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� Gauge theories in presence of boundaries

• Consider a gauge theory with generic fields Φα described by the

action

S[Φα] =
∫
M
dDx L(Φα)

where L is the Lagrangian which is a D-form.

• Φα belong to representation Rα of the gauge Lie algebra A,

Φα → Φ̃α = Rα ·Φα.

• In the above Rα is a function over the spacetime and

S[Φα] = S[Φ̃α]
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• In gauge theories fields are defined up to gauge equivalence classes
and physical observables are gauge invariant quantities.

• Gauge symmetry is in fact a redundancy of description which should
be removed by gauge fixing, but yet, there may be nontrivial gauge
transformations in presence of boundary in spacetime.

• Variation principle stipulates that

δS =
∫
M
dDx EΦαδΦα+

∫
∂M

θ(Φα, δΦα) := 0, ∀physically allowed δΦα.

• On-shell EΦα = 0, and variation of the action is a surface term
which should vanish.

• In presence of boundaries ∂M 6= ∅ this may lead to interesting,
non-trivial physics, depending on what “physically allowed δΦα” at
the boundary are.
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• Variation principle may require adding appropriate boundary terms
or restrict δΦα at the boundary.

• In our analysis we do not require vanishing of the boundary term,
as it can always be guaranteed choosing appropriate surface terms.

• In a different viewpoint, we may define our boundary/initial value
problem by specifying the behavior of Φα at the boundary:

Φα

∣∣∣
∂M

:= ϕα, δΦα

∣∣∣
∂M

:= δϕα

• ϕα need not be invariant under a part of gauge transformations at
∂M. These may be called boundary large gauge transformations.

• Boundary gauge transformations defined on the codimension one
surface ∂M, are a measure zero subset of gauge transformations
and are not necessarily gauge reduendancies.
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� Here I advocate the viewpoint that

• there are boundary degrees of freedom (b.d.o.f.) which are labelled

by boundary gauge transformations, i.e. b.d.o.f fall into coadjoint

orbits of the physical residual gauge transformations.

• There is a maximal boundary phase space (MBPS) associated with

boundary fields, fields on a codimension one surface.

• The residual/boundary gauge transformations are a handy and

powerful method to identify and formulate b.d.o.f without invoking

addition of extra d.o.f by hand.
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• Imposing boundary conditions typically reduce this MBPS to a sub
phase space.

• Requiring variational principle on the original theory yields different
Hamiltonians on the Boundary Phase Space and/or reduction over
the maximal boundary phase space.

I As an example one may consider Maxwell theory in a box,

• Besides the photons in the box we have b.o.d.f.

• Their response to the EM fields in the box is the boundary currents.

• Boundary currents are specified, choosing boundary conditions.

• This gives a macroscopic formulation of b.d.o.f and fixes the bound-
ary/bulk interactions.
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� Einstein GR and its local (gauge) symmetry

• Einstein GR is based on Equivalence Principle which stipulates that

all observers should give (exactly) the same description of local

events in regions of spacetime to which they have causal access.

• Each observer is specified by a coordinate system and vice versa.

• Equivalence Principle at theory level is made manifest through gen-

eral covariance, invariance of the action under diffeomorphisms.
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• Physical observables in the Einstein GR are all defined through

local diffeomorphism invariant quantities.

• In particular, any two metric tensors related by diffeomorphisms are

physically equivalent:

xµ → xµ + ξµ(x), gµν → gµν + δgµν, δgµν = ∇µξν +∇νξµ

• The above is shared between all theories with local gauge symme-

tries: Action and physical observables should be gauge invariant.

• We typically fix the diff. invariance through choice of observers.
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� Equiv. Princ. needs amendment in presence of boundaries

• Einstein field equations define a well-posed dynamical problem.

• Metric is completely specified, giving the values of metric and its

“time” derivative over a constant time slice, a Cauchy surface.

• Field equations are local and locally specifying this “Cauchy data,”

determines the evolution in the future lightcone of a given element

on the Cauchy surface.
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• In a D dimensional spacetime, there are

– D(D + 1)/2 metric components,

– D(D − 3)/2 propagating gravitons,

– D diffeos.

and

– D(D + 1)/2 field equations, Gµν = 8πGTµν, out of which

– D(D − 3)/2 are second order diff.eq.,

– D constraints (∇µGµν = 0) and D first order equations.

• D functions on codimension one surface Σ (D − 1 dimensional
spacelike or partially null surface) are to be specified by the initial
data.
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• Information in the initial data, by definition, is conserved as we

move away from the (Cauchy) surface. Alternatively, the informa-

tion about this D functions over Σ is propagated by the EoM.

Σ

D+(Σ)

D−(Σ)

• One may encode this information in a symmetry/charge language.
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• In a black hole setup, horizon is the boundary of outside observers.

B i0

i+

i−

I+

I−

H+

H−

singularity

• Motivated by problems in BHs, we choose Σ to be a null surface,
sitting at r = 0:

ds2 = −Fdv2 + 2µdrdv + 2gidvdx
i + hijdx

idxj (1)

F, µ, gi, hij are functions of r, v, xi, i = 1,2, · · · , D − 2 and

grr
∣∣∣
r=0

= 0 =⇒ (Fh+ g2)
∣∣∣
r=0

= 0,

where h := dethij, g
2 := hijgigj.
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Depiction of a null surface

v

infalling
null rays

r
=

0

Σ

r > 0

r < 0

The b.d.of. are residing on Σ. We can see how a null surface is

special for defining the surface charges on.

They interact with themselves and with infalling flux. Interaction with

infalling flux is fixed by diff invariance (Bondi news/balance equation).

14



� Solution space

• Metric (1) has 1 + 1 + (D − 2) + (D − 1)(D − 2)/2 functions in it.

• These may be decomposed into

– three scalars (F, µ, h),

– one vector gi and

– one symmetric-traceless tensor Hij := hij/h
1/(D−2),

from the viewpoint of codimension two surface Σv, (constant v

slice on Σ).

• These functions are subject to field equations, which determine
their r dependence.
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• The r dependence of the tensor mode Hij is determined through

H
(0)
ij (v, xi) := Hij(r = 0; v, xi), H

′(0)
ij (v, xi) := ∂rHij(r = 0; v, xi).

• The r dependence of the vector mode obeys first order eq. in r

and is completely specified by g
(0)
i (v, xi) := gi(r = 0; v, xi).

• Among the three scalars only two are independent (e.g. one may

set µ = 1 by a rescaling of r).

• The r dependence of the other two are determined in terms of

F0(v, xi) := F (r = 0; v, xi), h0(v, xi) := h(r = 0; v, xi).
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• We have only assumed smoothness and Taylor-expandibility,

• but no particular behavior (falloff condition), around r = 0.

• We have imposed EoM perturbatively around r = 0.

• We have not required variation principle.

• r = 0 is not a special place in spacetime and can be any (null)
D − 1 dimensional hypersurface.

• Solution space is determined by
“tensor modes” (gravitons) D(D-3) functions over Σ,
2 scalars modes over Σ &
(D-2) vector modes over Σ.

• This is the maximal solution space. By construction there can’t be
any solution geometry which is smooth around r = 0 and is not in
the form (1).
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� Residual diffeos over the null surface Σ

• We have used diffeos to fix the null surface Σ at r = 0.

• There is a measure zero subset of them which keep r = 0 intact
remained unfixed:

v → v + T (v, xi) +O(r)

r →
(
∂vT (v, xi)−W (v, xi)

)
r +O(r2)

xi → xi + Y i(v, xi) +O(r)

(2)

• Subleading terms in r may be fixed order-by-order requiring that
(2) keep the form of metric in solution space (1).

• Residual diffeos are specified by two scalar functions T (v, xi),W (v, xi)
and one vector Y i(v, xi) over r = 0 null surface.
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� Symmetries of the solution space

• Upon (2) metric (1) keep its form but with transformed functions:

F0 → F0 + δF0, µ→ µ+ δµ, h0 → h0 + δh0,

g
(0)
i → g

(0)
i + δg

(0)
i , H

(0)
ij → H

(0)
ij + δH

(0)
ij ,

(3)

where δX are linear in residual diffeo functions T,W, Y i.

• Besides dynamical, propagating gravitons, there are 2 + (D − 2)
functions over Σ in our solution space.

• There are 2 + (D − 2) functions over Σ in our residual diffeos.

• Residual diffeos rotate us within the solution space. They are hence
symmetry generators.
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• There are two classes of fields/states in our solution space:

– D(D − 3) propagating tensor modes H
(0)
ij , H

′(0)
ij , one may call

them hard modes,

– D scalar and vector modes, one may call them “soft modes”.

• Soft modes are boundary modes, only reside on D− 1 dimensional

hypersurface Σ and do not propagate into the bulk (away from

r = 0).

• In our example we have chosen Σ to be null surface, like future

horizon of a BH.
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� Solution Phase Space

• One may use covariant phase space method (CPSM) to show that
our solution space indeed forms a phase space:

there is a well-defined symplectic structure and a Poisson bracket
on the solution space

• This solution phase space has two distinct parts:
soft modes & hard modes.

• If we turn off the hard modes, when there are no gravitons in the
bulk, the soft sector forms a phase space on its own.

• There is a one-to-one correspondence between the soft modes in
the solution space and the symmetry generators.
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� Symmetries of the solution phase space

• Using CPSM one may associate surface charges to symmetry gen-

erators (the non-trivial diffeos).

• These surface charges are given by integrals over codimension-2

compact spacelike surfaces, constant v slices on Σ, Σv.

• Surface charges are linear in symmetry generators T (v, xi),W (v, xi)

and Y i(v, xj), but may have different field/states dependence, i.e.

• integrands of the surface charge integrals may have different func-

tional dependence on F0, h0, g
(0)
i .
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I Detour to CPSM

• To extract the non-trivial diffeo’s and the associated surface charges

we may use covariant phase space method (CPSM):

i) All field configurations (histories) may form a Phase Space,

ii) with the symplectic structure systematically constructed from

the action of the theory:

• Consider a field configuration Φ and perturbations around it δΦ.

• On-shell field configurations Φ̄ satisfy field equations and

on-shell perturbations δΦ satisfy linearized field equations.
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• Set of Φ and δΦ may be viewed as a phase space and one-forms

in the corresponding cotangent space.

• On-shell cotangent space includes two important directions:

– δΦ generated by gauge and/or diffeo’s transformations on Φ;

– parametric variations, generated by moving in the parameter

space of the solutions Φ, e.g. the difference between two Sch’d

solutions with masses m and m+ δm.
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I Symplectic structure

• Symplectic current ω is a finite, closed, nondegenerate, it is a
(d− 1; 2)-form, i.e. a d−1 form in space time and a two-form over
the phase space:

ω = ω[δ1Φ, δ2Φ; Φ]

• Symplectic structure ΩΣ is defined through integration of ω over
a Cauchy surface Σ:

ΩΣ [δ1Φ, δ2Φ; Φ]=
∫

Σ
ω[δ1Φ, δ2Φ; Φ]

ΩΣ is a (0; 2)-form.

• We build ω within the covariant phase space method, constructed
in [Lee-Wald ’1990, Wald ’1993] and refined in [Barnich-Brandt
’2002, Barnich-Compère ’2008].
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I Construction of the symplectic current

• Presymplectic potential θ[δΦ; Φ]: ω = δθ, or

ω[δ1Φ, δ2Φ; Φ] = δ1θ[δ2Φ; Φ]− δ2θ[δ1Φ; Φ]

• The Lee-Wald contribution to θ:

δL|on−shell = dθ(LW ).

• L is a (d; 0)-form and presympelctic structure θ a (d− 1; 1)-form.
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• Consistency of symplectic structure may require addition of bound-

ary terms Y:

θ = θ(LW ) + dY.

Y is a (d− 2; 1)-form.

• Consistency of symplectic structure means its

– Conservation:

dω[δ1Φ, δ2Φ; Φ] ≈ 0 for all on-shell fields and perturbations.

– Non-degeneracy: ΩΣ has no degenerate directions, is conserved

and is independent of Σ.
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� Surface charges

• Fundamental Theorem of Covariant Phase Space Method

ω[δΦ, δχΦ; Φ] ≈ dKχ[δΦ; Φ]

• δχΦ is a specific transformation generated by a symmetry χ and

Kχ is a (d− 2; 1)-form.

• Given K one can define charge variations:

/δQχ =
∮
∂Σ
Kχ[δΦ; Φ]

/δQχ is a (0; 1)-form.
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• Charge Qχ is integrable if

δ1/δ2Qχ − δ2/δ1Qχ = 0

Integrability [Lee-Wald ’1991]:

∮
∂Σ

χ·ω[δ1Φ, δ2Φ; Φ] = 0, ∀χ, δΦ

There usually exists Y terms which guarantee the above.

• Using integrability one can define surface charges Qχ:

Qχ[Φ] =
∫
γ

∮
∂Σ
Kχ[δΦ; Φ] +Nχ[Φ]

where N is the zero point charge.

• If /δQχ is zero everywhere on the phase space, χ is called pure gauge
transformation. These are the “real gauge d.o.f”.
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• Surface integrals over the boundary of Σ, ∂Σ, in our case Σv.

• Algebra of charges:

{Qχ, Qξ} = Q[χ,ξ] + possible central terms (4)

• Notes:

– Charges are functions over the solution phase space,

– the bracket is Poisson bracket among these functions, and

– [χ, ξ] is the Lie bracket of generators.

• Charges Qξ may be used to label soft states/configurations in the
phase space, and hence how to account for them.

End of detour J
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� Null Boundary Symmetries for 3d gravity

• 2d,3d examples are special as there are no hard modes (gravitons)
in the game, we just have the soft modes.

• Details of the 2d Einstein-Dilaton gravity and 3d Einstein-Λ theory
examples may be found in [arXiv:2007.12759 [hep-th]].

• Here we present the 3d example with the action

S =
1

16πG

∫
d3x

√
−g (R− 2Λ), Eµν := Rµν − 2Λgµν = 0. (5)

• Depending on Λ, Λ < 0,Λ = 0,Λ > 0 we respectively have AdS3,
flat or dS3 gravities.

• All solutions to the respective theories are locally AdS3, flat or dS3.
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• Maximal solution space near r = 0 null surface has the form

ds2 = −Fdv2 + 2ηdvdr + 2f dvdφ+ hdφ2 , (6)

F (v, r, φ) =F0(v, φ) + rF1(v, φ) +O(r2) (7a)

f(v, r, φ) =f0(v, φ) + rf1(v, φ) +O(r2) (7b)

h(v, r, φ) =Ω(v, φ)2 + rh1(v, φ) +O(r2) (7c)

• Since r = 0 is a null hypersurface, grr|r=0 = 0:

F0 = −
(
f0

Ω

)2
. (8)

• Irrespective of what Λ is, EoM relate f1, h1, F1 to three function

F0,Ω, µ which parametrize the solution space.
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� Symmetry generators

ξv = T

ξr = r(∂vT −W ) +
r2∂φT

2Ω2

(
f1 + ∂φη −

f0h1

Ω2

)
+O(r3)

ξφ = Y −
rη∂φT

Ω2
+
r2ηh1∂φT

2Ω4
+O(r3)

(9)

where T , Y and W are some functions of v and φ.

Algebra of symmetry generators:

[ξ(W1, T1, Y1), ξ(W2, T2, Y2)]adj. Lie bracket = ξ(W12, T12, Y12) (10)

where

T12 = T1∂vT2 − T2∂vT1 + Y1∂φT2 − Y2∂φT1

W12 = T1∂vW2 − T2∂vW1 + Y1∂φW2 − Y2∂φW1 + ∂vY1∂φT2 − ∂vY2∂φT1

Y12 = Y1∂φY2 − Y2∂φY1 + T1∂vY2 − T2∂vY1 ,
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• Null Boundary Symmetry (NBS) algebra (10) is Diff(C2)⊕Weyl,

where C2 is the null cylinder spanned by v, φ and Diff(C2) is gen-

erated by T , Y and Weyl scaling is generated by W .

• Repeating this analysis for a D dimensional gravity, we obtain

Diff(CD−1) ⊕Weyl, where CD−1 is the null cylinder spanned by

v, xi and Diff(CD−1) is generated by T , Y i and Weyl scaling is

generated by W .

• It is more convenient to describe the solution space in terms three

other functions Γ(v, φ),Υ(v, φ),P(v, φ). Their explicit expressions

in terms of metric functions may be found in our paper.

• It is straightforward algebra to compute field variations like

δξη, δξΩ, δξΓ, δξΥ, δξP.
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� Surface charges and their algebra

• Standard computations yields the following surface charge varia-

tions associated with the symmetry generators ξ

/δQξ =
1

16πG

∫ 2π

0
dφ
[
WδΩ + Y δΥ + T/δA

]
, (12)

where /δA is a combination of the solution space fields which is not

a closed one-form, i.e. δ/δA 6= 0 and hence /δA 6= δA.

• The charge associated to T (“supertranslations” along v direction)

is not integrable, while the charges associated with the “scaling in

r” generated by W and the “superrotations” generated by Y are

integrable.
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� NBS algebra in the integrable slicing

• Consider the field-dependent changes of basis (change of slicing in

the solution phase space):

T = −
P
χ
T̂ , Y = Ŷ +

f0P
χΩ2

T̂ , W = Ŵ +
ΓP
χ
T̂−

f0

Ω2
∂φ

(
PT̂
χ

)
,

where

P := − ln

(
χ2

η

)
, χ := ∂vΩ− ∂φ(

f0

Ω
).

• In this basis the charge variation takes the form

δQξ =
1

16πG

∫ 2π

0
dφ

(
Ŵ δΩ + Ŷ δΥ + T̂ δP

)
(13)

• It is manifestly integrable.
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• Using EoM all functions in the solution phase space may be solved

in terms of Ω, P, Υ, up to two v-dependent integration constants.

• The two v-dependent functions do not appear in the charge ex-

pressions. So, our solution phase space is completely parametrized

in terms of Ω, P, Υ.

• The charges Ω, P, Υ are arbitrary functions of v, φ.

• The integrable basis or integrable slicing of the solution phase space

is not unique. There are (infinitely) many more.
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� Integrable NBS charge algebra

• Fourier expand the charges (Z = Ω, P, Υ)

Z(v, φ) := 8G
∑
n
Zn(v)e−inφ.

• Going through the standard charge algebra analysis (noting the field

dependence of the symmetry generators), and upon quantisation

i{, } → [, ], we have

[Ωm(v),Ωn(v)] = 0 , [Pm(v),Pn(v)] = 0 ,

[Ωm(v),Pn(v)] =
i

8G
δm+n,0

[Υm(v),Υn(v)] = (m− n) Υm+n(v)

[Υm(v),Ωn(v)] = −nΩm+n(v)

[Υm(v),Pn(v)] = −(m+ n)Pm+n(v) +
n

4G
δm+n,0
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• While the charges are in general v dependent, their algebra is not;

the algebra takes the same form for all v.

• The algebra is independent of the cosmological constant Λ.

• Ωm(v),Pn(v) form a Heisenberg algebra with effective ~= 1
8G.

• Υm(v) for a Witt algebra (Diff(S1)).

• Ωm(v) is a field of weight one and Pn(v) is of weight zero in this

Witt algebra. (Fields on the null cylinder spanned by v, φ.)
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� Fundamental slicing for NBS charge algebra

• Consider the simple change of slicing

Ŵ = W̃ − 2∂φỸ + Ỹ ∂φP , T̂ = T̃ − ∂φ(ΩỸ ) , Ŷ = Ỹ

Υ = −2∂φΩ−Ω∂φP + 16πGS ,

assume W̃ , Ỹ , T̃ to be independent of charges in new slicing Ω,P,S.

• Υ and S differ in the ‘orbital superrotation part’.

• The algebra of charges in the fundamental NBS slicing is

[Ωm(v),Ωn(v)] = 0 , [Pm(v),Pn(v)] = 0 , [Ωm(v),Pn(v)] =
i

8G
δm+n,0

[Sm(v),Sn(v)] = (m− n)Sm+n(v) , [Sm(v),Ωn(v)] = [Sm(v),Pn(v)] = 0

• This algebra is Heisenberg ⊕Diff(S1).
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Discussion, Concluding Remarks and Outlook
——————————–

~ Presence of Boundaries brings in new ‘boundary d.o.f.’.

• The b.d.o.f. may be classified and labelled by nontrivial diffeos.

• Using CPSM one can construct the boundary phase space which
govern b.d.o.f.

• Motivated by identification and formulation of BH microstates we
discussed null boundaries Σ.

• Σ ∼ Rv ×Σv, where Σv is a codim. two compact surface.

• Σ may be viewed as the null limit of the stretched horizon.
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• Physics in the outside horizon region is then described by

b.d.o.f ⊕ bulk d.o.f.

• The Hilbert space of b.d.o.f, Hbdof may be labeled by the surface

charges associated with nontrivial diffeos on Σv.

• We have shown in appropriate slicing, these surface charges satisfy

NBS − algebra = Heisenberg +Diff(Σv)

To be more precise, Diff(Σv) is the area-preserving Diff of Σv.

• Besides our b.d.o.f for asymptotic flat spacetimes there are usual

BMS-like diffeos/charges/states.
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• Our proposal is that the BH microstates are in Hbdof and are labeled
by these charges.

• The interactions of these microstates and the bulk dof is also fixed
by the diff. invariance:

Boundary d.o.f interact with bulk d.of. through the Bondi news
through the horizon.

• In essence, we have extended the Equivalence Principle to the cases
with horizon, which can hopefully account for BH microstates too.

• The analysis so far is classical and we should quantize the system.

• It should be possible to perform a semiclassical analysis in which
the boundary d.o.f are quantized while the bulk is classical.
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~ To fully formulate the above proposals, one should study

• The relation between Barnich-Troessart modified bracket and the
Wald-Zoupas method.

• Formulate in full generality the NBS analysis in generic theories in
diverse dimensions.

• Quantization of the boundary phase space and the ‘semiclassical’
description mentioned above.

• Full theory of change of slicing on the solution phase space and
general boundary conditions.

• Relation between the theory of deformation of algebras and the
change of slicing.
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~ Having these tools and results one may

• Tackle the BH microstate problem.

• Relation between our approach and the Hawking-Perry-Strominger

soft hair proposal.

• Resolving the BH unitarity problem?!

• Connection to our horizon fluff proposal [Afshar, Grumiller, MMShJ,

2016; MMShJ, Yavartanoo, 2016 & Afshar, Grumiller, MMShJ,

Yavartanoo, 2017].

• Relation to membrane paradigm.
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My view on BH microstates & information puzzle:

BH microstates are certain states among the near horizon soft hair

and

are indistinguishable (degenerate) from the asymptotic symmetry

viewpoint.

This Heisenberg algebra arises as a result of Rindler wedge,

ubiquitously found in any nonextreme NH geometry.

Membrane paradigm may be providing the way to identify BH

microstates.

Thank You For Your Attention
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