
GR lecture 7
Decomposition of the Riemann tensor; Geodesic deviation;
Einstein’s equations

I. CARROLL’S BOOK: SECTIONS 3.7, 3.10, 4.1, 4.2, 4.4, 4.5

II. GEODESIC DEVIATION AS AN ACCELERATION GRADIENT

In class and in Carroll’s book, we derived the geodesic deviation equation, which gives the

relative 4-acceleration αµ of a pair of free-falling particles, each with 4-velocity uµ, separated

by a vector sµ:

αµ ≡ D2sµ

dt2
≡ (uν∇ν)

2sµ = Rµ
νρσu

νuρsσ . (1)

In the non-relativistic limit, where uµ ≈ (1, 0, 0, 0), this becomes an ordinary acceleration,

given by:

ai = Ri
ttjs

j . (2)

This allows us to interpret Rittj as the gradient of the Newtonian acceleration field:

Rittj = ∂jai . (3)

The fact that Newtonian gravity is conservative, i.e. ∂[iaj] = 0, is ensured automatically by

the symmetries of the Riemann tensor:

∂iaj = Rjtti = Rtijt = Rittj = ∂jai , (4)

where we used successively the symmetries Rµνρσ = Rρσµν and Rµνρσ = R[µν][ρσ].

Finally, the divergence of the acceleration field is given by:

∂ia
i = Ri

tti = −Ri
tit = −Rµ

tµt = −Rtt , (5)

where we used the fact that Rt
ttt = 0 (from the index antisymmetries) to convert the 3d

trace into a 4d trace. On the other hand, in Newtonian gravity, we know that ∂ia
i is given

by the mass density ρ via:

∂ia
i = −4πGρ = −4πGTtt . (6)
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Here, we used the fact that, in the non-relativistic limit, the energy density T tt consists

almost entirely of rest energy, i.e. is equal to the mass density ρ. Also, we assumed that the

metric is approximately flat, i.e. gravity is weak, so that T tt = Ttt. The comparison of eqs.

(5) and (6) served as one of our motivations for the Einstein equations:

Rµν −
1

2
Rgµν = 8πGTµν . (7)

III. GENERAL COVARIANCE / DIFFEOMORPHISM INVARIANCE / BACK-

GROUND INDEPENDENCE

There is a profound difference between full GR, subject to Einstein’s equations, and

merely physics on a given curved geometry gµν(x). Once the metric becomes another dy-

namical field, with its own field equations that must be solved along with the others, we no

longer have fields and particles propagating on top of a given geometry. Instead, everything,

including the geometry, is now made of dynamical fields! It’s fields propagating on top of

each other!

A related important insight is that, if the metric isn’t given in advance, then coordinates

have no geometric content whatsoever: they are merely labels for distinguishing different

points. Coordinate differences get associated with actual distances only after we solve the

Einstein equation for the metric. Before we look at some particular solution in some particu-

lar coordinate system, it is meaningless to ask for e.g. the value of a field at given coordinates

(t, x, y, z), or for the coordinates at which two particles collide with each other. We can only

ask questions such as “how much distance did the particles traverse before colliding”, which

necessarily involve some extra fields – in this case, the metric. Physics is now entirely about

relations between different fields. Coordinates merely serve as a convenient mathematical

intermediary to tell us when we are talking about two fields at the same point, or at a pair

of infinitesimally nearby points.
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IV. COUNTING DEGREES OF FREEDOM IN EINSTEIN’S EQUATIONS

A. Number of fields vs. number of equations

This week, we learned Einstein’s equations (7). These are the field equations governing

the metric gµν(x), which is now a full-fledged dynamical field. In this section, we count

degrees of freedom to ensure that there is indeed one field equation for every dynamical

variable. We begin with a simpler example – the Maxwell equations, viewed as equations

for the electromagnetic potential Aµ(x):

∂νF
µν = jµ , (8)

where we’re considering flat spacetime for simplicity. Eq. (8) is a vector equation, and has

4 components – the same number as the field Aµ(x) itself. However, we must be careful. Aµ

is subject to the gauge transformations:

Aµ → Aµ − ∂µθ , (9)

which do not change its physical content, and to which the gauge-invariant Maxwell equa-

tions (8) are completely blind. This gauge freedom is parameterized by 1 function θ(xµ) on

spacetime, leaving Aµ(x) with 4− 1 = 3 truly “physical” components. Luckily (and not by

coincidence), a dual statement holds for the field equations. The divergence ∂µ∂νF
µν = ∂µj

µ

of eq. (8) is identically true – the LHS is identically zero, and the RHS vanishes by charge

conservation. Therefore, this particular piece of the Maxwell equations doesn’t convey any

information, and the number of non-trivial equations is actually 4 − 1 = 3, in agreement

with our count of meaningful components of Aµ(x).

A very similar story holds for GR. Naively, eq. (7) provides us with 10 equations, since

the LHS and RHS are both symmetric matrices. This makes one equation for each of the

components of the metric field gµν(x). However, the metric is also subject to a “gauge

freedom” of coordinate transformations, also known as diffeomorphisms:

gµν →
∂xρ

∂x′µ
∂xσ

∂xν
gρσ , (10)

which do not change its physical content, and to which the coordinate-independent Einstein

equations (7) are completely blind. This diffeomorphism freedom is parameterized by 4

functions x′µ(xν) on spacetime, leaving gµν(x) with 10− 4 = 6 truly “physical” components.
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To balance this, 4 components of the Einstein equations are actually identities: indeed, the

divergence ∇µ(Rµν − 1
2
Rgµν) = 8πG∇µTµν is identically true, with the LHS resulting from

Bianchi identities, and the RHS from energy-momentum conservation. Thus, the number of

non-trivial equations in (7) is actually 10−4 = 6, in agreement with our count of meaningful

components of gµν(x).

B. Initial data, or physical degrees of freedom

The result of the previous section – that the number of fields is matched by the number

of field equations – tells us that solutions are determined by initial (or, more generally,

boundary) data. The next question is: how much initial data do we need? This is what

we normally mean by the number of “physical degrees of freedom” in a field – how much

freedom is left in choosing the field solution after the field equations (with given sources)

are imposed. For the electromagnetic field, this should correspond to the 2 polarization of

electromagnetic waves. Similarly, for GR, we will find the 2 polarizations of gravitational

waves.

Let us now see how this counting works, starting with electromagnetism. We start with

the electromagnetic potential Aµ(xν), which has 4 components. As discussed earlier, 1 of

these components can be gauged away. In particular, we can set At = 0 everywhere by

choosing ∂tθ = At, i.e. θ = tAt(t,x) + α(x). Thus, the initial data on a t = 0 time slice is

now given by A(0,x), i.e. by 3 functions on the 3d hypersurface. But now we get to use

the gauge freedom again, this time just on the 3d hypersurface! Indeed, in the 4d gauge

transformation that we used to kill At, there is still an unspecified function α(x). We can

use this 3d gauge freedom to shift the initial data at t = 0 as A → A − ∂α, removing one

more degree of freedom. Thus, after taking gauge invariance into account twice – once in

4d and once more for the 3d initial data – we are left with 4− 1− 1 = 2 degrees of freedom.

These are the 2 polarizations of an electromagnetic wave, which can exist independently of

any charges or currents.

Let us now repeat the story for GR, where we’ll encounter an important extra subtlety.

We start again with the 10 components gµν(x). We can use the 4d diffeomorphism freedom

(10) to set gtt = −1 and gti = 0 everywhere. This leaves us with just gij(t, x
k) with 10−4 = 6

components as the dynamical field throughout spacetime, and in particular on the initial
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time slice t = 0. Now, as before, we can use coordinate freedom again, this time in 3d, i.e.

xi → x′i(xj), to transform the initial data gij(0, x
k). This means that 3 of the remaining 6

degrees of freedom are “just gauge”. So far, we’re left with 10−4−3 = 3 degrees of freedom.

However, we must now take into account one final “gauge freedom”: in GR, setting t = 0

does not actually specify any particular hypersurface! The coordinates are just labels for

points in spacetime, with no geometric content on their own! Thus, in a single solution

of GR, we are free to change what we choose to call the t = 0 hypersurface, leading to

seemingly different, but actually equivalent, initial data. This freedom of repositioning the

t = 0 hypersurface consists of 1 degree of freedom for each hypersurface point xi: indeed,

the position of a new “t = 0” hypersurface can be given as the “graph” of a function t(xi).

Taking this last gauge freedom into account, we are left with 10− 4− 3− 1 = 10− 4− 4 = 2

physical degrees of freedom for the metric. In the end, just as for electromagnetism, the

4d diffeomorphisms get “used twice” to subtract degrees of freedom: once in 4d, and once

again on the initial 3d hypersurface. The final count of degrees of freedom is also the same

as for electromagnetism: gravitational waves, like light waves, have 2 polarizations.

EXERCISES

Exercise 1. Find the Ricci tensor and the Ricci scalar for the metrics in Exercises 3-4 from

the previous week (you can still assume t = 0 for the metric in Exercise 4).

Exercise 2. Find the coefficients in the decomposition of the Riemann tensor into its Weyl

and Ricci pieces:

Rµνρσ = Cµνρσ + β (Rµρgνσ −Rνρgµσ −Rµσgνρ +Rνσgµν) + γR (gµρgνσ − gνρgµσ) . (11)

Express β and γ as functions of the spacetime dimension d. Hint: take traces.

Exercise 3. In the Newtonian limit of GR, express the traceless part of the “tidal force”

∂iaj (where ai is the gravitational acceleration) in terms of the Weyl tensor Cµνρσ.

Exercise 4. Repeat the degrees-of-freedom counting from section IV B for GR in 3d space-

time instead of 4d.
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