Higher Spin Interactions: From Classical to Quantum

Mirian Tsulaia

Okinawa Institute of Science and Technology

Higher Spin Gravity Online Club November 3, 2020

Plan of the talk

Part I

- Motivation
- Classical Interactions: Cubic and Higher Order
- Quantum Consistency

Reviews

- A.Fotopoulos, M.T., arXiv 0805.1346 (+ M.T., arXiv 1202.6303)
- A.Sagnotti., arXiv 1112.4285
- R.Rahman, M.Taronna., arXiv 1512.07932

Part II

- Classical Interactions: purely cubic Lagrangians
- Quantum Interactions: Quantum Higher Spin Gravity, D = 4, massless
- A string-like model, D = 3, massive
- Conclusions

Based on

- Evgeny Skvortsov, Tung Tran, M.T., arXiv 2006.05809, arXiv 2002.08487, arXiv 1805.00048
- also Angelos Fotopoulos, M.T., arXiv 0907.4061, arXiv 0705. 2939

Motivation. Free Fields. PART I

• For Higher Spin Theories free Lagrangians, equations of motion, are already nontrivial.

Different formulations:

- Metric –like formulation ("Fronsdal formulation"); Higher Spin Fields are higher rank tensors
- Frame-like formulation ("Vasiliev Formulation"):
 Higher Spin fields form a generalised frame-field and spin connection

Connection with other theories?

- String Theory
- Holography
- Sp(2n) formulation
- Supersymmetry ("Metric-like", "Frame-like")

- Originally considered on D = 4 flat background.
- One theory of interacting massless and massive Higher Spin fields is known: the Superstring Theory.
- What happens on $(A)dS_D$?
- "Frame-like" formulation on AdS_D ; known as Vasiliev's nonlinear equations
- More recent studies of interacting "Metric-like" fields on AdS_D
- Applications to Holography

Motivation. PART I

- Problems for massless higher spin fields on a flat background:
- Classical: Nonlocalities at the level of quartic interactions
- ullet Quantum: Inconsitency of the S-matrix
- Possible answers:
 - a) An unpleasant one: massless Higher Spins can not interact
 - b) More pleasant one: massless Higher Spins can not exist as asymptotic states
- One more: there are some indications massless Higher Spins are a part of the bigger picture. a complete theory should contain massive fields and/or some nonlocal objects (like in String Theory), that can make a whole theory local and consistent
- THE GOAL OF THE TALK: SHOW THAT ONE CAN HAVE A MODEL FREE FROM THESE TROUBLES

Interactions. PART I

- Light cone approach (R.Metsaev's clasification for massless/massive fields):
 - Invariance under the Dynamical generators implies equations on the vertices
- Noether procedure: Interaction vertices are gauge invariant
- BRST antifield formalism
- String derived: Consider the perturbative string theory in $\alpha' \to \infty$ limit
- String derived BRST methods: (derived from OSFT, more below)
- They are interconnected

BRST construction. Massless. PART I

Fock space state

$$|\Phi\rangle = \frac{1}{s!} \Phi_{\mu_1 \mu_2, \dots \mu_s} \alpha_{\mu_1}^+ \alpha_{\mu_2}^+ \dots \alpha_{\mu_s}^+ |0\rangle, \quad [\alpha_{\mu}, \alpha_{\nu}^+] = \eta_{\mu\nu}$$

satisfies mass-shell and transversality conditions

$$l_0|\varphi\rangle = 0, \quad l|\varphi\rangle = 0$$

with

$$l_0 = p \cdot p$$
, $l = p \cdot \alpha$, $l^+ = p \cdot \alpha^+$, $p_\mu = -i\partial_\mu$

• Introduce ghost variables

$$\{c_0, b_0\} = \{c, b^+\} = \{c^+, b\} = 1$$

 $|\Phi\rangle = |\varphi\rangle + c^+b^+|D\rangle + c_0b^+|C\rangle$

• The nilpotent BRST charge

$$Q = c_0 l_0 + c^+ l + c l^+ - c^+ c b_0,$$

BRST construction. Massless. PART I

• Taking three copies of these fields we get for the Lagrangian

$$\mathcal{L}_{cub.} \sim \sum_{i=1}^{3} \langle \Phi_i | Q_i | \Phi_i \rangle + g \langle \Phi_3 | \langle \Phi_2 | \langle \Phi_1 | | V_3 \rangle$$

• Nonlinear gauge transformations

$$\delta_{cub.}|\Phi_1\rangle \sim Q_1|\Lambda_1\rangle - g(\langle\Phi_2|\langle\Lambda_3|+\langle\Phi_3|\langle\Lambda_2|)|V_3\rangle)$$

• The invariance of \mathcal{L}_{cub} :

$$g^0: Q_1^2 = Q_2^2 = Q_3^2 = 0$$

 $g^1: (Q_1 + Q_2 + Q_3)|V_3\rangle = 0$

Comments on massive fields and on AdS_D . PART I

Some modifications, namely

• For massive Higher Spin fields

$$L_0 = p \cdot p + m^2$$
, $L^{\pm} = p \cdot \alpha^{\pm} + m \alpha_D^{\pm}$

Dimensional reduction: the same BRST charge and extra oscillators

$$[\alpha_D, \alpha_D^+] = 1$$

• For the massless fields on AdS_D :

$$p_{\mu} = -i(\partial_{\mu} + \omega_{\mu}^{ab} \alpha_a^{\dagger} \alpha_b), \quad l_0 = p \cdot p + m^2(s, D)$$

• The equation $\sum_{i=1}^{3} Q_i |V\rangle_{AdS} = 0$ is solved order by order in $\frac{1}{L^2}$

$$|V_3\rangle_{AdS} = |V_3\rangle_{Flat} + \frac{1}{L^2}|V'\rangle + \dots$$

• Alternatively: dimensional reduction, Holography, Noether procedure

Quartic Interactions. Flat Space-time. PART I

• Take four copies of $|\Phi\rangle$ and consider a modified Lagrangian

$$\mathcal{L}_{quart.} \sim \mathcal{L}_{cub.} + g^2 \langle \Phi_1 | \langle \Phi_2 | \langle \Phi_3 | \langle \Phi_4 | | V_4 \rangle$$

and modified gauge transformations

$$\delta_{quart.}|\Phi_i\rangle = \delta_{cub.}|\Phi_i\rangle - g^2(\langle\Phi_{i+1}|\langle\Phi_{i+2}|\langle|\Lambda_{i+3}|+...)|V_4\rangle$$

• Solutions of the equation for $|V_4\rangle$

$$\sum_{i=1}^{4} Q_i |V_4\rangle \sim \langle V_3 ||V_3\rangle$$

have the form

$$|V_4\rangle \sim \frac{1}{p^2} \langle V_3 || V_3 \rangle$$

Nonlocality. Apparently the same for AdS_D

theories"

• Is it possible from the knowledge of the cubic interactions to have

a control of higher order interactions? Named "constructable

• BCFW shift of external on-shell momenta

$$\hat{p}_i(z) = p_i - qz, \quad \hat{p}_j(z) = p_j + qz$$

higher point amplitudes can be constructed from the lower point ones

• Four point amplitude $\mathcal{M}_4(z)$ can be constructed as sum over two channels:

 $\mathcal{M}^{(1,2)}(z)$: poles from t,u channels $\mathcal{M}^{(1,4)}(z)$: poles from s,u channels

Quantum Consistency. PART I

• Agreement after shift: Benincasa-Cachazo four particle test

$$\mathcal{M}^{(1,2)}(0) = \mathcal{M}^{(1,4)}(0)$$

• Taking an interaction a Higher Spin fields with two scalars

$$\mathcal{L}^{0,0,s} = \kappa^{1-h} N_h \Phi^{\mu_1, \dots, \mu_s} J_{\mu_1, \dots, \mu_s}$$

and computing \mathcal{M}_4 for four scalars: does not work

• In string theory: if one adds extra nonlocal objects, then in Regge limit

$$M_4^t \sim s^{1-\kappa^{-2}t}$$

- A good behaviour under BCFW shifts
- A possibility for massless Higher Spins

Interactions. Classical/Quantum. PART II

- Recall: Bosonic OSFT is cubic. Can we do similar for HS?
- Consider a BRST invariant vertex

$$|V_{cub.}\rangle \sim (V^1 \times V^{M.})|0\rangle_{1,2,3}$$

$$V^1 = \exp\left(Y_{ij}(p^i \cdot \alpha^{j,+} + b_0^i c^{j+,})\right),$$

$$V^{M.} = \exp\left(\frac{S}{2}\alpha^{i,+} \cdot \alpha^{i,+} + Sc^{i,+} b^{i+,}\right)$$

- The quartic vertex is zero for $|S|^2 = 1$
- This makes the model purely cubic, but \mathcal{M}_4 vanishes too
- Dimensional reduction to massive HS fields,

$$m_1 + m_2 + m_3 = 0$$

Interactions. Classical. PART II

- Another example of classically purely cubic model (D.Ponomarev, E.Skvortsov., 16), derived from the results in (R.Metsaev., 91)
- ullet In the light front approach the Poincare generators are dynamical (\mathbf{D}) or kinematical (\mathbf{K}) . Interactions are "encoded" in (\mathbf{D})
- In D=4: $\mathbf{p}=(\beta,\gamma,p_a)$, where a=1,2 and the fields split into self-dual and anti self dual parts
- ullet The generators ${f D}$ are

$$P^-, J^{a,-}: 3$$

Expanding

$$P^{-} = H \sim H_2 + h_{\lambda_1 \lambda_2 \lambda_3}^{q_1 q_2 q_3} \, \Phi_{\lambda_1}^{q_1} \, \Phi_{\lambda_2}^{q_2} \, \Phi_{\lambda_3}^{q_3} + \dots$$

and similar for $J^{a,-}$, then from the equations

$$[J^{a-}, J^{b-}] = [J^{a-}, P^{-}] = 0$$

one gets equations for the vertices h

• A solution for three massless Higher Spin fields in D=4 (A.Bengtsson, I.Bengtsson, N.Linden., 87)

$$h_{\lambda_1,\lambda_2,\lambda_3,} = C^{\lambda_1\lambda_2\lambda_3} \frac{\overline{\mathbb{P}}^{\lambda_1+\lambda_2+\lambda_3}}{\beta_1^{\lambda_1}\beta_2^{\lambda_2}\beta_3^{\lambda_3}} + \overline{C}^{-\lambda_1,-\lambda_2,-\lambda_3} \frac{\mathbb{P}^{-\lambda_1-\lambda_2-\lambda_3}}{\beta_1^{-\lambda_1}\beta_2^{-\lambda_2}\beta_3^{-\lambda_3}}$$

with

$$\mathbb{P} = \mathbb{P}_{km} = p_k \beta_m - p_m \beta_k, \quad k = 1, 2, 3$$

• Choosing the coupling constant to be

$$C^{\lambda_1 \lambda_2 \lambda_3} \sim \frac{1}{\Gamma(\lambda_1 + \lambda_2 + \lambda_3)}$$

and putting $\bar{C}=0$, thus considering a chiral theory, one obtains that the quartic vertex vanishes

• Some comments on the vertex

$$h_{\lambda_1,\lambda_2,\lambda_3,} = C^{\lambda_1\lambda_2\lambda_3} \frac{\overline{\mathbb{P}}^{\lambda_1+\lambda_2+\lambda_3}}{\beta_1^{\lambda_1}\beta_2^{\lambda_2}\beta_3^{\lambda_3}} + \overline{C}^{-\lambda_1,-\lambda_2,-\lambda_3} \frac{\mathbb{P}^{-\lambda_1-\lambda_2-\lambda_3}}{\beta_1^{-\lambda_1}\beta_2^{-\lambda_2}\beta_3^{-\lambda_3}}$$

- Not all of the cubic vertices in the light -cone approach can be seen in the covariant approach
- The power of \mathbb{P} is a number of space-time derivatives Examples:
- $\lambda_1 = \lambda_2 = -\lambda_3 = 1$ corresponds to YM
- $\lambda_1 = \lambda_2 = -\lambda_3 = 2$ gravitational self-interactions
- $\lambda_1 = -\lambda_2 = s$ and $\lambda_3 = 2$ has no covariant analog Not in conflict with Aragone-Deser argument

• The action for the chiral theory

$$S = -\sum_{\lambda} \int (\boldsymbol{p}^{2}) \text{Tr}[\Phi^{-\lambda}(-\boldsymbol{p})\Phi^{\lambda}(\boldsymbol{p})]$$

$$+ \sum_{\lambda_{1,2,3}} \int C_{\lambda_{1},\lambda_{2},\lambda_{3}} \frac{\overline{\mathbb{P}}^{\lambda_{1}+\lambda_{2}+\lambda_{3}}}{\beta_{1}^{\lambda_{1}}\beta_{2}^{\lambda_{2}}\beta_{3}^{\lambda_{3}}} [\Phi_{\boldsymbol{p}_{1}}^{\lambda_{1}}\Phi_{\boldsymbol{p}_{2}}^{\lambda_{2}}\Phi_{\boldsymbol{p}_{3}}^{\lambda_{3}}] \delta^{4}(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}+\boldsymbol{p}_{3})$$

- The helicities in the vertex are restricted as $\lambda_1 + \lambda_2 + \lambda_3 \ge 0$
- Reminds of self-dual Yang-Mills (G.Chalmers, W.Siegel., 96)
- One can include "Chan-Patton" factors. They are

$$U(N), \qquad SO(N), \quad USp(N)$$

• The constant l_p can be associated with the Plank length

- Easier with "colored" theory; need "color ordered" amplitudes
- Four point tree amplitude

- Consistent with S=1, yet having a very nontrivial structure
- All spins must be present and a specific form of the coupling constants are needed "coupling conspiracy"

Interactions. Quantum. Trees. PART II

• Recursive technique: A_n with "1" particle off-shell is proportional to \mathbf{p}_1^2 . It becomes the propagator to compute A_{n+1}

$$A_n = \frac{(-)^n \alpha_n^{\Lambda_n - (n-2)} \beta_3 \dots \beta_{n-1} \mathbf{p}_1^2}{2^{n-2} \Gamma(\Lambda_n - (n-3)) \prod_{i=1}^n \beta_i^{\lambda_i - 1} \beta_1 \mathbb{P}_{23} \dots \mathbb{P}_{n-1,n}},$$

$$\alpha_n = \sum_{i < j} \overline{\mathbb{P}}_{ij} + \overline{\mathbb{P}}_{n-1,n}, \quad \Lambda_n = \lambda_1 + \dots + \lambda_n$$

Interactions. Quantum. Loops. PART II

• Vacuum (bubble) diagrams

$$Z_{1-\text{loop}} = \frac{1}{(z_0)^{1/2}} \prod_{s>0} \frac{(z_{s-1})^{1/2}}{(z_s)^{1/2}} \,,$$

- The partition function $Z_{1\text{-loop}} \sim (z_0)^{\nu_0/2}$
- The total number of degrees of freedom ν_0

$$\nu_0 = \sum_{\lambda} 1 = 1 + 2 \sum_{s=1}^{\infty} 1 = 1 + 2\zeta(0) = 0$$

can be regularized to zero (M.Beccaria, A.Tseytlin., 15)

- Explicitly one loop correction to self-energy, to three vertex, to the four point function, (E.Skvortsov, T.Tran, M.T., 20)
- Generic 1- loop amplitude factorizes as (E.Skvortsov, T.Tran., 20)

$$A_{1\text{-loop}} = A_{1\text{-loop, QCD}}^{++\dots,+} \times D_{\lambda_1,\dots\lambda_n}^{HSGR} \times \nu_0$$

• Multi loop amplitudes

$$\Gamma_n = \nu_0 \frac{(l_p)^{\Lambda_n - n} \alpha_n^{\Lambda_n - n}}{\Gamma(\Lambda_n - (n - 1)) \prod_{i=1}^n \beta_i^{\lambda_i}} \int \frac{d^4 p}{(2\pi)^4} \frac{\mathcal{K}_n(\overline{\mathbb{P}})}{\mathbf{p}^2 (\mathbf{p} + \mathbf{p}_1)^2 ... (\mathbf{p} - \mathbf{p}_n)^2}$$

• The nonvanishing ones are proportional to the total number of degrees of freedom

• Dimensionally reduce Chiral HSGRA to D=3 (R.Metsaev., 20; E.Skvortsov, T.Tran, M.T., 20)

$$h_3 = \sum_{\lambda_i = -\infty}^{+\infty} \sum_{k_i} C(k_i, \lambda_i) V(\mathbb{P}, \beta_i, k_i, \lambda_i) ,$$

• The coupling constants and the vertex are

$$C = \frac{\delta_{\sum_{i} k_{i} \epsilon_{i}, 0}}{\Gamma[\lambda_{1} + \lambda_{2} + \lambda_{3}]}, \quad V = (\mathbb{P} + \mathbb{P}_{\lambda})^{\lambda_{1} + \lambda_{2} + \lambda_{3}} \prod_{i} \beta_{i}^{-\lambda_{i}}.$$

$$\mathbb{P}_{\lambda} = \frac{i}{3} m \sum_{i} \check{\beta}_{j} \epsilon_{j} k_{j}, \qquad \epsilon_{i} = \operatorname{sign}(\lambda_{i})$$

• Keeps the theory purely cubic

D=3, Massive, string-like, PART II

• Masses belong to the "lattice"

$$\sum_{j} \epsilon_{j} m_{j} = 0$$

- Three amplitudes vanish
- UV behaviour of loops expected to soften
- One can consider the "coloured" version

Conclusions

- Quantum Higher Spin Gravity is a Consistent Quantum Theory
- It must be a building block for consistent quantum HS theories
- Includes (self dual) Gravity and Yang Mills vertices
- Its AdS_4 deformation (R.Metsaev., 18; E.Skvortsov., 18)
- Its consistent massive three dimensional "descendant" -a string like model
- More detailed studies

THANK YOU!!!