
GR lecture 5
Covariant derivatives, Christoffel connection, geodesics,
electromagnetism in curved spacetime, local conservation of 4-momentum

I. PARALLEL TRANSPORT, AFFINE CONNECTIONS, COVARIANT DERIVA-

TIVES

The Lie derivative Lu is all fine and well, but it requires a vector field uµ(x) to define

the relevant flow. It would be nice to have a tensorial derivative operator similar to ∂µv
ν

– let us call it ∇µv
ν – from which we can construct directional derivatives uµ∇µv

ν by

simply contracting with a vector uµ, without needing to know its derivatives ∂µu
ν . As

we’ve seen, such an operator would require some prescription for relating the vector bases at

adjacent points, or, equivalently, for deciding how to move the vector’s “head”, given some

motion (along uµ) of its “tail”. In other words, such an operator ∇µ requires some extra

geometric structure on our spacetime. When it exists, ∇µ is called a covariant derivative.

The corresponding geometric structure is called parallel transport, because it generalizes the

flat notion of moving a vector’s head in parallel to the motion of its tail.

Let us then postulate this extra structure! What we need is a basis transformation

matrix Mµ
ν corresponding to motion along an infinitesimal vector uµ. Since we’re dealing

with infinitesimals, this basis transformation should be linear in uµ:

Mµ
ν = δνµ + uρΓνρµ ; (M−1)µ

ν = δνµ − uρΓνρµ . (1)

Thus, the recipe for parallel-transporting vectors and covectors reads:

vµtransported = vµ − uνΓµνρvρ ; (2)

wtransported
µ = wµ + uνΓρνµwρ . (3)

The object Γµνρ is known as an affine connection. As we’ll see, it is not a tensor, but can be

used in the construction of tensors. We normally don’t try to raise and lower its indices. Let

us work out how Γµνρ should transform under a change of coordinates. It is slightly easier

to do this starting from the covector transport rule (3). Under a change of coordinates, a

covector wµ at a point xµ transforms via the matrix:

w′µ =
∂xν

∂x′µ
wν . (4)
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The RHS of the transport rule (3) transforms as:

w′transportedµ = w′µ − u′νΓ′ρνµw′ρ , (5)

where Γ′µνρ is the sought-after transformation of Γµνρ. To find it, we should notice that the

parallel-transported covector wtransported
µ should actually transform according to the ∂x/∂x′

matrix evaluated not at xµ (or x′µ), but at the new point xµ + uµ (or x′µ + u′µ):

w′transportedµ =

(
∂xν

∂x′µ
+ u′ρ

∂2xν

∂x′ρ∂x′µ

)
wtransported
ν

=

(
∂xν

∂x′µ
+ u′ρ

∂2xν

∂x′ρ∂x′µ

)(
wν + uρΓσρνwσ

)
≈ ∂xν

∂x′µ
wν +

∂xν

∂x′µ
uρΓσρνwσ + u′ρ

∂2xν

∂x′ρ∂x′µ
wν

= w′µ +
∂xν

∂x′µ
∂xρ

∂x′λ
∂x′κ

∂xσ
u′λΓσρνw

′
κ + u′ρ

∂2xν

∂x′ρ∂x′µ
∂x′σ

∂xν
w′σ .

(6)

where we neglected a piece quadratic in the inifinitesimal uµ. Comparing (5) and (6), we

obtain the transformation rule:

Γ′µνρ =
∂x′µ

∂xσ
∂xκ

∂x′ν
∂xλ

∂x′ρ
Γσκλ +

∂x′µ

∂xσ
∂2xσ

∂x′ν∂x′ρ
. (7)

The first term is the standard tensor transformation rule; the second tells us that Γµνρ is not

a tensor. Nevertheless, we are now ready to use Γµνρ to construct the covariant derivative

∇µ. To take the covariant derivative uµ∇µv
ν of e.g. a vector, we must simply take the

transported value (2), and subtract it from the actual value vν + uµ∂µv
ν at the new point:

uµ∇µv
ν ≡ uµ∂µv

ν + uµΓνµρv
ρ , (8)

and similarly for a covector wµ. Since everything is just proportional to uµ, we can get rid

of it. We end up with the following expressions for the covariant derivative:

∇µv
ν = ∂µv

ν + Γνµρv
ρ ; ∇µwν = ∂µwν − Γρµνwρ . (9)

When performing a coordinate transformation, the “unwanted” terms in the transformation

of e.g. ∂µv
ν and Γµνρ cancel. Thus, the covariant derivative ∇µv

ν (as well as ∇µwν) is an

honest tensor! The covariant derivative can now be defined for tensors with any number of

indices. For scalars, we define simply ∇µf ≡ ∂µf .

Exercise 1. Demonstrate the Leibniz rules:

∇µ(fvν) = vν∂µf + f∇µv
ν ; ∂µ(uνv

ν) = vν∇µuν + uν∇µv
ν . (10)
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Just as we did for Lie derivatives, we use the Leibniz rule to define the covariant derivative

of arbitrary tensors, e.g.:

∇µTνρσ
λ = ∂µTνρσ

λ − ΓκµνTκρσ
λ − ΓκµρTνκσ

λ − ΓκµσTνρκ
λ + ΓλµκTνρσ

κ . (11)

The construction above may be familiar if you’ve encountered electromagnetism at a suf-

ficiently high level. The wavefunction ψ(xµ) of a charged non-spinning particle is a com-

plex number with a phase. The physics (i.e. the Schrodinger equation and Born’s rule)

is invariant under rotating this phase by a constant ψ → eiθψ. However, once we allow

spacetime-dependent phase transformations θ(xµ), the Schrodinger equation is no longer

invariant, since the derivative ∂µψ now has the messy transformation law:

∂µψ → ∂µ(eiθψ) = eiθ(∂µψ + iψ∂µθ) . (12)

The wavefunction ψ in this story is analogous to our tensors. The phase transformation

θ is analogous to the basis transformation matrix ∂xµ/∂x′ν . The second term in (12) is

analogous to the unwanted ∂2xµ/∂x′ν∂x′ρ term in the transformation of a partial derivative

∂µv
ν . In electromagnetism, the way to make the local phase transformation (12) a symmetry

after all is to introduce the electromagnetic potential Aµ, analogous to Γµνρ in the GR story.

We then postulate the gauge transformation:

Aµ → Aµ − ∂µθ , (13)

which is analogous to the second term in (7). The presence of the first term in (7) signals

that the relevant “force field” is self-interacting; this is true for GR (gravitational waves

have energy) and Yang-Mills (gluons have color), but not for electromagnetism (photons

have no charge). Anyway, now that we have the new field Aµ, we can use it to replace the

partial derivative (12) with a covariant derivative:

∇µψ ≡ ∂µψ + iAµψ , (14)

which transforms nicely as ∇µψ → eiθψ, and is analogous to (9) in the GR story. Note that

this modern understanding of electromagnetism came only after GR, and was inspired by it!

In the geometric jargon, both Aµ and Γµνρ are called connections. The more specific name

“affine connection” for Γµνρ indicates its more specialized role in transforming the tangent

space (rather than some internal space, such as the space of wavefunction values).
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II. COMPARING CONNECTIONS; TORSION

Our discussion so far of the connection Γµνρ has been very abstract, and completely dis-

connected from the fact that spacetime has a metric gµν . As we will see, the metric actually

chooses a connection for us: parallel transport, just like all other geometric structures, is

already encoded in gµν . Nevertheless, it’s often useful to consider parallel transport as an

independent geometric concept, and the connection as Γµνρ as an independent variable. One

useful observation is that if we have two different connections, then the difference Γµνρ− Γ̃µνρ

between them is a tensor: the “unwanted” second transformation term in (7) cancels. This

also makes sense from the point of view of the corresponding covariant derivatives ∇ and

∇̃: the explicitly tensorial quantity (∇µ− ∇̃µ)vν can be written also as (Γνµρ− Γ̃νµρ)v
ρ, since

the partial-derivative pieces in (9) cancel.

A related observation is that the “unwanted” second term in (7) is symmetric in the two

lower indices. Thus, we can obtain a tensor from Γµνρ by simply antisymmetrizing these two

indices:

T µνρ ≡ 2Γµ[νρ] = Γµνρ − Γµρν . (15)

This tensor is known as the torsion of the connection Γµνρ. A slightly fancier way to define

it is through the commutator of covariant derivatives:

[∇µ,∇ν ] ≡ ∇µ∇ν −∇ν∇µ . (16)

Note that partial derivatives always commute: [∂µ, ∂ν ] = 0, but covariant derivatives don’t

have to: in fact, we’ll gradually see how their non-commutativity essentially defines the

curvature of spacetime.

Exercise 2. Show that the torsion T µνρ defines the commutator of covariant derivatives on

a scalar field f(xµ):

[∇µ,∇ν ]f = −T ρµν∂ρf . (17)

For yet another definition of torsion, recall that the “exterior derivative” ∂[µvν] is a tensor,

which doesn’t require a connection to define it, and can be compared against ∇[µvν]:

Exercise 3. Show that the torsion tensor can be defined via:

∇[µvν] − ∂[µvν] = −1

2
T ρµνv

ρ , (18)
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and that, more generally, when torsion vanishes, we have:

∇[µ1fµ2...µn] = ∂[µ2fµ2...µn] . (19)

Clearly, life is simpler when the torsion vanishes: the antisymmetrized ∇ then agrees

with the antisymmetrized ∂, and inherits its interpretation of measuring circulations around

closed loops. We then accordingly have [∇µ,∇ν ]f = 0, which expresses the fact that, upon

traveling around a closed loop, f returns to itself. In fact, even if we have a connection with

torsion, we can always just replace it by one without:

Exercise 4. If Γµνρ is a connection, show that Γµ(νρ) is also a connection, and is torsionless.

From now on, we will assume by default that our connection is torsion-free, i.e. that

Γµνρ = Γµρν .

III. GEODESICS AND THE CHRISTOFFEL CONNECTION

It is time to show how the connection Γµνρ can be derived from the metric gµν . To do this,

let’s consider the notion of a straight line in flat space. A straight line has two different-

sounding but equivalent definitions:

• It is the shortest (or, for timelike lines in spacetime, the longest) path between two

points.

• It is the line you get by parallel-transporting a tangent vector along itself.

The first definition is an “integral one”, referring to entire paths – just like the action

principle. The second is a “differential one”, referring to how the line twists and turns (or

rather doesn’t) at each successive point – just like equations of motion. Crucially, note

that the first definition is about the metric, but the second is about the connection! We

can use both definitions to define “straight lines”, or geodesics, in curved spacetime. The

requirement that both definitions agree will provide us with the desired relation between gµν

and Γµνρ. We’ve already done most of the work. When discussing the free-falling particle, we

already defined a geodesic, via the action principle, as the longest path between two points

in a curved metric. We also derived the Euler-Lagrange equations of motion, which define
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the geodesic motion differentially:

duµ

dτ
+ gµλ

(
∂νgρλ −

1

2
∂λgνρ

)
uνuρ = 0 , (20)

where dτ =
√
−gµνdxµdxν is the proper time (i.e. length) parameter along the worldline,

and uµ = dxµ/dτ is the unit tangent vector to the worldline, a.k.a. the 4-velocity. On the

other hand, a geodesic should be defined as the line obtained by parallel-transporting uµ

along itself. In a proper-time interval dτ , the line advances by dxµ = uµdτ , so we expect

the parallel transport to change the components of uµ by −Γµνρdx
νuρ = −Γµνρu

νuρdτ . Thus,

we get the geodesic equation in the form:

duµ

dτ
+ Γµνρu

νuρ = 0 . (21)

Comparing eqs. (20) and (21) for arbitrary uµ, and demanding the torsion-free condition

Γµνρ = Γµρν , can we obtain a unique connection Γµνρ? Yes! If we focus on the νρ indices, the

question is essentially whether a symmetric matrix Aµν is completely defined by its products

Aµνu
µuν with arbitrary unit vectors uµ. To see that the answer is yes, we proceed in two

steps. First, note that knowing the products Aµνu
µuν with unit vectors implies also knowing

the products with arbitrary vectors: we can just rescale uµ → αuµ. Second:

Exercise 5. Let Aµν be a symmetric matrix 4 × 4 matrix, written in an arbitrary basis.

Find an appropriate set of 10 vectors uµ, and explicitly express the matrix elements of Aµν

in terms of the products Aµνu
µuν.

In fact, we’ve already been using this trick for a while, for the particular case of the

metric: we’ve been equating gµν with knowing the squared lengths gµνdx
µdxν for arbitrary

dxµ.

To sum up, we can read off from (20)-(21) a unique torsion-free connection by symmetriz-

ing the expression in (20) over νρ:

Γµνρ = gµλ
(
∂(νgρ)λ −

1

2
∂λgνρ

)
=

1

2
gµλ(∂νgρλ + ∂ρgνλ − ∂λgνρ) . (22)

The unique torsion-free connection (22) derived from the metric gµν is known as the

Christoffel connection. We will always use this connection unless stated otherwise. When

the metric is constant in spacetime, i.e. when the coordinate axes are flat, the connection

Γµνρ vanishes. Thus, it measures the curvature of the coordinate axes. For a timelike axis,
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this curvature can be interpreted as acceleration. Note that this is completely consistent

with (21): for a free-falling particle traveling along a geodesic, the acceleration duµ/dτ with

respect to the coordinates must cancel against the acceleration Γµνρu
νuρ of the coordinates.

Exercise 6. Find the elements of the Christoffel connection Γµνρ for polar, spherical and

Rindler coordinates.

Exercise 7. Find the Christoffel connection Γµνρ for the cosmological metric

ds2 = −dt2 + a(t)2dx2.

For a general worldline, the LHS of (21) can be used to define the 4-acceleration αµ, which

vanishes in the particular case of geodesic motion. Thus, for a charge q in an electromagnetic

field Fµν (in addition to the gravitational one), we will have:

duµ

dτ
+ Γµνρu

νuρ =
q

m
F µ

νu
ν . (23)

Exercise 8. Consider motion along a ρ = const worldline in Rindler coordinates. Working

completely in Rindler coordinates, find the 4-velocity (uρ, uτ ) and 4-acceleration (αρ, ατ ).

Exercise 9. Consider circular motion with angular velocity ω along a circle of radius ρ.

Working completely in polar coordinates, find the velocity (vρ, vφ) = (ρ̇, φ̇) and the accel-

eration (aρ, aφ), where dots represent time derivatives. Note that this isn’t a relativistic

exercise!

The geodesic equation (21) retains its form if we replace τ by some rescaled parameter

λ = const× τ , and replace uµ = dxµ/dτ by dxµ/dλ ≡ ẋµ:

ẍµ + Γµνρẋ
ν ẋρ = 0 . (24)

In this form, the equation is said to describe an affine parameterization xµ(λ) of the worldline:

dλ is no longer the proper length, but equal dλ’s do represent equal intervals. Conversely,

ẋµ is not necessarily a unit tangent, but it is an affine one: it is constant under parallel

transport along the geodesic. When understood in this way, the geodesic equation applies

equally well to null geodesics, i.e. to lightrays. There, the length of the line is zero, but

an affine parameterization still makes sense: it generalizes the flat notion of using the same

lightlike tangent vector throughout the worldline. An important example of an affine vector,

which applies both to the timelike and null cases, is the particle’s 4-momentum pµ.
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Exercise 10. Rewrite the equation of motion (23) for a charged particle in a way that

applies also to the m = 0 case.

Sometimes, it may be useful to generalize a bit further, and write the geodesic equation

for an arbitrary parameterization xµ(λ), not necessarily affine. In that case, the RHS of

(24) is no longer zero, but must be proportional (i.e. parallel) to the tangent vector ẋµ:

ẍµ + Γµνρẋ
ν ẋρ ∼ ẋµ . (25)

In other words, if the tangent ẋµ doesn’t maintain its normalization, then it might not be

constant under parallel transport, but it must still remain “parallel to itself”.

Exercise 11. Derive (25), starting from the affine geodesic equation (24) and replacing λ

with an arbitrary function λ̃(λ).

IV. METRIC COMPATIBILITY AND LIE DERIVATIVES

There is an alternative definition of the Christoffel connection Γµνρ: it is the unique torsion-

free connection for which the covariant derivative of the metric vanishes: ∇µgνρ = 0. In other

words, the metric is constant under parallel transport. This means that when we parallel-

transport any vector (not necessarily along itself), it will retain its length. Equivalently, the

inner product of any two vectors is unchanged under parallel transport. When manipulating

equations, what this means is that the metric can be freely taken into or out of covariant

derivatives, i.e. that indices inside covariant derivatives can be raised and lowered without

worrying. The condition ∇µgνρ = 0 is known as metric compatibility.

Exercise 12. Show that the connection (22) indeed satisfies ∇µgνρ = 0. Show its uniqueness

by counting degrees of freedom.

Exercise 13. Show that the Lie derivative can be defined equally well with covariant deriva-

tives ∇µ in place of partials ∂µ (note that this only works when torsion vanishes):

Luvµ = uν∂νv
µ − vν∂νuµ = uν∇νv

µ − vν∇νu
µ . (26)

Exercise 14. Show that the Lie derivative of the metric along a vector field ξµ can be written

as:

Lξ gµν = 2∇(µξν) = ∇µξν +∇νξµ . (27)
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Note that eq. (27) can be treated as an upgraded version of the electromagnetic gauge

transformation δAµ = ∂µθ. As we can see, Aµ is sometimes analogous to gµν , and sometimes

to Γµρσ.

Exercise 15 (TRICKY). Show that the Christoffel covariant derivative can be constructed

using just exterior and Lie derivatives, without any “bare” partial derivatives as in (22).

V. ELECTROMAGNETISM IN CURVED SPACETIME; DENSITIES AND CON-

SERVATION LAWS

We now understand the motion of free-falling particles in a curved metric, as well as the

motion of charges subject to an electromagnetic field. To complete the picture of electro-

magnetism in curved spacetime, it remains to rewrite the dynamics of the electromagnetic

field, i.e. the Maxwell equations. We begin with the Special Relativistic action:

S = −m
∫ √

−dxµdxµ + q

∫
Aµdx

µ − 1

4

∫
FµνF

µν d4x , (28)

where we got lazy and set ε0 = 1. As we’ve seen, the only modification necessary in the

first term is to write dxµdx
µ more explicitly as gµνdx

µdxν , and remember that gµν can be

x-dependent. Remarkably, the second term – the interaction between the charges and the

EM field – requires no modifications at all: Aµ is a covector, and Aµdx
µ can be integrated

just as well in curved spacetime. The third term will require a small amount of work. First,

we note that the definition Fµν = 2∂[µAν] of the field strength in terms of the potential

doesn’t require any changes: the antisymmetrized derivative is a tensor. We do, however,

need to include explicit gµν factors to raise the indices in FµνF
µν . Finally, we should worry

about the integration measure d4x = dx0dx1dx2dx3. In flat coordinates, this corresponds to

4d spacetime volume, which is a scalar. In curved coordinates, that’s clearly not the case:

we can just rescale the coordinates arbitrarily, and the measure will change. In fact, under

a general coordinate transformation, the “coordinate volume” d4x transforms as:

d4x′ = det

∣∣∣∣∂x′µ∂xν

∣∣∣∣ d4x , (29)

where the determinant of the transformation matrix ∂x′µ/∂xν should be familiar from cal-

culus courses as the Jacobian. It is possible to prove (29) directly using εµνρσ. Alternatively,

we can just notice that it gives the right answer for rescalings x′1 = αx1 (the coordinate
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volume rescales by α), as well as for “slants” x′1 = x1 +βx2 (the coordinate volume remains

unchanged).

Thus, for the spacetime integral in (28) to make sense, we must replace d4x with a

version that’s invariant under coordinate transformations, and really does measure spacetime

volume, using the lengths and angles defined by the metric. It’s easy to see that such a

measure is actually given by
√
−g d4x, where g ≡ det |gµν | is the determinant of gµν , and the

minus sign is due to the time dimension. Indeed, for a diagonal metric, lengths along the

coordinate axes are given by
√
−g00 dx0,

√
g11 dx

1,
√
g22 dx

2 and
√
g33 dx

3, and the product

g00g11g22g33 is the same as the determinant g. The transformation law for g is the inverse

square of (29), so that
√
−g d4x is indeed invariant:

g′ = det

∣∣∣∣ ∂xµ∂x′ν

∣∣∣∣2 g ;
√
−g′ = det

∣∣∣∣ ∂xµ∂x′ν

∣∣∣∣√−g . (30)

Exercise 16. Prove this transformation law, by rewriting the tensor transformation law for

gµν in matrix notation.

Putting everything together, the curved-spacetime version of the EM action (28) is:

S = −m
∫ √

−gµνdxµdxν + q

∫
Aµdx

µ − 1

4

∫
d4x
√
−g gµρgνσFµνFρσ . (31)

We will soon come back to the Maxwell equations defined from this action. First, let us

extend the discussion of
√
−g and its transformation law. Since

√
−g d4x is the spacetime

volume,
√
−g is known as the volume density. More generally, any quantity that satisfies

a transformation law of the form (30) is called a “scalar density”. Similarly, quantities

with indices that have a Jacobian in their transformation in addition to the ordinary basis

transformation matrices are known as “tensor densities”. Given a metric, we can always

create densities by multiplying ordinary scalars and tensors by
√
−g.

I’d rather not develop here the theory in tensor densities in detail. Very briefly, densities

are needed whenever we want to integrate. Thus, integrals over 4d spacetime require a scalar

density, as in
√
−g d4x. Similarly, integrals over a 3d volume require a vector density. In

particular, if we have a vector 4-current jµ, then the vector density
√
−g jµ can be integrated

over 3d volume as
√
−g jµd3Vµ to produce a total charge. Similarly, the amount of charge

produced in an infinitesimal 4d volume will be given by the divergence ∂µ(
√
−g jµ). This is

yet another case where a partial derivative is good enough – in this case, making a scalar
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density ∂µ(
√
−gjµ) out of a vector density

√
−g jµ. For the (non-densitized) vector jµ, the

divergence ∂µj
µ doesn’t transform nicely under coordinate changes. However, we can replace

the partial derivative with a covariant derivative, and talk about ∇µj
µ:

∇µj
µ = ∂µj

µ + Γµµνj
ν , (32)

where the trace Γµµν of the Christoffel connection (22) reads:

Γµµν =
1

2
gµρ(∂µgνρ + ∂νgµρ − ∂ρgµν) =

1

2
gµρ∂νgµρ . (33)

The last expression deserves some attention. In Lecture 1-2, we learned some fancy formulas

for determinants. One can use them to derive a much simpler formula for the determinant’s

variation. For an arbitrary matrix Aµν with inverse (A−1)µν , we have:

d(detA) = (detA)(A−1)νµdAµν . (34)

This can be easily verified for diagonal matrices, where Aµν = diag(A00, A11, A22, A33),

(A−1)µν = diag(1/A00, 1/A11, 1/A22, 1/A33), and detA = A00A11A22A33. Applying (34) to

(33), and noting that index order doesn’t matter since gµν is symmetric, we get:

Γµµν =
∂νg

2g
=
∂ν
√
−g√
−g

. (35)

Eq. (32) now becomes:

∇µj
µ = ∂µj

µ +
jµ∂µ
√
−g√
−g

=
1√
−g

∂µ
(√
−g jµ

)
. (36)

Thus, up to the factor of
√
−g, the covariant divergence ∇µj

µ of the vector jµ is the same as

the ordinary divergence ∂µ(
√
−g jµ) of the vector density

√
−g jµ. This is important, because

ordinary divergences have a clear geometric meaning in terms of fluxes and conservation

laws! In fact, the same pattern continues for all tensors with just antisymmetrized upper

indices. For example, the covariant divergence∇µF
µν is proportional to ∂µ(

√
−g F µν), where

√
−g F µν is a density that can be integrated over 2d surfaces as 1

2

√
−g F µνd2Sµν (the factor

of 1/2 is coming from the permutations of the µν indices).

We are now ready to write the Maxwell equations in curved spacetime. The source-free

half of the equations, which encodes the fact that Fµν has the form 2∂[µAν], is an exterior

derivative, and thus remains unchanged:

∂[µFνρ] = 0 . (37)
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The source-dependent part is derived, as before, by varying the action (31). It is easy to

see that the
√
−g factor in the last term will modify the Euler-Lagrange equations from

∂νF
µν = jµ into:

∂ν
(√
−g F µν

)
=
√
−g jµ ⇐⇒ ∇νF

µν = jµ . (38)

The partial-derivative form of the equations ensures that two features survive the upgrade

into curved spacetime:

• The Maxwell equations still imply charge conservation, ∇µj
µ ∼ ∂µ(

√
−g jµ) = 0.

• The Maxwell equations still have the same integral interpretation. For example, one

can integrate
√
−g F µν over 2d spatial surfaces, and obtain the charge inside via Gauss’

law.

VI. THE LOCAL CONSERVATION OF 4-MOMENTUM

We’ve seen that even in curved spacetime, a scalar quantity like the electric charge can

be defined as the integral of a local current jµ (multiplied appropriately by
√
−g), and

its conservation can be expressed locally as ∇µj
µ ∼ ∂µ(

√
−g jµ) = 0. For energy and

momentum, both of this statements become problematic. One can still define the local

density of 4-momentum via the stress-energy tensor T µν . However, there is no coordinate-

invariant way to integrate T µν over a 3d region and obtain a total 4-momentum. This is only

to be expected: we should not be able to add vectors at different points. There is generally

no such thing as the total 4-momentum in a region of curved spacetime: a vector needs a

single point at which it is defined!

As for the conservation of 4-momentum, the situation is subtle and interesting. Briefly,

there exists a local conservation law∇µT
µν = 0, but it doesn’t correspond to the conservation

of any overall integrated quantity – indeed, as we’ve seen, a conservation law of “total 4-

momentum” is generally an ill-defined concept! Another way to put this is that we expect

a conserved momentum only when there’s a corresponding translational symmetry. Since a

general curved metric has no such symmetry, there should not be a conserved momentum.

To explore this terrain in some more detail, consider again the geodesic equation (21) for

the motion of a free-falling particle. Let us multiply it by the mass m to obtain an equation
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for the 4-momentum pµ = muµ:

dpµ

dτ
+ Γµνρu

νpρ = 0 . (39)

Now let’s multiply by dτ , using uµdτ = dxµ to obtain:

dpµ + Γµνρdx
νpρ = 0 . (40)

This equation tells us that the 4-momentum pµ is constant under parallel transport along

the displacement dxµ, i.e. along the worldline. Note that in this form, the equation applies

equally well to the lightlike motion of a massless particle. We already see here the essential

subtlety: the 4-momentum is conserved locally, under infinitesimal displacements along the

worldline, but we cannot compare its values at points that are finitely separated: the pµ

vectors at those points belong to different tangent spaces.

Let us now work out the corresponding statement for the local density and current of 4-

momentum, i.e. for the stress-energy tensor T µν . As before, to calibrate our expectations, we

consider the T µν due to a distribution of free particles. Specifically, we imagine some identical

particles that travel along geodesic worldlines, without being created or destroyed. Thus,

the number of these particles is a conserved scalar, much like electric charge. Therefore,

their volume density and current density can be arranged into a 4-current jµ with vanishing

divergence ∇µj
µ = 0. If every particle has an electric charge q, then we will have a charge

4-current qjµ, which of course also has zero divergence. We are however interested in the

particles’ 4-momentum. Let the particles at position xµ have 4-momentum pµ. Then the

stress-energy tensor – the 4-current of 4-momentum – is T µν = jµpν . Despite appearances,

this tensor is symmetric in its two indices, as we’ve already seen before. One must simply

notice that jµ and pµ point in the same direction – along the worldline. Thus, at each point,

we can write:

jµ = αpµ ; T µν = αpµpν =
1

α
jµjν , (41)

for some scalar α. Consider now the covariant divergence of T µν :

∇µT
µν = ∇µ(jµpν) = pν∇µj

µ + jµ∇µp
ν , (42)

where we used the Leibniz rule for derivatives of products (recall that it was a defining

property in our construction of the covariant derivative (11) for arbitrary tensors!). Now,
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the first term in (42) vanishes due to the conservation of particle number. The second term

also vanishes, thanks to the geodesic equation (40). Indeed, the derivative jµ∇µp
ν precisely

encodes the parallel transport of pν along jµ, i.e. along the direction of the particle’s

worldline! We conclude that the stress-energy tensor T µν satisfies the “local conservation

law” ∇µT
µν = 0. One crucial difference between this conservation law and that for jµ is

that it cannot be rewritten in terms of a partial derivative ∂µ(. . . )µν = 0: since T µν is

symmetric in its indices rather than antisymmetric, its covariant divergence doesn’t get the

same “special treatment” as ∇µF
µν in the previous section. Our inability to write the local

conservation law in terms of partial derivatives is just another way of saying that it doesn’t

encode the conservation of any integrated quantity: ∇µT
µν is not the actual production rate

of anything per unit spacetime volume.

14


