Calculation of Gauge Thresholds in Heterotic Compactifications

Mirian Tsulaia

Okinawa Institute of Science and Technology

The University of Liverpool June 16, 2020

Plan of the talk

- Motivation
- Torus amplitude, Partition Functions
- Calculation of Gauge Thresholds
- NonSUSY heterotic $SO(16) \otimes SO(16)$ superstring
- Conclusions

Based on

- V. S. Kaplunovsky, NPB 307, 1988, 145
- E. Kiritsis, C. Kounnas, M. Petropoulos, J. Rizos, NPB 483, 1997, 141
- C. Angelantonj, I. Florakis, M. T., PLB 736, 2014, 365; NPB 900, 2015, 170

Motivation

- Quantum Theory of Gravity, Unification of Fundamental Interactions.
- Particle Physics: MSSM still has unanswered questions like origin of values of coupling constants, of masses etc.
- We have bosonic string (open or closed). Lives in D=26 space-time dimensions. Contains a tachyon. Has no fermions.
- Superstrings: Perturbatively five of them. They live in D=10. They are connected by various types of dualities. Vacua include nonperturbative objects.
- These theories are supersymmetric. SUSY removes tachyon and has many other nice features.
- But SUSY (if exists) is spontaneously broken. How? A stringy mechanism is extremely hard to implement.

- In non SUSY vacua one generically has a nonzero dilaton tadpole (one loop).
- To cure this problem one has to take a back reaction on the metric into account at two-loop level: W. Fischler, L.Susskind (1984). Hard to implement in practice.
- Alternatively one can try to work around a "wrong" flat vacuum: E.Dudas, M.Nicolosi, G.Pradisi, A.Sagnotti (2004). Also hard. No conventional perturbation theory in this case.
- We consider NonSUSY heterotic $SO(16) \otimes SO(16)$ string. Nontachyonic vacuum (stable). No Wilson lines.
- Gauge threshold corrections. General approach: V.Kaplunovsky (1988). Valid either for SUSY/Non SUSY without tachyons.

 In field theory one loop partition function - spectrum. Example of a massive scalar field

$$S = \int d^D x (\partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi)$$

Vacuum energy

$$e^{-\Gamma} = \int D\phi e^{-S_E}, \quad \Gamma \sim V \int_{\epsilon}^{\infty} \frac{dt}{t^{D/2+1}} e^{-tm^2}$$

where V is a volume of space–time, t is a Schwinger parameter and and ϵ is an ultraviolet cut off.

• When we have many particles then

$$e^{-tm^2} \to Str\left(e^{-tm^2}\right)$$

- Closed bosonic string D = 26, Torus amplitude.
- Line element

$$ds^{2} = \frac{1}{\tau_{2}} |d\sigma_{1} + \tau d\sigma_{2}|^{2}, \quad 0 \le \sigma_{1,2} \le 1$$
$$\omega = \sigma_{1} + \tau \sigma_{2}, \quad ds^{2} = \frac{d\omega d\bar{\omega}}{\tau_{2}}$$

- \bullet τ complex structure parametrizes unequivalent Tori.
- Coordinates on a Torus are periodically identified

$$\omega \sim \omega + m, \quad \omega \sim \omega + n\tau$$

m, n are integer

• Modular group

$$T: \quad \tau \to \tau + 1$$

 $S: \quad \tau \to -\frac{1}{\tau}$

• S and T form a modular group $SL(2, \mathbb{Z})$ with

$$S^2 = (ST)^3 = 1$$

- Put a point on a string on a horizontal axis. It propagates upwards in time for $\omega_0 = 2\pi\tau_2$. It shifts in the space by $\omega_1 = 2\pi\tau_1$, where $\tau = \tau_1 + i\tau_2$
- Time translations in CFT are generated by $H = L_0 + \tilde{L}_0 2$, space translations are generated by $P = L_0 + \tilde{L}_0$
- We have a path integral

$$Z = Tr[e^{-2\pi\tau_2 H} e^{2\pi i \tau_1 P}] = Tr[q^{L_0 - 1} \bar{q}^{L_0 - 1}], \quad q = e^{2\pi i \tau_1}$$

• Integrating over modular parameter and using $L_0 = \frac{1}{2} \sum_{m=-\infty}^{\infty} \alpha_{-m} \alpha_m$

$$Z = \int_{\mathcal{F}} d^2 \tau \frac{1}{q\bar{q}} \int d^{24} p \, e^{-\pi \tau_2 p^2/2} Tr[q^N \bar{q}^{\tilde{N}}],$$

• Performing Gaussian integral over the p^2 and using

$$Tr\left[q^{N}\right] = Tr\left[q^{\sum_{n=1}^{\infty} \alpha_{-n} \alpha_{n}}\right] = \prod_{n=1}^{\infty} \frac{1}{1 - q^{n}}$$

we finally get

$$Z = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} \frac{1}{\tau_2^{12} (\eta(\tau) \overline{\eta(\tau)})^{24}}$$

where $\eta(\tau)$ is a Dedekind function

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$$

• Under modular transformations

$$\eta(\tau+1) = e^{i\pi/12}\eta(\tau), \quad \eta\left(-\frac{1}{\tau}\right) = \sqrt{-i\tau}\eta(\tau)$$

• The fundamental domain $\mathcal{F}: |\tau| \geq 1$ and $-\frac{1}{2} \leq \tau_1 \leq \frac{1}{2}$

SO(2n) characters

• Let us introduce orthogonal decompositions. In NS sector

$$O_{2n} = \frac{\theta_3^n + \theta_4^n}{2\eta^n}, \quad V_{2n} = \frac{\theta_3^n - \theta_4^n}{2\eta^n}$$

• In R sector

$$S_{2n} = \frac{\theta_2^n + i^{-n}\theta_1^n}{2\eta^n}, \quad C_{2n} = \frac{\theta_2^n - i^{-n}\theta_1^n}{2\eta^n}$$

• They have expansions

$$O_{2n} = q^{h_o - n/24} (1 + n(2n - 1)q + \dots), \quad V_{2n} = q^{h_v - n/24} (2n + \dots)$$

$$S_{2n} = q^{h_s - n/24} (2^{n-1} + \dots), \quad C_{2n} = q^{h_c - n/24} (2^{n-1} + \dots)$$
with $(h_o, h_v, h_s, h_c) = (0, 1/2, n/8, n/8)$

• Recall for the Dedekind $\eta(\tau)$ function

$$\frac{1}{n^n} = q^{-n/24}(1 + nq + \dots)$$

• Under T- duality transformations

$$(O_{2n}, V_{2n}, S_{2n}, C_{2n}) = e^{-\frac{in\pi}{12}} diag(1, -1, e^{\frac{in\pi}{4}}, e^{\frac{in\pi}{4}}) (O_{2n}V_{2n}S_{2n}C_{2n})$$

• Under S- duality transformations

$$\begin{pmatrix} O_{2n} \\ V_{2n} \\ S_{2n} \\ C_{2n} \end{pmatrix} = e^{-\frac{in\pi}{12}} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & i^{-n} & -i^{-n} \\ 1 & -1 & -i^{-n} & i^{-n} \end{pmatrix} \begin{pmatrix} O_{2n} \\ V_{2n} \\ S_{2n} \\ C_{2n} \end{pmatrix}$$

• Recall also that for the Dedekind $\eta(\tau)$ function

$$T: \eta(\tau+1) = e^{\frac{i\pi}{12}}\eta(\tau)$$
$$S: \eta\left(-\frac{1}{\tau}\right) = \sqrt{-i\tau}\eta(\tau)$$

ullet When compactifying on a circle with radius R we get a lattice partition function

$$\Gamma_{m,n} = \frac{1}{\eta \bar{\eta}} \sum_{m,n} q^{\alpha' p_L^2/4} \bar{q}^{\alpha' p_L^2/4}, \quad p_{L,R} = \frac{m}{R} \pm \frac{nR}{\alpha'}.$$

Gauge Thresholds. Field Theory

- Generically: We have a theory \mathcal{M} and its low energy counterpart \mathcal{N} .
- One loop correction to the gauge coupling constant can be obtained from

$$\mathcal{L} = \int_0^\infty \frac{dt}{2t} C_\Lambda(t) \, Str \, e^{-tL}$$

 $C_{\lambda}(t)$ is an ultraviolet regulator, t is a proper time

- The background solves the classical equations of motion
- To obtain the one -loop correction to the coupling constant we expand the integral up to the second order in $A_{\mu}(x)$ and put $F_{\mu\nu}(x) = const.$ We get

$$W = \int_0^\infty \frac{dt}{t} C_{\Lambda}(t) \mathcal{B}(t), \quad \mathcal{B}(t) = str(Q^2 \left(\frac{1}{12} - \chi^2\right) e^{-tM^2})$$

Q- a generator of gauge group, χ - helicity operator

Gauge Thresholds. String Theory

- We use torus partition function
- Compute a correlator on a torus

$$\int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} \int d^2 z \epsilon_1^{\mu} \epsilon_2^{\mu} \langle V_{\mu}(z) V_{\nu}(0) \rangle.$$

• $V_{\mu}(z)$ vertex operator for a gauge boson

$$V^{\mu,A} = (\partial_z X^{\mu} + i(p \cdot \psi)\psi^{\mu})\overline{J}^A e^{ip \cdot X}.$$

• Use torus propagators for noncompact bosons, fermions, and Kac-Moody currents

$$\langle X(z)X(0)\rangle, = -\log|(\theta_1(z))|^2 + 2\pi \frac{Imz^2}{\tau_2}, \quad \langle \psi(z)\psi(0)\rangle|_b^a = S(z)[_b^a]$$

$$\langle J^A(\bar{z})J^B(0)\rangle = \delta^{AB} \left(\frac{k}{4\pi^2}\bar{\partial}^2 \log \bar{\theta}_1(\bar{z}) + trQ^2\right)$$

Gauge Thresholds

- Pick up the quadratic part in momenta of what we get.
- The result: for 4d partition function

$$Z = \frac{1}{\tau_2 \eta^2 \overline{\eta}^2} \sum_{a,b=0}^{1} \frac{\theta[a]}{2\eta} C^{int}[a],$$

we get threshold corrections

$$\Delta_{\mathcal{G}} = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2} (\mathcal{B}_{\mathcal{G}}(\tau) - b_{\mathcal{G}})$$

$$\Delta_{\mathcal{G}} = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2} \left(\frac{1}{\eta^2 \overline{\eta}^2} \sum_{even} \frac{i}{\pi} \partial_{\tau} \left(\frac{\theta {b \brack b}}{2\eta} \right) Tr_{int} (Q_{\mathcal{G}}^2 - \frac{k_{\mathcal{G}}}{4\pi \tau_2}) C^{int} {b \brack b} - b_{\mathcal{G}} \right)$$

where $b_{\mathcal{G}} = \lim_{\tau_2 \to \infty} \mathcal{B}(\tau)$

• Need of infrared regularization

NonSUSY heterotic $SO(16) \otimes SO(16)$ superstring

• Partition function for $E_8 \otimes E_8$ heterotic string

$$Z_{E_8 \times E_8} = \frac{(V_8 - S_8)(\overline{O}_{16} + \overline{S}_{16})(\overline{O}_{16} + \overline{S}_{16})}{(\sqrt{\tau}_2 \eta \overline{\eta})^8}.$$

• Perform SUSY breaking orbifold Z_2

$$S_8 \to -S_8$$
, $\overline{S}_{16}^{1,2} \to -\overline{S}_{16}^{1,2}$, $\overline{C}_{16}^{1,2} \to -\overline{C}_{16}^{1,2}$.

• Leads to the partition function for $SO(16) \otimes SO(16)$ tachyon free heterotic string

$$Z = \frac{V_8(\overline{O}_{16}\overline{O}_{16} + \overline{S}_{16}\overline{S}_{16}) + O_8(\overline{V}_{16}\overline{C}_{16} + \overline{C}_{16}\overline{V}_{16})}{(\sqrt{\tau}_2\eta\bar{\eta})^8} - \frac{S_8(\overline{O}_{16}\overline{S}_{16} + \overline{S}_{16}\overline{O}_{16}) + C_8(\overline{V}_{16}\overline{V}_{16} + \overline{C}_{16}\overline{C}_{16})}{(\sqrt{\tau}_2\eta\bar{\eta})^8}.$$

Massless spectrum

- Untwisted bosonic $g_{\mu\nu}$, $B_{\mu\nu}$, ϕ and $A_{\mu}((120,1) \oplus (1,120))$.
- Untwisted fermionic $\psi^{\alpha}((128,1) \oplus (1,128))$.
- Twisted fermionic $\xi_{\alpha}(16, 16)$.
- The partition function (again)

$$Z = \frac{V_8(\overline{O}_{16}\overline{O}_{16} + \overline{S}_{16}\overline{S}_{16}) + O_8(\overline{V}_{16}\overline{C}_{16} + \overline{C}_{16}\overline{V}_{16})}{(\sqrt{\tau}_2\eta\bar{\eta})^8} - \frac{S_8(\overline{O}_{16}\overline{S}_{16} + \overline{S}_{16}\overline{O}_{16}) + C_8(\overline{V}_{16}\overline{V}_{16} + \overline{C}_{16}\overline{C}_{16})}{(\sqrt{\tau}_2\eta\bar{\eta})^8}.$$

Gauge Thresholds, Orbifold Models

• Start with heterotic $E_8 \otimes E_8$ and compactify it on an orbifold

$$T^6/\mathbb{Z}_N \times \mathbb{Z}'_2, \quad N = 2, 3, 4, 6.$$

• A discrete \mathbb{Z}_N acts on T^4 as (breaks $\mathcal{N}=4$ to $\mathcal{N}=2$)

$$\mathbb{Z}_N: z_1 \to e^{2\pi/N} z_1, \quad z_2 \to e^{-2\pi/N} z_2.$$

• Extra \mathbb{Z}_2' is freely acting (breaks $\mathcal{N}=2$ to $\mathcal{N}=0$)

$$\mathbb{Z}_2: (-1)^{F_{st}+F_1+F_2}\delta.$$

where F_{st} is a space-time fermion number, $F_{1,2}$ gauge group "fermion numbers", and δ is an order two shift along T^2 .

• We have Scherk-Schwarz spontaneous SUSY breaking on $K3 \times T^2$.

Gauge Thresholds, Orbifold Models

• In terms of characters (example $\mathbb{Z}_2 \times \mathbb{Z}_2'$)

$$V_8 - S_8 = V_4 O_4 + O_4 V_4 - S_4 S_4 - C_4 C_4,$$

$$\overline{O}_{16} + \overline{S}_{16} = \overline{O}_{12} \overline{O}_4 + \overline{V}_{12} \overline{V}_4 + \overline{S}_{12} \overline{S}_4 + \overline{C}_{12} \overline{C}_4,$$

• Under the first \mathbb{Z}_2

$$V_4^{(2)} \to -V_4^{(2)}, \quad S_4^{(2)} \to -S_4^{(2)}, \quad \overline{V}_4^{(2)} \to -\overline{V}_4^{(2)}, \quad \overline{S}_4^{(2)} \to -\overline{S}_4^{(2)}.$$

• Under the second $\mathbb{Z}'_2: \Gamma_{mn} \to (-1)^m \Gamma_{mn}$, and

$$(S_4^{(1)}, C_4^{(1)}) \to -(S_4^{(1)}, C_4^{(1)}), \quad (\overline{S}_{16/12}^{(2)}, \overline{C}_{16/12}^{(2)}) \to -(\overline{S}_{16/12}^{(2)}, \overline{C}_{16/12}^{(2)}).$$

• The gauge group is $SO(16) \otimes SO(12) \otimes SO(4)$.

Universality

• The threshold corrections have a form

$$\Delta_{\mathcal{G}} = \Delta_{\mathcal{G}}^{(u+)} + \Delta_{\mathcal{G}}^{(u-)} + \Delta_{\mathcal{G}}^{(t+)} + \Delta_{\mathcal{G}}^{(t-)},$$

• where

$$\Delta_{\mathcal{G}}^{(t+)} = S \Delta_{\mathcal{G}}^{(u-)}, \quad \Delta_{\mathcal{G}}^{(t-)} = T \Delta_{\mathcal{G}}^{(t+)}$$

• It is easier to computer the differences

$$\Delta_{SO(16)}^{u+} - \Delta_{SO(12)}^{u+} = -36\Gamma_{mn}$$
: Universal contribution

L. Dixon, V.Kaplunovsky, J. Louis (1991); E.Kiritsis, C.Kounnas, M.Petropoulos, J.Rizos (1996).

• Torus moduli $T = T_1 + iT_2$ and $U = U_1 + iU_2$

$$\int_{\mathcal{F}} \frac{d\tau}{\tau_2^2} \Gamma_{m,n}(T,U) = -\log\left(T_2 U_2 |\eta(T)\eta(U)|^4\right).$$

Universality

Non BPS contributions

$$\int_{\mathcal{F}_0(2)} \frac{d\tau}{\tau_2^2} (-1)^m \Gamma_{m,n}(T,U)(hol.) \times (anti-hol.).$$

• Written in terms of SO(2n) characters

$$12(O_8^2V_8 + 3V_8^3)(\overline{O}_8^2\overline{V}_8 - \overline{V}_8^3).$$

• Holomorphic because of identities: I.Florakis, C.Kounnas (2009)

$$\overline{O}_8^2 \overline{V}_8 - \overline{V}_8^3 = 8.$$

• The one can take the integral using the technique of C.Angelantonj, I.Florakis, B.Pioline (2012,2013).

Universality

• One gets for differences

$$\begin{split} &\Delta_{SO(16)} - \Delta_{SO(12)} = \\ &= 36 \log \left(T_2 U_2 |\eta(T) \eta(U)|^4 \right) - \frac{4}{3} \log \left(T_2 U_2 |\theta_4(T) \theta_2(U)|^4 \right) \\ &+ \frac{1}{3} \log |\hat{j}_2(T/2) - \hat{j}_2(U)|^4 ||j_2(U) - 24|, \end{split}$$

where

$$j_2(U) - 24 = \frac{\eta^{24}(\tau)}{\eta^{24}(2\tau)}, \quad \hat{j}_2(\tau) - 24 = \frac{\theta_2^{12}}{\eta^{12}}.$$

• This form is the same for orbifolds with N=2,3,4,6 up to numerical constants.

Conclusions

- Remarkable Universality
- Symmetries of nonsupersymmetric compactifications
- Gravitational Thresholds:
 I. Florakis NPB 916, 2017, 484
- Possible semi realistic models realistic models. Recent work:
 M. Blaszczyk, S. Groot-Nibbelink, O. Loukas, S. Ramos-Sanchez,
 JHEP 10, 2014, 119
 - S. Abel, K. R. Dienes, E. Mavroudi, PRD **91**, 2015, 126014
 A. E. Faraggi, C. Kounnas, H. Partouche, NPB **899**, 2015, 328
 I. Florakis, J. Rizos, NPb **913**, 2016, 495
 C. Angelentoni, I. Florakis, PLP **789**, 2010, 406
 - C. Angelantonj, I. Florakis, PLB **789**, 2019, 496
- More detailed study.