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Motivation

@ Consistent and highly nontrivial interacting theory of massless Higher
Spin fields
On AdSy: M.A. Vasiliev, Phys.Lett. B 285 225, 1992;
On AdSp: M.A. Vasiliev, Phys.Lett B 567, 139, 2003

@ A connection with (Super)String Theory - a theory on massive higher
spin fields on a flat background

@ Supersymmetric Higher Spin Theories are very interesting but relatively
less explored

@ Higher Spin theories are already nontrivial at a free level

@ Free theory is usually formulated on a constant curvature background:
flat, de Sitter, anti de Sitter - one has a sufficient abelian gauge
invariance of a free action for a field with s > 3



General set up

@ BRST formalism borrowed from the Open String Field Theory

@ Is off -shell, gauge invariant, leads to the required field equations,
describes correct spectrum

@ Leads to a description for reducible representations of the Poincare group

@ The spectrum is “larger” than for the case of irreducible (Fronsdal)
modes, but the BRST charge and therefore the Lagrangian are much
simpler

@ An analog of Virasoro constraints can be obtained by formally taking
o’ — oo limit in the free equations for the open superstring



Example: E-M Field

@ The field A, (z) satisfies in the Lorentz gauge the equation 0" 4,(z) =0
and the massless Klein - Gordon equation OJA,(z) =0

@ Let us introduce an auxiliary field C(z)
0" A, (z) = C(z)
@ To make it gauge invariant under 04, (z) = d,A(z) we have
0 C(z) = O\ (x)
@ Finally a gauge invariant Klein - Gordon equation
0A4,(z) = 0,C(x)

@ The field equations are Lagrangian

£ = (0 4 (@)(0, 4, (2) + ()9 4,(0) — 5(CLa)?

o After excluding of the field C(z) we get £ = -1 (2)F,, ()



Example: A linearized gravity and a scalar

@ Similarly to the vector field we have for Klein - Gordon for s = 2
Oguw(2) = 0,Cy(2) + 0, Cpu(x)
which is gauge invariant under
09 (x) = O () + O Au(2), 0C,(2) =0, (2)
o Transversality equation is now
0" g (2) = 9 D(2) = Cy(2)

where to make it gauge invariant we introduced a new field D(z) which
transforms as §D(z) = 0"\, (z)

@ Finally a gauge invariant field equation for D(z)
OD(z) = 0" Cp(x)
@ The field equations are Lagrangian again

1
£ = =5(0"4")(Ougoy) + 200" g — 0" Gy + (9" D)(9,, D) + 200",

@ Describes two physical fields with spins 2 and 0, contained in g, (z)



A general case. Bosons

@ We have always three fields ¢(™ (z), C"~Y(z) and D(»~2)(®
@ A gauge invariant description of spins n,n—2,..,1/0. (all traces)

@ The field equations

Op,p0(®) = Oy O, ()

a#nd)ﬂlv-'-yunflﬂn(m) _8(,“%*1D,Uzly-ug,uwn—2)(‘r) = Oﬂlv-uvﬂnfl (x)
DD/J'17~‘-/1'7L72($) = aun71 C;ufly-nvll/nfl(x)

@ The equations are gauge invariant with an unconstrained parameter
Aﬂlv--w//‘nl (x)

5¢M1,~~Hn<x> = 8(“1)\N21‘-~’l‘n)<x)
6Cus,in (2) = DAy (2)
§DM17---#n—2(‘T) = aun71/\”17m7ﬂn_1(x)

@ These equations are Lagrangian



BRST construction. Bosons

@ The fields are totally symmetrical: introduce one set of oscillators

v v ]' .
@0t =, [8PPC) = ol DO e o)

@ d’Alembertian, gradient and divergence operators are realised as

b=p-p l=a-p T =at.

p
with A- B= A*B, and p, = —i0,
@ Compute the algebra, introduce ghosts
{co,bo} = {ct, b} ={c,b"} =1,
and build a nilpotent BRST charge

Q= colo+ cTl+ clt — cteby



BRST construction. Bosons

@ Ghost number: All ¢ have ghost number +1, all b ghost number —1, the
rest have ghost number zero

Oscillator number

N=a"-a+cb+bte, [N, Q =0
@ The general state has a form

@) = [¢1) + cob™ |V + ¢t ot | D)

The BRST invariant Lagrangian
£~ [ datelQe), slo) = ot

@ Eliminating ghost variables we get

L = (¢lp-ple) — (Dlp-p|D) + (C]|C) -
(¢pla™ - p|C) = (Clev- p|p) + (D]ex- p|C) + (Cla™ - p| D)



Fermions. Gravitino

@ The spin 3 field U%(z), where a is a spinorial index.

@ It should satisfy transversality condition and to maintain gauge
invariance we introduce an extra field x%(z)

"Wy () + 770 x(z) =0

with

0, (z) = 9 A(z), ox(2) = =7, \()
@ The gauge invariant Dirac equation
v 0,V (z) + Oux(z) =0
@ The equations are again Lagrangian
Lp=—iU"y"9,¥, — iV 9, x + ix0" ¥, + ixv"dux

@ Describes spins % and % - gamma trace



A General Case. Fermions

The fermionic Lagrangian

Lp = —iUy"9,¥ —in¥dy +inxd- ¥ +in(n—1)Sy"9,%
+ inxy"0,x — in(n—1)x0X + in(n—1)29 - x

Gauge transformations

5\11(71) _ a;\(nfl)v 52 n—2) __ -9. )\(n 1) 5X(n71) _ _,yuauj\(nfl)

Equations of motion
’)/Vavlp + aX =0,
-V — 90X 4++"0,x =0,
0,5 + 0-x=0.

@ Fermionic “triplet” contains a physical field ¥(") (z) and two auxiliary
fields (") () and x ("~ (z).



BRST construction. Fermions. Supersymmetry

@ Observation: Fermions are again totally symmetric, we have only a*
oscillators for them

@ Crucial difference: Dirac operator brings a bosonic ghost zero mode
@ Use open superstring field theory as a hint
@ Write BRST charges in bosonic (B) and fermionic (F) sectors and find
an operator (SUSY) that maps them into each other
QrQ=90p

@ The sectors have bosonic a* -oscillators the same, but ¥* oscillators are
different. SUSY operator only acts on the )* and on corresponding
(bosonic) B, v ghosts

@ As a result we have mixed symmetry fields at least in one the sectors



To summarize

@ We have a Lagrangian

Liot. = (5| Q5|®5) + (PF|Qr|PF)
@ Invariant under gauge transformations

6|®p) = @BlAB), 6|®F) = Qr|AF)
@ Invariant under supersymmetry transformations

§(Pp| = (PrleQ, 6|®p) = €Q|Pp).
provided the SUSY generator Q satisfies
QrQ=0Q90s

@ Consideration in OSFT: Y.Kazama, A.Neveu, H.Nicolai,P.West
Nucl.Phys. B 278, 833 1986 contains an infinite number of oscillators,
fields and pictures.



A total set of operators

@ The simplest choice: keep only «, and (b, c¢) oscillators in the fermionic
sector. Also a pair of bosonic ghosts (for the Dirac operator)

[v0, Bo] = i

@ In the bosonic sector again («, b, ¢) plus one set of fermionic oscillators
,, and the bosonic ghosts v and antighosts 3

{0y = g BT =8l =
@ Divergence operators
l=p-a, g=p-9
o Gradients symmetrized w.r.t “alpha” indexes and gradients
antisymmetrized w.r.t “psi” indexes
F=pa*, g-=po*
@ Dirac operator (in F sector) and the d’Alembertian

1
go=$7-p, b=p-p



BRST charges,SUSY

@ The nilpotent BRST charge in the B sector
Qp = colo + Qs — Mgy ,
Qp=cl+ct +1 g+yg", Mp=ctetqty
@ The nilpotent BRST charge in the F sector

~ 1
QrF = Colo+7090+QR—MFbo—§7§bO

Qr=cti+ct, Mp=cte,
@ The solution to QrQ = Q@p has the form
Q = p(0exp (\;57 i+ %75 - i“Yﬂo) 10) r
@ A comment on ghost zero modes: by is always an annihilator, whereas
Bol0) = 700} = 0
(10)m)* = r(0l,  (10)p)* = £{0.  F(0]10)r = #(0]|0)F =1



Eliminating ghost zero modes

o A field in the B sector
[2F) = |27) + c|®F)
@ The Lagrangian in the B sector
Lp = (27|b|®7) — (97|Qp|®7) — (87| Q5|25 + (25| Mp| D7) .

@ One can use a part of the initial BRST symmetry and truncate a field in
the F sector to

12F) = @) + 70 [®5) + 2co0|P5)

The Lagrangian in the F sector

Lp = (1) g0|®T) + (25| Qr|®]) + (2] | Qp|®F) — 2| Mpgo|®F) .



Symmetry

o Expanding Q(f,) in power series of By one can get rid of |0g) and we
finally obtain SUSY transformations

S|07) = Ut eT|®f) =T UT et]®y),  6|07) =2U  goe7[®y),
5|97) = —2¢ go U|®T) + eqU[®5),  6|y) =€ U|DT)
with

U= (0] exp (\lﬁv 1+ ;vﬁ> 10) .

@ SUSY closes on-shell in D = 3,4, 6, 10, in both sectors. No pictures
@ A comment: constraints on |®p/p) :
Ngh|‘I)B/F> =0
GSO projection
{1 — ()@ eE T By 6*)}

N

Pp =

Pr = [1 + v (,1)1'% 50]7

| =



Fields, Gauge parameters

@ The fields are of the type |X(®®) where a is a number of oz;'[ oscillators,
and b= 0,1 is a number of w;f oscillators.

@ The fermionic sector

|®) = |\IJ(n,0)> + C+b+|2(n—2,0)> L) = b+‘x(n—1,0)>

o Gauge transformations with a parameter [AF) = b |A)

@ The bosonic sector contains mixed symmetry fields
[@F) = [¢ V) + "o+ D2D) 44T pFBOTEO) 4 ¢t T AT,
[BF) = bF|CD) 4 G EOO) + it F20).
@ Parameters of gauge transformations
[AT) = bFINCTED) 4 5[0 4 g b RO),

IADY = bt | (n 10y,



Examples (n=0). N= 1 Maxwell supermultiplet

@ Bosonic sector
|9y = A (2)"10) s, |E) = BT E(2)|0)5

@ Fermionic sector
|¥) = ¥(z)|0)r

Total Lagrangian
L=—ArOA, +2E0" A, + E* — iUy" 0,V
o SUSY transformations

§A,(7) = W0 (z)y.e, 0U(z) = —ey"y"0, Au(z) — eBE(z), JE(z) =0

Auxiliary field E(z) = —0,A*(z). It is SUSY invariant due to fermionic
€.0.m.



Examples (n=1). N=1 SUGRAs (+ antisymmetric tensor supermultiplets)

@ Bosonic
©F) = (b (@) ™ +ict BF A(z) + 77 B(2))[0) 5
|®F) = (ib* C(2)y"" + BT Bu(z)a”)|0)5

@ Fermionic sector

[@7) = Vu(2)a"F|0)p, |®F) = —=x(2)|0)F

s
V2
Physical fields: ¢, ., = (g(u), B> ) and ¥, = (¥}, x') with y# ¥ =0
An irreducible N=1, D =10 SUGRA supermultiplet
@ N=1, D=4 SUGRA (g, V},) + chiral (B.,,¢,X’)
e N=(1,0), D=6 SUGRA (g,

Bf,, ¥},) + tensor (B, ¢, X’)



Examples (n=1). N=1 SUGRAs (+ antisymmetric tensor supermultiplets)

@ The Lagrangian in the bosonic sector

Ly =—¢"*0¢,, + BOA+ AOB
FEO,B+ CY 0"y, + CYO,A+ By,
—BOLE" — ¢""9,,C, — Ad, C* — ¢""0, B,
+CYC, + B'E, .

@ The Lagrangian in the fermionic sector
Lp=—iUFy"9,V,, — iU 0, x + ix0, V" + ix7 O, X,
@ SUSY transformations
0¢uu(z) = i¥u()1e, 60, (a) = —i(0ux(2)y"Wwe, 0B(z) = —ix(2)e,

OV, (2) = —"vedydp,u(2) — €E, (), Ox(x) = —v"€ Cy(2).



Examples (n=1). N=1 SUGRAs (+ antisymmetric tensor supermultiplets)

@ The gauge transformations in the bosonic sector
0y, u(2) = O (2) + Oppu(z),
5A() = —0"p(@) — 7(a),  OB(x) = —0" A, (x) + 7(a),
0C, () = 0N (2) + 0u7(2), OE,(2) = —0ppu(z) — 0ut(2).
@ The gauge transformations in the fermionic sector

0 (1) = 9N (2),  ox"(a) = —(4") 40" ().

@ Using this gauge freedom and equations of motion one can eliminate all
auxiliary fields. As a result of the complete gauge fixing one is left with
only transversal components of ¢; ;(z) and ¥;(z)

D(ﬁi,j(x) = 0, 7#8#\111([17) = 0



ry n. Lagrangians

@ The Bosonic Lagrangian (“alpha” - indexes are implicit)
Ly = —¢"0¢, + n(n—1)DOD + nBOA + nAOB
—2nB0 - E+2n(n—1)D"0- C, +2nC"0 - ¢,
—2n(n—1)F0 - B+ 2nC"d, A + 2E0" ¢, — 2n(n— 1)F9” D,
+nC” C, + E* — n(n—1)F2,
@ The fields
oD (@), DD (@), AT (@), BT ()
C(n_l’l)(w) ’Ev(n,O)(@ 7F(n—Q,O) (x>
@ The Fermionic Lagrangian
Ly = —i¥~y"9,¥ — inWdy + inxd - ¥ + in(n — 1)E4"9, %
+ inxy*0ux — in(n — 1)Y0X + in(n — 1)T0 - x .

@ The fields
WO (a), XM (), 5020 (1)



Arbitrary n. Supersymmetry

@ SUSY transformations for the fermionic fields

Oy () = =77 €0pu iy ..o, (T) — €By o, (2),
52#1,---”&%—2 (:E) = 77p7y € apDV7#1~--#n—2 (33) - 6FH1»--IM—2 (x)a
Xpirooopin—1 (@) = =" € Cp iy i1 (2),

@ SUSY transformations for the bosonic fields

0y, 5 un( )_ '\I' 1y ,un@)%f €,

0Dy, ..pu o(2) = st () e

6Cu,puscpin1 (%) = =1 OpXps,..pinr ()Y W0 €,

0By ppn (1) = =i Xm e (T) €,

0 Ay pines (8) = 0By, (3) = 6F s (7) = 0.

@ Can be written in any dimension, but the algebra is closed only in
D =3,4,6,10.



Conclusions, Open Problems

Massive SUSY theories for the dimensions D > 3

Deformation of these theories to (anti)de Sitter spaces

Including interactions
@ Further connection with the String Theory

@ Many other questions



THANK YOU!!!



