SPECIAL RELATIVITY – MIDTERM EXAM

Exercise 1. In the lecture, we described a relativistic particle in a (electromagnetic) vector field $A_{\mu}(x)$. Now, let's add in a scalar field $\phi(x)$. Recall that the rest energy m of a massless particle can be thought of as a potential energy. Let's take this completely seriously, and promote m into a position-dependent "potential" $\phi(x)$. Thus, consider the action:

$$S = -\int \phi(x)\sqrt{-dx_{\mu}dx^{\mu}} + \int A_{\mu}(x)dx^{\mu} , \qquad (1)$$

where we set the electric charge to 1, and assume $\phi(x) > 0$.

- 1. Write this action as $S = \int L(x^{\mu}, \dot{x}^{\mu}) d\lambda$, where $\dot{x}^{\mu} \equiv dx^{\mu}/d\lambda$. What is the Lagrangian L?
- 2. What is the 4-momentum p^{μ} of a particle with position x^{μ} and 4-velocity u^{μ} ?
- What is the 4-acceleration α^μ of a particle with position x^μ and 4-velocity u^μ? Check that α^μ is orthogonal to u^μ.

Exercise 2. In the lecture, we mentioned that Lorentz contraction of a moving object should not be confused with what an observer would actually see. Let us explore this on a specific example. Consider an observer at rest at at $\mathbf{x} = (0, 0, 0)$, looking at a square object whose center is at $\mathbf{x} = (0, 0, R)$ and whose vertices are at $\mathbf{x} = (\pm a/2, 0, R)$ and $\mathbf{x} = (0, \pm a/2, R)$, also at rest. Assume $a \ll R$, and answer all questions to first order in a.

- 1. Consider the light seen by the observer at t = 0. What are the spacetime coordinates of the square's center and vertices when this light was emitted?
- 2. At t = 0, the observer suddenly accelerates to a relativistically large velocity $\mathbf{v} = (v, 0, 0)$. What are the spacetime coordinates of the emitted light from Part 1 (square's center and vertices), in the observer's new reference frame?
- What is the new spherical position (θ, φ) at which the observer sees the square's center?
 What are the new angular sizes Δθ, sin θΔφ of the square's diagonals?
- 4. Explain in words: what happened to the Lorentz contraction?