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Motivation

@ Quantum Theory of Gravity, Unification of Fundamental Interactions.

@ Particle Physics: MSSM still has unanswered questions like origin of
values of coupling constants, of masses etc.

@ We have bosonic string (open or closed). Lives in D = 26 space-time
dimensions. Contains a tachyon. Has no fermions.

@ Superstrings: Perturbatively five of them. They live in D = 10. They are
connected by various types of dualities. Vacua include nonperturbative
objects.

@ These theories are supersymmetric. SUSY removes tachyon and has
many other nice features.

@ But SUSY (if exists) is spontaneously broken. How? A stringy
mechanism is extremely hard to implement.



Motivation

e In non SUSY vacua one generically has a nonzero dilaton tadpole
(one loop).

@ To cure this problem one has to take a back reaction on the metric
into account at two-loop level: W. Fischler, L.Susskind (1984).
Hard to implement in practice.

o Alternatively one can try to work around a “wrong” flat vacuum:
E.Dudas, M.Nicolosi, G.Pradisi, A.Sagnotti (2004). Also hard. No
conventional perturbation theory in this case.

e We consider NonSUSY heterotic SO(16) ® SO(16) string.
Nontachyonic vacuum (stable). No Wilson lines.

o Gauge threshold corrections. General approach: V.Kaplunovsky
(1988). Valid either for SUSY/Non SUSY without tachyons.



Torus Amplitude

@ In field theory one loop partition function - spectrum. Example of a
massive scalar field

S = /d%(amaﬂqs — %m%)
@ Vacuum energy
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where V is a volume of space-time, t is a Schwinger parameter and and €
is an ultraviolet cut off.

@ When we have many particles then
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Torus Amplitude

Closed bosonic string D = 26, Torus amplitude.

Line element

1
ds* = —|doy 4 1dos]?, 0< 012 <1
T2

9  dwdi
w=o01+T03, ds‘=
T2

T - complex structure - parametrizes unequivalent Tori.

@ Coordinates on a Torus are periodically identified
w~Nw+m, w~wW+NT

m,n are integer

@ Modular group
T: 7—=7+1

1
S: o=
.

S and T form a modular group SL(2, Z) with
S%?=(ST)® =1



Torus Amplitude

@ Put a point on a string on a horizontal axis. It propagates upwards in
time for wy = 277o. It shifts in the space by wy = 277, where
T=T+1im

@ Time translations in CFT are generated by H = Lo + Ly — 2, space
translations are generated by P = Lo + Lg

@ We have a path integral
7 = TT[672777-2H eQﬂirlP] _ T,r,[qLofquofl]’ q= 627\-1'7-

oo
m=—0o0

1 ~
7= / - / d*pe P PTr(gN g,
F aq

Integrating over modular parameter and using Ly = % > Qi Ol



Torus Amplitude

@ Performing Gaussian integral over the p? and using

1
1—gqgn

Tr(qV] = Trlg==ore] = ]

n=1

we finally get

d2r 1
7 = -z -
L@#wmwm

where 7(7) is a Dedekind function
n(r) = q'/* ﬁ(l —q")
n=1
@ Under modular transformations
e+ 1) =), (<1) = Vi)

@ The fundamental domain F : |7| > 1 and f% <7n < %



SO(2n) characters

@ Let us introduce orthogonal decompositions. In NS sector

O = B -0
2nn 2nn
@ In R sector 0 0 ) 0
no g no_j—ngn
SQn = -2 L 5 C2n = -2 1
2nn 2nn

@ They have expansions
Oan = """ 1 +n2n—1)g+...), Vap =¢" " 2n+..)
Son = ¢ 4 L) Cgp = ¢l 4 L)
with (ho, Ay, hs, he) = (0,1/2,n/8,1n/8)
@ Recall for the Dedekind () function
1

] =¢ M (14ng+..)



SO(2n) characters modular transformations

@ Under T- duality transformations

(0271; Vv2n75’2n702n) = 6_%diag(1, —1767”‘ZL ,€

zn7r

) (02n ‘/2n52n CZn)

@ Under S- duality transformations

Oy, 111 1 Oan
Vo | _ e [11 =1 =1 | [ Van
Sgn 1 -1 " — " Sgn
Csp, 1 -1 —=" " Coy,

@ Recall also that for the Dedekind n(7) function
T:n(r+1)= 6%7](7)

550(-1) = V=it

@ When compactifying on a circle with radius R we get a lattice partition
function
nR

T _ QPL/4 O‘PL/4 — @ -
m,n — 7777 Zq , PL,R R



Gauge Thresholds. Field Theory

o Generically: We have a theory M and its low energy counterpart

N.

@ One loop correction to the gauge coupling constant can be
obtained from

L= / —CA Stre~t

C\(t) is an ultraviolet regulator, ¢ is a proper time
@ The background solves the classical equations of motion

@ To obtain the one -loop correction to the coupling constant we
expand the integral up to the second order in A, (z) and put
F(x) = const. We get

"= / *CA B(t), B(t)—str(Q2<112_X2> inr

Q- a generator of gauge group, x - helicity operator



Gauge Thresholds. String Theory

@ We use torus partition function

e Compute a correlator on a torus

/}-72 /d226162 2)V,(0)).

e V,(z) vertex operator for a gauge boson
VA = (9,X" +i(p- w)w,u)jAeip'X_

e Use torus propagators for noncompact bosons, fermions, and
Kac-Moody currents

sz
(X(2)X(0)), = —log |(61 (=) + 222, W)y = S(2)[5]

2

(JA(2)JB(0)) = 648 (4:252 log 01 (%) + trQ2>



Gauge Thresholds

@ Pick up the quadratic part in momenta of what we get.

@ The result: for 4d partition function

mt

7'2772772

we get threshold corrections

2
Ag:/fd (Bg(r) - bg)

T2

Ag:/fﬁ< e 3 200 () Tra@g - )0 - bg>

where bg = lim ;, o0 B(T)

@ Need of infrared regularization



NonSUSY heterotic SO(16) ® SO(16) superstring

@ Partition function for Eg ® Eg heterotic string

T = (Vg — Sg)(O16 + S16)(O16 + S16)
B (\/FQUﬁ)g -

@ Perform SUSY breaking orbifold Z5

—1,2 —12 —=1,2 —1,2
Sg = =5z, Sig =& =515, Cig =& —Cis.

@ Leads to the partition function for SO(16) ® SO(16) tachyon free
heterotic string

V5(016016 + S16516) + Os(V16C16 + C16V1e)
(VTomm)®

Sg(016516 + S16016) + Cs(V16V 16 + C16C16)
(VTanm)? .

7 =




NonSUSY heterotic SO(16) ® SO(16) superstring

Massless spectrum

o Untwisted bosonic g, Bu, ¢ and A,,((120,1) @ (1,120)).

e Untwisted fermionic ¢*((128,1) & (1, 128)).

e Twisted fermionic &,(16,16).

e The partition function (again)

7 _ V3(016016 + S16516) + 98(V16€16 +C16V1s)
(V/Tami)®
Ss(016S16 + S16016) + Cs(V16V 16 + C16C16)

(VTomm)® '




Gauge Thresholds, Orbifold Models

Start with heterotic Fg ® Fg and compactify it on an orbifold

T9)Zn x 7y, N =2,3,4,6.

A discrete Zy acts on T* as (breaks N' =4 to N = 2)

27r/NZ1’ 727r/NZ2.

Zn 21— e 29— €

Extra Z) is freely acting (breaks N'= 2 to N’ = 0)

Zo (_1)Fst+F1+F25_

where F; is a space-time fermion number, F o gauge group
“fermion numbers” , and ¢ is an order two shift along 7.

We have Scherk-Schwarz spontaneous SUSY breaking on K3 x T2.



Gauge Thresholds, Orbifold Models

e In terms of characters (example Zy x Z)
Vs — S8 = VaOu + O4Vy — 5454 — CuCy,

O16 + S16 = 01204 + V12V 4 + S1254 + C12C4,
o Under the first Zs

VO Ly, s, _s® v gl 50, g
e Under the second Zj : Ty, — (—=1)" T, and
1 1 1 1 =2 2 G —
(Si ),Ci )) - —(Si )a Ci )), (556)/12’056)/12) (Sgﬁ)/macga)/lz)-

e The gauge group is SO(16) ® SO(12) ® SO(4).



Universality

@ The threshold corrections have a form
Ag =AY £ AL L AU L AU

@ where

(t-) _ p At
g TAQ

o It is easier to computer the differences

AYY =5a57 A

Ag&w) - A%(lz) = =360y, :  Universal contribution

L. Dixon, V.Kaplunovsky, J. Louis (1991); E.Kiritsis, C.Kounnas,
M.Petropoulos, J.Rizos (1996).

e Torus moduli T' =T + i1y and U = Uy + iUy

[ B TaT.0) = g (BT

)



Universality

e Non BPS contributions

/ d%(—l)mfm,n(T, U)(hol.) x (anti — hol.).
]'—0(2)

72
e Written in terms of SO(2n) characters

12(03Vk + 3V3)(03Vs — V).

Holomorphic because of identities: I.Florakis, C.Kounnas (2009)
OVs — Vo =8.

@ The one can take the integral using the technique of
C.Angelantonj, I.Florakis, B.Pioline (2012,2013).



Universality

@ One gets for differences

Aso(ie) — Asoz2) =

= 361og (TLUsI(T)n(U)1) — 3 log (T,U:160,(T)6(0) 1)

1 o} ~ .
+310g72(T/2) = J2(U)[']]72(U) — 241,

where 24( ) o2
. n\r A 2

U)—24= 1"/ g =2

]2( ) 7724(27_)7 ]2(7—) 7,’12

@ This form is the same for orbifolds with N = 2,3,4,6 up to
numerical constants.



Conclusions

Remarkable Universality

Symmetries of nonsupersymmetric compactifications

Gravitational Thresholds:
I. Florakis NPB 916, 2017, 484

@ Possible semi realistic models realistic models. Recent work:
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JHEP 10, 2014, 119
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More detailed study.



