GR lecture 6
The Riemann curvature tensor

I. CARROLL’S BOOK: SECTIONS 3.6, 3.7
II. THE RIEMANN TENSOR FROM PARALLEL TRANSPORT ALONG A LOOP

Consider an infinitesimal “square” closed loop around a point z. We denote the displace-
ments along the loop’s sides as A*, B¥, — A" and —B* respectively. The loop’s corners are
at ot — A* /2 — BF/2 xt + AF /2 — BF/2 ot + AF/2 + B*/2 and x# — A* /2 4+ B*/2. The
midpoints of the loop’s sides are at «* — B*/2, o + A*/2, x* + B*/2 and z* — A*/2.

Now, consider parallel transport around this loop, calculated to second order in the
infinitesimal vectors A* and B*. First, we must calculate the parallel transport along a
single side to second order. Consider e.g. the first side, along which the displacement vector
is A*. To first order, the basis transformation matrix for this parallel transport is oy, + A°T"
or, in matrix notation for the v indices, 1+ A*T",. To get the second-order result, we should

momentarily stop treating A* as infinitesimal, and construct the basis transformation matrix

as the product of matrices along N — oo smaller intervals A*/N:
1 P " APTp P 1 P 2
M= 1+NAP,, —e :1+AF,,+§(APp)+.... (1)

Restoring the indices, and following the appropriate index pattern for the matrix product

(AT,),(A°T,),", the result to second order reads:
1
M = 04 AT 4 S AT AT @)

Now, we should remember that we're talking about one side in a square loop, and the
midpoint of this side is not at z*, but at x* — B*/2. Thus, to be exact to second order, we

must replace I} in the second term with I') (z — B/2) =17, (z) — (1/2)B°0,1},

bp
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M,” =6+ A (FZM — B0, + AT, ) : (3)

pp oA

We can now multiply 4 of these matrices, corresponding to the loop’s 4 sides, keeping only

terms up to second order in A* and B*. The linear terms cancel, and so do the quadratic
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terms proportional to A*A” and B*BY. We are left with just a term proportional to the

antisymmetric matrix A¥BY| which defines our infinitesimal loop:
M,"” =0, + R0 A’B? | (4)
where R",,, is the Riemann tensor:
A A
RHVPU = 8PFZV - aﬂrgu + Fﬁ)\rau - Pg)\rpu : (5>
In particular, when acting on a vector v or a covector u,, this leads to:

vt = (MY MY = ok — RV, ;AP BV (6)

w, — M, u, =u,+ R",,;A*Bu, . (7)

III. COMMUTATOR OF COVARIANT DERIVATIVES ON ARBITRARY TEN-
SORS

In the absence of torsion, the commutator of covariant derivatives [V,,V,] = V,V, —
V.V, precisely encodes the notion of traveling along a closed loop. Thus, the previous

result can be reformulated as the action of this commutator on a vector or a covector:
V., Vv = R0 5 [V, Viu, = =Rt (8)
From here, we can derive the rule for [V, V,| acting on an arbitrary tensor:

[V,u? vu]Tmen...)\ = Rpa,uuTamUn“.)\ + ...+ Raa,uzszman“.)\ (9)
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This, like its relatives, can be derived via the Leibniz rule by writing the tensor 7%, \
as a product of vectors and covectors. The products of first derivatives will cancel between
V,.V.,(...)and V,V,(...), and only second derivatives acting on the individual vectors and

covectors will remain, leading to (9).

IV. JACOBI/BIANCHI IDENTITIES

Any operator V,, even if non-commutative, automatically satisfies the Jacobi identity:

[Vm V., Vp“ +[V., [va V“]] + [va [vm V.)]=3 [V[uv V., vp}” =0. (10)



Let us apply this to a vector v7. For the first term in (10), we get:

Vi, Vo, V] v7 =V, [V, V07 = [V, V,](V,07)
= V(R \,0) + R, Vov” — R%y,,V 07 (11)

= 0"V, R\ + R0y Va7 .

Now, antisymmetrizing over uvp (or, equivalently, adding the cyclic permutations of uvp),

we get:
VMV R xp + Vo R s pp + VR ) + 3Ry Va7 =0 . (12)

Demanding that this holds for any vector field v#, we get the algebraic and differential

Bianchi identities:

RMuwy =03 VR, + VR + VR, =0. (13)

EXERCISES

Exercise 1. Derive the expression (5) for the Riemann tensor directly from one of the

commutators (8).

Exercise 2. For the Riemann tensor of the Christoffel connection, derive the index sym-

metry Ryupe = —Ryups from the commutator [V, V,]g,,.
Exercise 3. Find the components of the Riemann tensor for:
o A 2d sphere, with metric ds®> = R*(df? + sin® 0d¢?).
e 3d flat space in spherical coordinates, with metric ds* = dr? + r?(df* + sin® 0d¢?).
Exercise 4. Find the components of the Riemann tensor at t = 0 for the metric:
ds?* = —dt* + (1 + at?)da® + (1 + Bt*)dy? + (1 + ~ytH)dz? (14)

where a, B,y are constants.



