equations (DE) method, Dimensional Recurrence, Canonical
Basis for DE, Intersection Theory etc.
Is there a general theory for computing Feynman diagrams?
Despite 70 years of work the answer is NO.
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Introduction to SFI (Symmetries of Feynman Integral)
SFI is a step in that direction. It considers a Feynman
diagram of fixed topology (fixed graph), but varying
kinematical invariants, masses and spacetime dimension.
Each diagram is associated with a system of differential
equations in this parameter space.
The equation system defines a Lie group G which acts on
parameter space and foliates it into orbits.
This geometry allows to reduce the diagram to its value at
some convenient base point within the same orbit plus a line
integral over simpler diagrams, namely with one edge
contracted.
The SFI method is related to both the Integration By Parts
method as well as to the Differential Equations method etc..
SFI novelties include the definitions of the group and its
orbits, as well as the reduction to a line integral.
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Hierarchy of diagrams according to edge contraction

V

n
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Brief Review of SFI method: Basic Set up
An associated Feynman Integral with a diagram with L loops,
P propagators and N external legs is given by

I(m2
1, ..., m2

P , pi · pj) =
∫ dd l1...dd lL

(k2
1 − m2

1)...(k2
P − m2

P)

=
∫

dd l1...dd lL Ĩ

where Ĩ is the integrand.
where

ki = Aiala + Bijpj

Integral is function of mass squares and kinematical invarinats,
which is known as “Parameter Space X” of the Diagram.
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General idea to obtain SFI Equation Set
The change of dummy integration variables l ′

a = la + ϵabkb
shouldn’t affect the answer of the integral. Where qa are
linear combination of loop momenta and external momenta.
This allows us to show that we have the identity

0 =
∫

dl ∂

∂lµ
kν Ĩ

This gives us a set of partial differential equations, namely,
ca I + Txa

j ∂j I + Ja = 0
where ca are constants depending on the dimensions, Txa

j is
a matrix linear in parameters Ja depends on simpler diagrams
Solution for the Integral: Line integral over sources.

Î(x) = Î(x0)+
∫ x

x0
Jα(ξ)dξα, where Î = I

I0
, I0 = homogeneous soln.
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The identity towards SFI equation set
Each variation as shown earlier yields,

0 =
∫

dd l1...dd lL
∂

∂la
(lb Ĩ) = dIδab − Σki ∈loop a

∫
l

2ki · lb
(k2

i − xi)2 Ĩ

We can rewrite the numerators like,
2ki · lb = Σ(k2

j − xj) + xj

0 = dIδab − Σki ∈loop a

∫
l

Σ(k2
j − xj ) + xj

(k2
i − xi )2

Ĩ

= dIδab −

∫
k2

j − xj

...(k2
i − xi )2...(k2

j − xj )
− xj

∫
1

...(k2
i − xi )2..

+ ...

= dI − Jij − xj
∂

∂xi
I + ...

ca I + Txa
j ∂j I + Ja = 0
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G Group, Algebraic Locus and Algebraic Solution

We have seen that the Feynman integral satifies a set of
partial differential equation and one can show that the
differential operators in the equation set satisfies a Lie Algebra
(Lie Group G ⊆ of upper block upper Triangular matrices)
which acts on the parameter space and foliates it into orbits.
If one can find a left null vector for Tx matrix ,at a particular
locus in parameter space, of the SFI equation set, it reduces it
to an Algebraic Equation.
Then the original Feynman Integral in study is given by linear
combinations of simpler feynman integrals.
This particular locus where this happens in parameter space is
known as Algebraic Locus and the expression of original
Feynman Integral in terms of linear combination of simpler
diagrams is known as Algebraic Solution.
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The Kite Diagram

The Kite Feynman Diagram

Figure: The kite diagram drawn in a way which explains its name.

Applications: e.g. e-Field Strength Renormalization in QED.
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The Kite Integral

The kite diagram with its parameters and a choice of currents.
x1 x2

x4x3

p p
x5 l2l1

p

The associated integral

I (p2; x1, x2, x3, x4, x5) =

=
∫ dd l1 dd l2

(l2
1 − x1)(l2

2 − x2)((l1 + p)2 − x3)((p + l2)2 − x4)((l1 − l2)2 − x5)
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G group for Kite

G = T2,1 ≡

 ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


and the number of equations is

dim(T2,1) = 7 .

More precisely the Lie algebra is T2,1 and the group G
consists of invertible upper triangular matrices.
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SFI Equation Set
The equations are given by the usual SFI form

ca I + Txa
j ∂j I + Ja = 0

where ca, Txa
j and Ja shall be defined immediately within the

above-mentioned basis. The vector of constants, ca, is given
by

ca =



d − 4
d − 4
d − 4
d − 4
d − 4
d − 4

2 d − 10


.
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SFI Equation Set
The generator matrix Txa

j ∂j is given by

Txa
j ∂j = −2



x1 s6
L 0 0 s2 0

s6
L x3 0 0 s4 0

s2 s4 0 0 x5 0
0 0 x2 s6

R s1 0
0 0 s6

R x4 s3 0
0 0 s1 s3 x5 0
x1 x3 x2 x4 x5 x6





∂1

∂3

∂2

∂4

∂5

∂6


.

The s variables are defined as follows

s1 := (x5 + x2 − x1)/2 s2 := (x5 + x1 − x2)/2
s3 := (x5 + x4 − x3)/2 s4 := (x5 + x3 − x4)/2
s6
L := (x1 + x3 − x6)/2 s6

R := (x2 + x4 − x6)/2
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Sources: Two Kinds
The source vector Ja is given by

Ja =



∂5 O2 − (∂3 + ∂5)O1
∂5 O4 − (∂1 + ∂5)O3

∂1 O2 + ∂3 O4 − (∂1 + ∂3)O5
∂5 O4 − (∂4 + ∂5)O2
∂5 O3 − (∂2 + ∂5)O4

∂2 O1 + ∂4 O3 − (∂2 + ∂4)O5
0


Oi denote the diagram gotten by omitting, or contracting, the
i ’th propagator. Two possible topologies appear.

Figure: The two source topologies (a) figure 8 (b) propagator seagull
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Geometry of parameter space

By the method of maximal minor Ma is found to be

Ma = 4 p2 B3(x) Ka(x)

where the notation B3(x), Ka(x) will be defined now.
B3(x) is a cubic polynomial defined by

B3 = x1 x4(x1 + x4) + x2 x3(x2 + x3) + x5 x6(x5 + x6) +
+ x1 x2 x5 + x1 x3 x6 + x2 x4 x6 + x3 x4 x5 +
− (x1 x4(x2 + x3 + x5 + x6) + x2 x3(x1 + x4 + x5 + x6)
+ x5 x6(x1 + x2 + x3 + x4))
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Baikov Polynomial
According to the Cayley-Menger formula B3 describes the
squared volume of the dual tetrahedron.

m1 m3

m4m2

p

m5

(a) (b)

(c)
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Global Stabilizer
B3 appeared in the physics literature in the work of Baikov on
the 3-loop vacuum diagram (tetrahedron)
The vector Ka is given by

K =



−∂2 B3
−∂4 B3

λL
∂1 B3
∂3 B3
−λR

0



T

Definition of the Heron / Källén invariant
λ := x2 + y2 + z2 − 2 x y − 2 x z − 2 y z

λL = λ(p2, x1, x3)
λR = λ(p2, x2, x4)
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Algebraic Constraint

Ka is a global stabilizer, namely it satisfies

Ka Txa
j = 0

Since Ka ca = 0 multiplying the equation set by Ka generates
a global constraint among the sources, namely,

Ka Ja = 0

This is defined as Algebraic Constraint.
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SFI maximally effective in Kite

The dimension of the G-orbit through any point x ∈ X is
given by the rank of Tx at that point.
The dimension of the G-orbit is generically 6. Since
dim(X ) = 6

codim(G − orbit) = 0 .

This means that SFI is maximally effective for the kite
diagram.
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Algebraic locus and solution

At the singular locus, namely when B3(x) = 0 or p2 = 0 the
dimension of the G orbit is reduced and accordingly an
additional stabilizer appears.
Given a stabilizer Stba, if the associated constant is non-zero,
namely Stba ca ̸= 0 one can reduce the diagram to a linear
combination of simpler ones by multiplying the equation set
on the left by the stabilizer.
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Algebraic locus and solution

B3 locus. At B3 = 0 the global stabilizer K splits into a pair
of stabilizers KL, KR as follows

KL =



−∂2 B3
−∂4 B3

λL
0
0
0
0



T

KR =



0
0
0

−∂1 B3
−∂3 B3

λR
0



T
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Algebraic Solution of the Kite

Algebraic solution. The algebraic solution is now gotten by
multiplying the equation set on the left by an arbitrary linear
combination αLKL + αR KR . We notice that(

αLKL
a + αR KR

a

)
ca = (αL + αR) (d − 4) ∂5B3

So the Algebraic Solution is

(4 − d) I|B3=0 =

(
αLKL

a + αR KR
a

)
Ja

(αL + αR) ∂5B3

Subhajit Mazumdar OIST, Okinawa, Japan



Tests Special Cases
In the massless case m1 = · · · = m5 = 0 it was shown already
in[Chetyrkin,Tkachov 1981] that the diagram can be reduced
as follows

Imassless = 2
d − 4

( )

The algebraic solution generalizes the reduction of the
massless case to the most general parameters, namely
B3(m2

1, . . . , m2
5, p2) = 0.

The case m3 = m4 = m5 = 0 is of special interest. In this
case B3 = 0 simplifies to the following two alternative forms

(4−d)Ix3=x4=x5=0 = (x2 − x1)J2 + (x1 − x6)J3

x2 − x6
= (x1 − x2)J5 + (x2 − x6)J6

x1 − x6
,

This case falls into the applicability regime of the “diamond
rule” (with L = S = 1)[Ruijl, Ueda and Vermaseren 2015].
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Discussion of SFI on Kite

The G-orbits were found to be 6-dimensional in our 6d
parameter space X , namely the orbit co-dimension is zero.
This means that for this diagram the SFI method would be
maximally effective.
On the surface B3 = 0 the integral degenerates into a linear
combination of simpler diagrams and is given by the algebraic
soln., thereby providing a maximal generalization of the
massless case. This is our central result.
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Introduction to Triangle
p1

p3 p2

l

x1

x3x2

bc

a

Figure: The triangle diagram. p1, p2, p3 are the external currents of
energy-momentum while x1, x2, x3 are the squared masses of the
respective propagators (x1 ≡ m 2

1 , etc.). The vertices are denoted by
a, b, c.
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SFI action on Triangle
The associated Feynman integral defined by

I =
∫ dd l∏3

i=1
(
k 2

i − m 2
i
)

The propagator currents can be chosen as 1

ki = l + (pi+1 − pi−1) /3 , i = 1, 2, 3.

Altogether, the parameter space X is given by

X =
{

(x1, x2, x3, x4, x5, x6) =
(
m 2

1 , m 2
2 , m 2

3 , p 2
1 , p 2

2 , p 2
3

)}
We consider a general spacetime dimension d where the mass

dimension of the integral is d − 6.
1An alternative practical choice is given by k1 = l , k2 = l + p3, k3 = l − p2.
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SFI Equation System
The equation system thus obtained can be summarized in
matrix form by

0 = ca I − 2 (Tx)a
j ∂j I + Ja, a = 1, . . . , 7

where the generator matrix is given by

(Tx)a
j =



0 s1
c 0 s5

∞ 0 x6
0 0 s2

a x4 s6
∞ 0

s3
b 0 0 0 x5 s4

∞
0 0 s1

b s6
∞ x5 0

s2
c 0 0 0 s4

∞ x6
0 s3

a 0 x4 0 s5
∞

x1 x2 x3 x4 x5 x6


;

SFI differential equations for I belong to the SFI group (G) -
the upper triangular group T1,2.
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SFI Equation System
The xi -independent constants are given by

ca =



−1
−1
−1
−1
−1
−1

d − 6


;

and finally, the sources are given by

Ja =



∂
∂x2

O1 I
∂

∂x3
O2 I

∂
∂x1

O3 I
∂

∂x3
O1 I

∂
∂x1

O2 I
∂

∂x2
O3 I
0


.
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Geometry of parameter space
The dimension of the G-orbit through any point x ∈ X is
given by the rank of Tx at that point.

Ma = S Ka ;

The singular factor S(x) is given by
S(x) = 4 λ∞ B3 ;

Ka(x) is given by
Ka = (s3

a , s1
b , s2

c , −s2
a , −s3

b , −s1
c , 0) .

The dimension of the G-orbit is generically 6 and dim(X ) = 6

codim(G − orbit) = 0

This means that SFI is maximally effective.
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Definitions λ∞ and B3 and geometric significance
The Heron/Kallen invariant

λ∞ = x2
4 + x2

5 + x2
6 − 2x4x5 − 2x5x6 − 2x4x6

Significance: If x4, x5, x6 denote the squared lengths of the
sides of a triangle, then its squared area is given by −λ∞/16
The Tartaglia/Baikov polynomial

B3 = x1
2x4 + x1x4

2 + x2
2x5 + x2x5

2 + x3
2x6 + x3x6

2

+ x1x2x6 + x1x3x5 + x2x3x4 + x4x5x6

− (x2x5(x1 + x3 + x4 + x6) + x3x6(x1 + x2 + x4 + x5)
+ x1x4(x2 + x3 + x5 + x6)) .

Significance: (−B3)/144 expresses the squared volume of a
dual tetrahedron in terms of the squared lengths of its sides.
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Solution at singular locus: λ∞ = 0 & B3 = 0
We determined the solution at the λ∞ locus to be

−I|λ∞=0 = 1
2 B3

(
∂1B3 I1 + ∂2B3 I2 + ∂3B3 I3

)
=

= 2 x4
∂1B3

I1 + 2 x5
∂2B3

I2 + 2 x6
∂3B3

I3

where Ii , i = 1, 2, 3 denote bubble diagrams with propagator i
contracted.
We find that the solution at B3 is given by

I|B3=0 = −2(d − 3)
(d − 4)

(
x4

∂1B3
I1 + x5

∂2B3
I2 + x6

∂3B3
I3
)

+ 2λ∞

(d − 4)

(
x1T1

(∂2B3)(∂3B3) + x2T2
(∂1B3)(∂3B3) + x3T3

(∂1B3)(∂2B3)

)
.
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SFI general solution of Triangle

I = c∆√
|λ∞|/4

[
F (h2, c 2

1 , a 2
2 ) + F (h2, c 2

1 , a 2
3 ) + cyc.

]
where c∆ = −iπ d

2 Γ( 6−d
2 ) and h2 = B3

λ∞
.

F (h2, c2, a2) :=
∫

∆a,c

d2q
(
h2 + q2) d−6

2

∫
∆a,c

d2q :=
∫ |a|

0
dqy

∫ |b|
|a| qy

0
dqx

where q2 = −q 2
x − q 2

y ,

c 2
1 = x1 − B3

λ∞

a 2
1 = − λa

4x4
− B3

λ∞
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Magic Connection of Triangle and Diameter diagrams

⇐⇒

x1

x2

x3

x4

x6 x5

Figure: Magic Connection between Diameter and massless Triangle
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Magic Connection
We compare the integral normalized by its leading
singularities, defined by

Î = I/I0

For the diameter we find

∂1 ÎD = −d − 2
x1λ

1
I0D

(
−x1 j2j3 + s3j1j3 + s2j1j2

)
and similarly for ∂2 ÎD and ∂3 ÎD. For the massless triangle we
find

∂4 Î∆ = 2(d − 3)
x4 λ∞

1
I0T

(
−x4 I1 + s6I2 + s5I3

)
and similarly for ∂5 Î∆ and ∂6 Î∆.
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Magic Connection

The respective homogenous solutions are given by

I0D(d) = λ
d−3

2

I0∆(d) = λ
3−d

2∞ (x4x5x6)
d−4

2

while the tadpole and bubble sources are given by

jµ(µ; d) = iπ
d
2 Γ(2 − d

2 )µ( d
2 −1)

IBi(µi ; d) =
i1−dπ

d
2 Γ(2 − d

2 )Γ2(d
2 − 1)

Γ(d − 2) µ
( d

2 −2)
i
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Magic Connection

After substituting for these we get

∂1 ÎD = −
(d − 2) c2

T
x1 λ

1

λ
d−3

2

(
−x1 (x2 x3)

d−2
2 + s2 (x1 x2)

d−2
2 + s3 (x1 x3)

d−2
2

)
∂4 Î∆ =

2 (d − 3)cB
x4 λ∞

λ
d−3

2

(
−x4 (x5 x6)− d−4

2 + s5(x4 x6)− d−4
2 + s6(x4 x6)− d−4

2

)
where cT , cB are the tadpole and bubble constants
The magic connection

ID(x1, x2, x3; d) = i1−d
π

3d
2 −3 Γ(3 − d)

Γ( d
2 )

(x1x2x3)
d
2 −1I∆({p2

i = xi }i=1,2,3; 6 − d) .

This result matches exactly with the relation discovered by
A.I. Davydychev and J.B. Tausk (Phys. Rev. D 53 (1996)
7381 [hep-ph/9504431])
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Discusson of SFI on Triangle Diagram

The SFI equation system was determined and presented in a
simple basis.
We studied the geometry of parameter space and found that
the SFI method is maximally effective here as the
co-dimension of the G-orbit is 0.
The singular locus was found to consist of two components
where either λ∞ or the Tartaglia/Baikov polynomial B3
vanish. At these components the triangle was evaluated as a
linear combination of descendant bubble diagrams.
The general solution was derived.
Magic connection was revisited.
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