
GR lecture 8
Einstein-Hilbert action; Conical singularities;
The Schwarzchild solution

I. CARROLL’S BOOK: SECTIONS 4.3, 5.1-5.4

II. Tµν AS NOETHER CHARGE VS. Tµν AS VARIATION WITH RESPECT TO

THE METRIC

When deriving the Einstein equations from an action principle, we found ourselves iden-

tifying the stress-energy tensor as:

T µν =
2√
−g

∂(
√
−gL)

∂gµν
, (1)

or, equivalently:

Tµν = − 2√
−g

∂(
√
−gL)

∂gµν
= Lgµν − 2

∂L

∂gµν
, (2)

where L is the matter Lagrangian. As we’ve seen for the electromagnetic field, this definition

actually doesn’t directly coincide with the one derived by considering T µν as the 4-current of

4-momentum, which is in turn the Noether charge associated with translations. Nevertheless,

the claim is that (1) defines something very much like the Noether current for translations,

such that e.g. the integrated total 4-momentum calculated from both definitions is the same

(at least in flat spacetime, where such an integrated quantity makes sense). Once we believe

that (1) defines something like the 4-current of 4-momentum, then it is clearly the superior

definition, since it’s automatically symmetric and gauge-invariant. However, why should we

believe that? In this section, we attempt to answer that question.

Recall that a symmetric matrix such as Tµν is fully determined by its products Tµνu
µuν

with arbitrary timelike unit vectors. Thus, to understand Tµν , it’s enough to consider Ttt in

arbitrary Lorentz frames. From the Noether point of view, Ttt should be the energy density.

To make this concrete, let’s consider the action in flat spacetime with initial conditions

somewhere and final conditions at t = tf . Then the action’s variation upon putting the

same final conditions but at a slightly later time tf + δt reads:

δS = −δt
∫
t=tf

d3xTtt . (3)
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Now, let us notice that there’s another way to change the time duration of the spacetime

region associated with S: instead of changing the final time coordinate tf , we can just stretch

the metric near t = tf ! In particular, to obtain the same shift δtf of proper time, we can

stretch a short time interval (tf −∆t, tf ) by a factor of 1 + δt/∆t, where we take ∆t small

but much longer than δt. Thus, we must stretch
√
−gtt by a factor of 1 + δt/∆t, which is

equivalent to:

δgtt = −2
√
−gtt δ(

√
−gtt) = −2

δt

∆t
, (4)

where we used the flat value gtt = −1 before the variation. The resulting variation of the

action S =
∫
d4x
√
−g L reads:

δS = ∆t

∫
d3x

δ(
√
−gL)

δgtt
δgtt = −2δt

∫
d3x

δ(
√
−gL)

δgtt
. (5)

Comparing with (3), we conclude that it indeed makes sense to identify (1) as the stress-

energy tensor.

III. GAUGE INVARIANCE VS. CONSERVATION

Another comment is that (1) has a close analog in electromagnetism. Indeed, the elec-

tric 4-current of a charged field can be defined by varying the action with respect to the

electromagnetic potential:

jµ =
δL

δAµ
. (6)

Charge conservation can then be beautifully derived as a consequence of gauge invariance.

We simply consider a variation of the particular form δAµ = ∂µθ, which is a gauge transfor-

mation, and must leave the action invariant:

0 = δS =

∫
d4x

δL

δAµ
δAµ =

∫
d4x jµ∂µθ = −

∫
d4x θ ∂µj

µ , (7)

where we integrated by parts and disposed of the boundary term by choosing θ(x) that

vanishes on the boundary. Since (7) must be true for otherwise arbitrary θ(x), we conclude

that charge is locally conserved: ∂µj
µ = 0.

To construct the analogous argument in gravity, recall that an infinitesimal coordinate

transformation xµ → xµ + ξµ acts on various fields through the Lie derivative Lξ. Indeed,
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in adapted coordinates for which ξµ = (ε, 0, 0, 0), the coordinate transformation acts simply

as the partial derivative ε(∂/∂x0); the Lie derivative Lξ is the coordinate-independent for-

mulation of the same geometric concept. As we’ve seen in Lecture 5, the Lie derivative of

the metric can be written in terms of covariant derivatives as:

δgµν = Lξgµν = ∇µξν +∇νξµ = 2∇(µξν) . (8)

Since the action should be invariant under this coordinate transformation, we conclude:

0 = δS =

∫
d4x

δ(
√
−gL)

δgµν
δgµν =

∫
d4x
√
−g T µν∇µξν = −

∫
d4x ξν∇µT

µν . (9)

Again, for this to be true for arbitrary infinitesimal ξµ(x), we must have the conservation

law ∇µT
µν = 0.

IV. THE CONICAL SINGULARITY SOLUTION IN 2+1D GR

As a warmup towards the Schwarzschild solution in 3+1d, let’s consider time-independent,

rotationally symmetric, non-rotating vacuum solutions in 2+1d. In other words, let’s find

the gravitational field of a stationary point mass in 2+1d GR. We begin by writing the

following ansatz for the metric:

ds2 = gtt(r)dt
2 + grr(r)dr

2 + r2dφ2 . (10)

This is the most general metric that satisfies the following assumptions:

• Rotationally invariant, i.e. invariant under φ→ φ+ const. This implies ∂φgµν .

• Treats the clockwise and anticlockwise directions equally, i.e. invariant under φ→ −φ.

This implies gtφ = grφ = 0.

• Static, i.e. ∂tgµν = 0 and gtr = gtφ = 0.

As we will see in an exercise, the last assumption isn’t actually necessary. Note that we

don’t need to consider a more general gφφ(r) in (10), since we can always use the tangential

length element
√
gφφ dφ ≡ rdφ as a definition of the r coordinate. The nonzero elements of
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gµν , g
µν and ∂µgνρ read:

gtt ; grr ; gφφ = r2 ; (11)

gtt =
1

gtt
; grr =

1

grr
; gφφ =

1

r2
; (12)

∂rgtt ≡ g′tt ; ∂rgrr ≡ g′rr ; ∂rgφφ = 2r . (13)

The Christoffel symbols then read:

Γrtt = − g′tt
2grr

; Γttr =
g′tt
2gtt

; Γrrr =
g′rr
2grr

; Γrφφ = − r

grr
; Γφφr =

1

r
, (14)

where all other components are either related to the above by symmetries (e.g. Γtrt = Γttr)

or vanishing. We see that a lot of Christoffel components have a form similar to g′rr/(2grr).

This is not a coincidence: the Christoffel is really about curvature angles, which are related

not to the absolute size of the metric, but to its relative rate of change; finally, the factor of

1/2 in the Christoffel’s definition tells us that it’s directly sensitive not to the metric – which

gives lengths squared – but to lengths themselves. Thus, it’s a better idea to reparameterize

the original metric (10) as:

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dφ2 , (15)

which gives us:

Γrtt = α′e2(α−β) ; Γttr = α′ ; Γrrr = β′ ; Γrφφ = −re−2β ; Γφφr =
1

r
. (16)

We can now directly compute the Ricci tensor as:

Rµν = ∂ρΓ
ρ
µν − ∂µΓρνρ + ΓρρσΓσµν − ΓρµσΓσνρ , (17)

which yields:

Rtt = e2(α−β)
(
α′′ + α′2 − α′β′ + α′

r

)
; Rrr = −α′′ − α′2 + α′β′ +

β′

r
;

Rφφ = re−2β(β′ − α′) .
(18)

Let us now apply the vacuum Einstein equations Rµν = 0. From e2(β−α)Rtt + Rrr, we find

α′+β′ = 0. On the other hand, from Rφφ, we find β′−α′ = 0. It follows that α′ and β′ both

vanish, i.e. that α and β are both constants! We can get rid of these constants by rescaling

the coordinates as:

t→ eαt ; r → eβr ; φ→ e−βφ , (19)
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which brings the metric to the flat form:

ds2 = −dt2 + dr2 + r2dφ2 . (20)

Note that rescaling φ as in (19) may affect its 2π periodicity, which so far we’ve been taking

for granted. As we’ll now see, the non-trivial part of the geometry (20) is precisely encoded

in this periodicity.

First, let’s recall that the flat answer (20) should have been expected: we know that in 3d

spacetime, Rµν = 0 implies that the entire Riemann curvature vanishes. However, now we

must be careful. For a point mass, Tµν and thus Rµν vanishes everywhere except at r = 0.

Thus, we may have some curvature that’s concentrated, like a delta function, just at the

origin. To see what this curvature should look like, let’s “zoom in” on the point mass so it

isn’t look pointlike anymore. Recall the form of Tµν for a mass density at rest, in locally

inertial coordinates:

Tµν =


ε 0 0

0 0 0

0 0 0

 , (21)

By the 3d Einstein equation, the Ricci tensor then takes the form:

Rµν = 8πG(Tµν − Tgµν) = 8πG


0 0 0

0 ε 0

0 0 ε

 . (22)

Thus, we expect a purely spatial 2d curvature Rxx = Ryy. Recall that in 2d, the Rie-

mann tensor has just one independent component. The same curvature can be expressed

equivalently as:

Rxyxy = Rxx = Ryy =
1

2
R . (23)

Thus, returning to the pointlike mass case, we are dealing with a distributional curvature of

the form:

Rxyxy = 8πGMδ2(x) , (24)

where M is the mass at the origin, and δ2(x) is a spatial delta function that integrates to 1.

What do we call a 2d flat manifold with distributional curvature at the origin? We call this
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a cone. Indeed, a 2d cone is constructed by simply “cutting out” some angle χ from a flat

plane, and gluing the two sides of the cut together. The geometry throughout the cone is

the same as that of the plane, i.e. flat, with the exception of the apex. To see that there is

curvature at the apex, we recall our definition of the Riemann in terms of parallel transport

along a closed loop. If we parallel-transport a vector around the apex of the cone, it ends

up at angle χ to its original orientation. Taking χ to be small for simplicity and taking care

with the signs (better to make a drawing for this purpose), we find that the rotation matrix

upon traversing a counterclockwise loop is:

Mi
j =

1 −χ

χ 1

 . (25)

Recalling that the Riemann tensor element Rx
yxy is My

x per unit area of a counterclockwise

loop, we read off:

Rxyxy = χδ2(x) . (26)

Comparing with (24), we see that in 2+1d GR, the geometry around a (small) mass M is

conical, with deficit angle χ = 8πGM . Returning to the polar coordinates (20), we note

that the deficit angle can be encoded by simply changing the period of φ from 2π to 2π−χ,

without any change to the ds2 formula.

V. PRECESSION OF MERCURY

The gravitational field of the Sun, outside the Sun itself, is well-described by the

Schwarzschild metric:

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM/r
+ r2(dθ2 + sin2 θ dφ2) , (27)

which can be derived from the vacuum Einstein equations via a 3+1d version of the calcu-

lation we performed in the last section. Since the Sun is much larger than its Schwarzschild

radius, we are always in the limit GM/r � 1. Let us consider the shapes of orbits, i.e.

geodesics, in the metric (27). By spherical symmetry, an orbit will always remain in the

same “plane”, which we can choose as θ = π/2. From the translation symmetries in t and

φ, we get conservation laws for energy and momentum. It’s convenient to talk about energy
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and momentum per unit mass of the moving particle, i.e. of the planet. These read:

E = −ut ; L = uφ = gφφu
φ = r2

dφ

dτ
, (28)

where τ is the planet’s proper time, and uµ = dxµ/dτ is the 4-velocity. The constraint that

uµ is a unit vector reads:

−1 = uµu
µ = gtt(ut)

2 + grr(u
r)2 + gφφ(uφ)2

= − E2

1− 2GM/r
+

1

1− 2GM/r

(
dr

dτ

)2

+
L2

r2

= − E2

1− 2GM/r
+

L2

r4(1− 2GM/r)

(
dr

dφ

)2

+
L2

r2
,

(29)

where in the last line we used dφ/dτ = L2/r2. At this point, it’s very convenient to switch

variables from r to u ≡ 1/r:

−1 = − E2

1− 2GMu
+

L2

1− 2GMu

(
du

dφ

)2

+ L2u2 , (30)

Rearranging the terms and introducing a factor of 1/2 just for fun, we get:

1

2

(
du

dφ

)2

+ V (u) =
E2 − 1

2L2
; V (u) ≡ −GMu

L2
+
u2

2
−GMu3 . (31)

Thus, the spatial shape u(φ) of the orbit has been reduced to a mechanical problem with

“total energy” (E2− 1)/(2L2) and “potential” V (u). It is worthwhile to compare our result

so far to the one in the standard Kepler problem. There, we have:

L = r2
dφ

dt
;

ε =
1

2

(
dr

dt

)2

+
r2

2

(
dφ

dt

)2

− GM

r
=

L2

2r4

(
dr

dφ

)2

+
L2

2r2
− GM

r

=
L2

2

(
du

dφ

)2

+
L2u2

2
−GMu ,

(32)

where we used ε for energy this time, and again defined u = 1/r. Rearranging terms, this

becomes:

1

2

(
du

dφ

)2

+ Vnon-rel(u) =
ε

L2
; Vnon-rel(u) = −GMu

L2
+
u2

2
. (33)

Comparing (31) with (33), we find two differences. First, (E2−1)/2 is replaced with ε. This

is not surprising: recall that E is energy per unit mass; thus, in the non-relativistic limit,
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it will take the form 1 + ε, where 1 is the rest energy, and ε � 1 is the energy from non-

relativistic physics. The second difference is the last term in (31), which, quite remarkably,

is the full “relativistic correction” to the problem of the orbit’s shape.

We are now ready to discuss the orbit’s precession. The fact that Keplerian orbits are

closed is encoded in the fact that u(φ) has a period of precisely 2π, regardless of the amplitude

(i.e. of the orbit’s eccentricity). This fact in turn is obvious from the fact that Vnon-rel(u) is

a harmonic potential, with period:

∆φ =
2π√

d2Vnon-rel/du2
= 2π . (34)

In the relativistic problem (31), the potential is no longer harmonic. The easiest case to

handle is that of slightly eccentric orbits, in which u performs slight oscillations around the

potential’s minimum (where the minimum itself corresponds to the circular orbit). Such

small oscillations can always be treated as harmonic, governed by the potential’s second

derivative at the minimum:

d2V

du2
= 1− 6GMu0 , (35)

where u0 is now the minimum of V (u), given by u0 = GM/L2 in the non-relativistic limit.

The period of u(φ) now becomes:

∆φ =
2π√

d2V/du2
≈ 2π (1 + 3GMu0) = 2π +

6πGM

Rc2
≈ 2π + 24π3

(
R

cT

)2

, (36)

where we restored the factors of c, denoted the radius of the circular orbit by R = 1/u0, and

used Kepler’s relation GM/R3 = (2π/T )2 between the orbit’s radius R and time period T .

The orbit’s angular precession per unit time therefore reads:

∆φ− 2π

T
=

24π3R2

c2T 3
. (37)

For the parameters of Mercury’s orbit, this evaluates to 41′′/century. The correct GR value

for Mercury’s precession, which takes into account the orbit’s eccentricity, is 43′′/century.

Our simple analysis was not so bad!

VI. DEFLECTION OF STARLIGHT BY THE SUN

Let’s now consider the trajectories of lightrays in the Sun’s gravitational field (27). These

are somewhat analogous to the hyperbolic orbit or a very energetic object which merely gets
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slightly deflected by its “collision” with the Sun’s field. Thus, the zeroth-order approximation

to the trajectory is a straight line, going from (r, φ) = (∞, 0) to (r, φ) = (∞, π), with some

minimal distance of approach b from the Sun, which we call the “impact parameter”. Light

travels along null geodesics, for which we do not have proper time, but we do have an affine

parameter λ. Furthermore, we can scale λ so that pµ = dxµ/dλ is the light’s 4-momentum.

The conserved quantities then look identical to (28):

E = −pt ; L = pφ = gφφp
φ = r2

dφ

dλ
. (38)

In place of (29), we now have the constraint that pµ is lightlike:

0 = pµp
µ = gtt(pt)

2 + grr(p
r)2 + gφφ(pφ)2

= − E2

1− 2GM/r
+

L2

r4(1− 2GM/r)

(
dr

dφ

)2

+
L2

r2
.

(39)

Redefining again u ≡ 1/r, we arrive at (30) with 0 in place of −1 on the LHS:

0 = − E2

1− 2GMu
+

L2

1− 2GMu

(
du

dφ

)2

+ L2u2 , (40)

which becomes:

du

dφ
=

√
E2

L2
− u2(1− 2GMu) , (41)

which can be integrated as:

dφ =
du√

E2/L2 − u2(1− 2GMu)
. (42)

The total change ∆φtotal in the course of the trajectory can be found by integrating (42)

from u = 0, i.e. r = ∞, down to the closest approach radius b = 1/umax and back again.

umax is a crucial input in this integral; it can be found by solving the condition du/dφ = 0.

If we neglect the Sun’s gravity altogether, i.e. we through away the GM terms, then we get

1/umax = L/E, which makes sense: the light’s energy E is the same as its linear momentum,

and b = 1/umax is the angular momentum’s “arm”. At this zeroth-order approximation, the

total change in φ reads:

∆φtotal = 2

∫ E/L

0

du√
E2/L2 − u2

= 2

∫ 1

0

dx√
1− x2

= π , (43)
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as expected. We are interested in the correction to this angle at first order in GM . First,

we solve for umax = E/L+ ε to this order:

0 =

(
du

dφ

)2
∣∣∣∣∣
u=umax

=
E2

L2
− u2 + 2GMu3 ≈ E2

L2
−
(
E

L
+ ε

)2

+ 2GM

(
E

L

)3

=
2E

L

(
GME2

L2
− ε
)
.

(44)

From which we read off:

umax ≈
E

L
+ ε =

E

L

(
1 +

GME

L

)
=⇒ E

L
= umax (1−GMumax) . (45)

We can now plug this into (42) to get:

dφ

du
=

1√
u2max(1− 2GMumax)− u2(1− 2GMu)

≈ 1√
u2max − u2

+
GM(u3max − u3)
(u2max − u2)3/2

. (46)

Crucially, the du integration is now still from 0 to umax = 1/b and back again. Changing

variables as x = u/umax = bu, we thus obtain:

∆φtotal = π +
2GM

b

∫ 1

0

(1− x3)
(1− x2)3/2

dx . (47)

One piece of the integral can be evaluated as:∫
dx

(1− x2)3/2
=

∫
dx

(
1√

1− x2
+

x2

(1− x2)3/2

)
=

∫
dx

(
1√

1− x2
+ x

(
1√

1− x2

)′)
=

x√
1− x2

.

(48)

For the second piece, we change variables to y = 1− x2 to get:∫
x3dx

(1− x2)3/2
=

1

2

∫
(y − 1)dy

y3/2
=

1

2

∫
(y−1/2 − y−3/2)dy

= y1/2 + y−1/2 =
√

1− x2 +
1√

1− x2
=

2− x2√
1− x2

.

(49)

Putting the pieces together, we get:∫
(1− x3)

(1− x2)3/2
dx =

x2 + x− 2√
1− x2

=
(x− 1)(x+ 2)√

1− x2
= −(x+ 2)

√
1− x
1 + x

. (50)

From which we read off:

∆φtotal = π − 2GM

b
(x+ 2)

√
1− x
1 + x

∣∣∣∣∣
1

0

= π +
4GM

b
. (51)

We conclude that the deflection angle at first order for a lightray with impact parameter b

is 4GM/b.
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VII. STATIONARY OBSERVERS IN THE SCHWARZSCHILD METRIC

In this section, we begin to take the Schwarzschild metric seriously outside the limit

r � GM , i.e. our discussion begins to include Schwarzschild black holes. For now, though,

we stay outside the horizon, i.e. we take r > 2GM . Consider a so-called “stationary”

observer, which stays at the same spatial point (r, θ, φ). The 4-velocity uµ of such an

observer has only a time component ut = dt/dτ , where τ is proper time. We can find the

value of ut from the normalization condition:

−1 = uµu
µ = gtt(u

t)2 =⇒ dt

dτ
= ut =

1√
−gtt

=
1√

1− 2GM/r
. (52)

Let’s imagine that this observer emits light signals at some constant intervals ∆τ of its proper

time, or perhaps a light wave with frequency 1/∆τ in the observer’s frame. The signals – or

the peaks of the wave – will then propagate along null geodesics of the Schwarzchild metric.

Without even solving the geodesic equation, we can use the time invariance of Schwarzchild

to make a simple prediction: since the propagation is invariant under shifting t → t + ∆t,

any two signals that start out separated by a time delay ∆t will always remain separated by

the same time delay! The crucial subtlety is that the time delay is constant when measured

via coordinate time dt, as opposed to proper time dτ =
√
−gttdt. Thus, if an observer at

radius r emits signals with period ∆τ , an observer at radius R > r will receive them with a

larger period:

∆τ ′ =
√
−gtt(R)∆t =

√
gtt(R)

gtt(r)
∆τ =

√
1− 2GM/R

1− 2GM/r
∆τ . (53)

This is one way to derive gravitational redshift, which we discussed already in Lecture 4-2,

and can be observed in e.g. the solar absorption spectrum as viewed from Earth. In a more

extreme case, we can consider r that is very close to the event horizon r = 2GM . Then we

find that the redshift becomes infinite, ∆τ ′ → ∞. A similar result is true for an observer

that isn’t stationary, but is falling into the horizon: to an external observer, her signals will

appear more and more stretched in time, and in particular the external observer will never

quite see the infalling one cross the horizon.

Another key insight about a stationary observer at r = const is that such an observer

is accelerated: it must use e.g. some rocket engines to avoid falling (note that this is true

already for Newtonian gravity, and has nothing to do with black holes). We can find the
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4-acceleration as:

αµ =
duµ

dτ
+ Γµνρu

νuρ = 0 + Γµtt(u
t)2 =

1

1− 2GM/r
Γµtt , (54)

where we used duµ/dτ = 0, since uµ is constant along the stationary trajectory. The only

nonzero component of Γµtt in the Schwarzschild metric is:

Γrtt = −1

2
grr∂rgtt =

1

2

(
1− 2GM

r

)
∂r

(
1− 2GM

r

)
=
GM

r2

(
1− 2GM

r

)
. (55)

Thus, the nonzero component of the 4-acceleration is:

αr =
GM

r2
, (56)

which precisely agrees with the Newtonian acceleration! However, we must be careful. The

observer’s proper acceleration – the acceleration as actually measured in her reference frame

– is given by the length
√
αµαµ of the 4-acceleration:

a =
√
αµαµ =

√
grrα

r =
GM/r2√

1− 2GM/r
. (57)

This acceleration behaves as the Newtonian GM/r2 only at r � GM . As we approach

the horizon r = 2GM , the acceleration diverges: at the horizon, it takes infinite effort to

avoid falling in. If we consider an observer very close to the horizon, i.e. r = 2GM + ε, the

acceleration (57) simplifies into:

a ≈ 1/(2GM)√
1− 2GM/(2GM + ε)

≈ 1/(2GM)√
1− (1− ε/(2GM))

=
1√

2GMε
. (58)

VIII. SCHWARZSCHILD-LIKE COORDINATES FOR FLAT SPACETIME

We already know some commonalities between a Rindler horizon in flat spacetime and

the Schwarzschild horizon. Let’s define Rindler coordinates (ρ, t), where t will play a similar

role to the Schwarzschild t:

ds2 = −dT 2 +X2 = dρ2 − ρ2dt ; (T,X) = (ρ sinh t, ρ cosh t) . (59)

Both in Rindler coordinates and in the r > 2GM region of the Schwarzschild metric, sta-

tionary observers are accelerated, and the acceleration diverges as we approach the horizon.

Second, an observer or light signal approaching the horizon does not reach it until t =∞ in
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both cases (see Lecture 3-2 for the Rindler case and see Carroll for the Schwarzschild case).

It is possible to intensify the similarity if we switch coordinates in Rindler space from ρ to

r = ρ2. This brings the metric to the form:

dr = 2ρdρ ⇒ dρ =
dr

2
√
r
⇒ ds2 =

dr2

4r
− rdt2 . (60)

The Rindler horizon ρ = 0 is now r = 0, and its similarities with the Schwarzschild horizon

intensify. In both cases, at the horizon, gtt diverges and grr vanishes. In both cases, “outside

the horizon”, i.e. r > 2GM in Schwarzschild and r > 0 in (60), r is spacelike and t is

timelike; “inside the horizon”, i.e. at r < 2GM and r < 0 respectively, those roles flip. Note

that the r < 0 region was not visible in the original Rindler coordinates, where ρ2 was always

positive. While the usual Rindler coordinates are associated with the “right-hand quarter”

of Minkowski space, the r < 0 can be associated with the “top quarter”, if we identify:

(T,X) =

 (
√
r sinh t,

√
r cosh t) r > 0

(
√
−r cosh t,

√
−r sinh t) r < 0

. (61)

Note that, while both the r > 0 and r < 0 patches correspond to legitimate regions of

Minkowski space, the patching between them is not smooth. For example, a line of changing

r at constant t is a spacelike straight line at r > 0 and a timelike straight line at r < 0, with

a “90-degree kink” in between. The same statements turn out to be true for the r > 2GM

and r < 2GM patches of the Schwarzschild spacetime.

IX. THE NEAR-HORIZON LIMIT VS. THE RINDLER METRIC; GUESSING

THE KRUSKAL COORDINATES

Let’s continue to analyze the near-horizon limit r = 2GM + ε of Schwarzschild. The

spacetime metric in this limit reads:

ds2 = −
(

1− 2GM

2GM + ε

)
dt2 +

dε2

1− 2GM/(2GM + ε)
+ (2GM + ε)2(dθ2 + sin2 θ dφ2)

= − ε

2GM
dt2 +

2GM

ε
dε2 + (2GM)2(dθ2 + sin2 θ dφ2) .

(62)

In the limit, the angular coordinates form a sphere of the approximately constant radius

2GM . Let us focus on the (t, r) plane, i.e. the (t, ε) plane, where more interesting things

13



happen. In particular, up to some rescalings of the coordinates, we recognize it as the

Rindler-like metric (60):

ds2 =
dε̃2

4ε̃
− ε̃ dt̃2 ; ε̃ = 8GMε ; t̃ =

t

4GM
. (63)

We conclude that the near-horizon limit of Schwarzschild looks like the Rindler wedge of

flat spacetime, with t̃ = t/(4GM) acting as the boost angle and
√
ε̃ =

√
8GM(r − 2GM)

acting as the radius. In particular, near the horizon, the time translation symmetry of full

Schwarzschild looks like a boost symmetry!

With this lesson guiding our intuition, we can now extend the full Schwarzschild spacetime

beyond the horizon, using coordinates that remain regular on it. For Rindler coordinates,

this is accomplished by passing to the ordinary inertial coordinates (T,X), which see all

of Minkowski space, and are regular on the horizons X = ±T . We will similarly try to

replace (t, r) with global coordinates (T,R) subject to the flat metric −dT 2 +dR2, for which

t/(4GM) behaves as a boost angle, even outside the near-horizon limit. To take into account

the changes in the metric as we go far from the horizon, we will allow for r-dependent warping

both in the coordinates and in the metric. Thus, we construct our coordinate transformation

as:

T = f(r) sinh
t

4GM
; R = f(r) cosh

t

4GM
, (64)

and we’d like the metric to become:

ds2 = g(r)(−dT 2 + dR2) + r2(dθ2 + sin2 θ dφ2) , (65)

where r is now no longer one of the coordinates, but is a function of T and R which we can

defined implicitly from (64) as R2 − T 2 = f(r)2. It remains to fix the warping functions

f(r) and g(r). To do that, we plug the coordinate transformation (64) into the metric (65):

ds2 = g(r)

(
− f(r)2

(4GM)2
dt2 + f ′(r)2dr2

)
+ r2(dθ2 + sin2 θ dφ2) , (66)

and compare to the Schwarzschild metric. From the ratio of gtt and grr, we can find an

equation involving just f(r):(
1− 2GM

r

)2

= − gtt
grr

=

(
f(r)

4GMf ′(r)

)2

. (67)
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This can be easily solved via:

(ln f(r))′ =
f(r)′

f(r)
=

1

4GM

1

1− 2GM/r
=

1

4GM

r

r − 2GM
=

1

4GM
+

1

2(r − 2GM)

=⇒ ln f(r) = const +
r

4GM
+

1

2
ln(r − 2GM)

=⇒ f(r) = const× er/(4GM)
√
r − 2GM .

(68)

The constant prefactor can be swallowed into g(r), so it’s arbitrary. The conventional choice

is 1/
√

2GM , so that:

f(r) = er/(4GM)

√
r

2GM
− 1 . (69)

We can now find g(r) via:

1− 2GM

r
= −gtt = g(r)

(
f(r)

4GM

)2

=
g(r)

(4GM)2
er/(2GM)

( r

2GM
− 1
)

=⇒ g(r) =
32G3M3

r
e−r/(2GM) .

(70)

To sum up, the transformation into Kruskal coordinates and the metric in them read:

(T,R) = er/(4GM)

√
r

2GM
− 1

(
sinh

t

4GM
, cosh

t

4GM

)
; (71)

R2 − T 2 = er/(2GM)
( r

2GM
− 1
)

; (72)

ds2 =
32G3M3

r
e−r/(2GM)(−dT 2 + dR2) + r2(dθ2 + sin2 θ dφ2) . (73)

EXERCISES

Exercise 1. Prove by direct calculation that the variation of the Ricci tensor is:

δRµν = ∇ρδΓ
ρ
νµ −∇νδΓ

ρ
ρµ . (74)

Exercise 2. Prove the 2+1d version of Birkhoff’s theorem. Starting from an ansatz that

doesn’t assume time independence:

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dφ2 , (75)

show that the vacuum Einstein equations Rµν = 0 imply ∂rα = ∂rβ = ∂tβ = 0, which brings

the metric to the form:

ds2 = −e2α(t)dt2 + e2βdr2 + r2dφ2 . (76)

Finally, find a coordinate transformation which brings this metric to the flat form (20).
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Exercise 3. Consider the Schwarzschild metric:

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM/r
+ r2(dθ2 + sin2 θ dφ2) . (77)

Show that this metric satisfies the vacuum Einstein equations Rµν = 0. On the other hand,

show that Rtrtr is nonzero, and compare it to the Newtonian prediction at r � GM .
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