
GR lecture 4-2
Free-falling particle, conservation laws, some cosmology, exterior &
Lie derivatives

I. PARTICLE MOTION IN A CURVED METRIC

The action of a free particle in a curved metric is the same as its special-relativistic

version: it is −m times the length of the worldline. However, we should now make explicit

the dependence of length on the metric:

S = −m
∫
dτ = −m

∫ √
−gµν(x)dxµdxν . (1)

Note that even a “free” particle has no choice but to feel the effects of spacetime geometry,

i.e. of the gravitational field! First of all, let’s examine this action in the limit of slow,

non-relativistic motion, and weak gravitational fields. In other words, let’s expand eq. (1)

to leading order in gµν − ηµν and v. Denoting gtt(t,x) = −1− 2ϕ(t,x), we have:

S ≈ −m
∫ √

−gttdt2 − dx2 = −m
∫
dt
√

1 + 2ϕ− v2 ≈ −m
∫
dt

(
1 + ϕ− v2

2

)
. (2)

Thus, the Lagrangian for a non-relativistic particle in a weak gravitational field is:

L = −m+
mv2

2
−mϕ(t,x) . (3)

The first term is a constant, and doesn’t affect the equations of motion. The second is

kinetic energy. The third has the form of potential energy. We conclude that the deviation

ϕ = −(gtt + 1)/2 of gtt from its flat value ηtt = −1 is the Newtonian gravitational potential!

Note the analogy with how the non-relativistic electrostatic potential is actually the time

component −At of the electromagnetic potential Aµ.

Let’s now obtain the full equation of motion from the action (1), without assuming slow

motion or weak fields. We again introduce a parameter λ along the worldline, which can

now be written as xµ(λ), and denote λ derivatives as ẋµ ≡ dxµ/dλ. The particle action then

becomes:

S =

∫
L(xµ, ẋµ) dλ ; L = −m

√
−gµν(x)ẋµẋν . (4)
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The non-trivial metric introduces a dependence on x into the particle Lagrangian! The

Euler-Lagrange equations of motion now read:

0 =
∂L

∂xµ
− d

dλ

∂L

∂ẋµ
= m

(
∂µgνλẋ

ν ẋλ

2
√
−gρσẋρẋσ

− d

dλ

gµν ẋ
ν√

−gρσẋρẋσ

)
. (5)

Choosing λ to be the proper time τ , this becomes:

m
duµ
dτ

=
m

2
(∂µgνρ)u

νuρ . (6)

On the LHS, we recognize pµ = muµ as the 4-momentum (which, as you recall, is naturally

a covector). Thus the RHS can be considered as “the gravitational force”, which does not

look too different from the electromagnetic force dpµ/dτ = q(∂µAν − ∂νAµ)uν . However,

there are two important differences. First, the mass m cancels: gravity is not a force

but an acceleration. Note that, as expected, this acceleration is contained in the metric’s

first derivative ∂µgνρ. The second difference is that the LHS and RHS of (6) do not by

themselves make coordinate-independent sense! In particular, we’ve seen that ∂µgνρ can be

made to vanish by an appropriate choice of coordinates. Nevertheless, we expect that the full

equation (6) does make coordinate-invariant sense: the minimal action principle selects the

longest possible worldline between two points, which in flat spacetime would be a straight

line! The analogous notion in curved spacetime is called a geodesic, and eq. (6) is known as

the geodesic equation. We will soon learn how to write it down properly.

Exercise 1. As an intermediate step towards rewriting eq. (6), let us put it in a form where

uµ has an upper index throughout. Prove that (6) is equivalent to:

duµ

dτ
+ gµλ

(
∂νgρλ −

1

2
∂λgνρ

)
uνuρ = 0 . (7)

II. CONSERVATION LAWS; REDSHIFT; FRW METRIC

Consider again the equation of motion (6) of the free-falling particle. We can use it as

a very clean example of Noether’s Theorem: symmetries are associated with conservation

laws. Suppose that the curved metric gµν(x) has a symmetry: there is some coordinate,

e.g. x1, on which the metric does not depend. Then we see immediately from eq. (6)

that the momentum component p1 = mu1 conjugate to x1 will be conserved throughout the

motion! For the flat metric ηµν , this is of course true for all 4 coordinates (t, x, y, z) and

their canonical conjugates – the components (pt, px, py, pz) of 4-momentum.
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Exercise 2. Consider a particle in flat spacetime, written in cylindrical coordinates (t, ρ, φ, z),

which are related to (t, x, y, z) via (x, y) = (ρ cosφ, ρ sinφ). Which of the 4 coordinates

(t, ρ, φ, z) does the metric depend on? Express the conserved quantity muφ in terms of the

particle’s position r = (x, y, z) and velocity v = dr/dt. What does this quantity represent?

Of particular interest is the case of a time-independent metric ∂tgµν = 0. The technical

term for such a metric is stationary. If we also have gti = 0, then the metric is called

static; intuitively, in a static metric, the coordinate axes are “at rest”, while in a stationary

one, they can have a time-independent “velocity”. For our present purpose, the stationarity

condition ∂tgµν = 0 will be enough. For a free particle moving in the spacetime, it implies

a conserved energy −mut (note that this is no longer the same as mut!). Interestingly, this

conserved energy isn’t necessarily the same as what an observer sitting next to the particle

may want to call energy. Indeed, in general, the “time axis vector” ∂/∂t = (1, 0, 0, 0) may

not be normalized, i.e. gtt may not be −1. For the local observer, it would make more

sense to measure time not with t, but with a normalized time τ , which flows along the same

direction as t, i.e.:

dt

dτ
=

1√
−gtt

;
dxi

dτ
= 0 . (8)

The “energy” conjugate to such a time coordinate reads:

−muτ = −mdt

dτ
ut = − mut√

−gtt
, (9)

which is not conserved, since gtt can depend on xi, and thus isn’t constant along the particle’s

motion!

Exercise 3. Show that, in the non-relativistic limit, the difference between mut and muτ

amounts to taking or not taking into account the gravitational potential energy.

There is another example of essentially the same effect, which on the surface might

seem less esoteric. Energy is the derivative −∂S/∂t of the action. We can similarly talk

about the time frequency ω of e.g. a light wave, which is the time derivative −∂φ/∂t

of the wave’s phase (note that these two cases are essentially the same through quantum

mechanics!). The propagation of a light wave through a time-independent metric is governed

by a time-independent differential equation, which can be solved by separation of variables

as e−iωtψ(xi). In other words, the frequency ω is conserved throughout the wave – another
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statement of Noether’s theorem! However, now we can again consider the conserved ω =

−dφ/dt vs. the locally measured ωproper = −dφ/dτ = ω/
√
−gtt(xi). This dependence of the

proper frequency, a.k.a. the color of the light, on the position xi is known as gravitational

redshift. We can understand it roughly in terms of kinetic vs. potential energy, as in Exercise

3: light climbing out of a potential well loses some of its “kinetic energy” ~ωproper, which

manifests as a frequency shift towards the red.

Exercise 4. On its way to us, sunlight is absorbed by atoms on the Sun’s surface, at charac-

teristic frequencies ωsun. On Earth, we observe black lines in the Sun’s spectrum at redshifted

frequencies ωearth. Find the redshift factor 1− ωearth/ωsun. As your inputs, you can use e.g.

the Sun’s radius, the Earth-Sun distance, and the length of a year.

Another, complementary, example of symmetric metrics is when a metric is invariant

along the spatial coordinates ∂igµν = 0, but not along the time coordinate. Such a metric

can be parameterized as:

ds2 = −dt2 + a(t)2dx2 , (10)

where a(t) is called the “scale factor” for obvious reasons: spatial distances are measured

by a(t)|dx|. The metric (10) is the known as the Friedman-Robertson-Walker (FRW) met-

ric with flat spatial slices, and it is a good approximation for the large-scale structure of

our (homogeneous, spatially flat, expanding) Universe. In this metric, there is no energy

conservation. Instead, we have conserved spatial momentum pi = mui conjugate to the spa-

tial coordinates xi. For light waves, this corresponds to a conserved wavevector k = ∂φ/∂x.

However, as before, this conserved wavevector isn’t defined with respect to “proper” local co-

ordinates which directly measure spatial distances. The locally measured proper wavevector

is instead given by:

kproper =
1

a(t)

∂φ

∂x
=

k

a(t)
. (11)

Thus, in an expanding Universe, the proper wavelength λproper = 2π/|kproper| gets “passively

stretched” as ∼ a(t), i.e. in the same way as the distances a(t)|dx|. The light’s proper

momentum pproper = ~kproper decays as ∼ 1/a(t), and so does its proper energy Eproper =

|pproper| (recall E2 − p2 = m2 = 0 for photons!). Thus, as the Universe expands, the energy

of the radiation inside it decreases. This should be contrasted with the two other important
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components in the Universe’s energy budget: non-relativistic matter, whose energy is mostly

rest energy mc2 and is conserved, and vacuum energy (a.k.a. the cosmological constant),

which has a constant density, and thus increases as the Universe expands.

The cosmological metric (10) can also serve as a good demonstration of the effects of

a curved metric on causality: the metric determines where the lightcones ds2 = 0 lie, and

those determine possible causal relationships between events. In the metric (10), it is easy

to see that a lightray is given by:

dt2 − a(t)2dx2 = 0 =⇒
∣∣∣∣dxdt

∣∣∣∣ =
1

a(t)
. (12)

Exercise 5. Consider two versions of the FRW metric:

• a(t) ∼ tα for some positive power α. This metric has a Big Bang at t = 0, and is

typical for a radiation-dominated or matter-dominated Universe.

• a(t) = eHt with a positive parameter H, which is known as the Hubble constant. This

metric extends through the entire range −∞ < t < ∞, and is typical of a vacuum-

energy-dominated Universe.

For each case, consider an observer at rest at x = 0. What is the earliest time (if any) and

what is the latest time (if any) at which this observer can see a point at |x| = r?

III. DERIVATIVES IN CURVED SPACETIME ARE TRICKY; EXTERIOR DERIVA-

TIVES

Let us go back to the free particle’s equation of motion (6). We already convinced

ourselves that its RHS makes little sense on its own. What about the LHS? There, we’re

trying to take a spacetime derivative (in this case, along the worldline) of a quantity with

indices (in this case, a covector). It is a very important fact that, while the derivative ∂µf

of a scalar makes a covector, the derivative ∂µ of a tensor is not itself a tensor. Consider for

example a vector vµ, which transforms under coordinate redefinitions as:

vµ → v′µ =
∂x′µ

∂xν
vν . (13)
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The derivative ∂µv
ν then transforms as:

∂vν

∂xµ
→ ∂v′ν

∂x′µ
=

∂

∂x′µ

(
∂x′ν

∂xρ
vρ
)

=
∂xσ

∂x′µ
∂

∂xσ

(
∂x′ν

∂xρ
vρ
)

=
∂xσ

∂x′µ
∂x′ν

∂xρ
∂vρ

∂xσ
+
∂xσ

∂x′µ
∂2x′ν

∂xσ∂xρ
vρ .

(14)

The first term is the expected transformation rule for a tensor with one upper and one lower

index. However, the second term spoils it. Similarly and slightly more simply, the derivative

∂µuν of a covector transforms as:

∂uν
∂xµ

→ ∂u′ν
∂x′µ

=
∂xρ

∂x′ν
∂xσ

∂x′µ
∂uρ
∂xσ

+
∂2xρ

∂x′µ∂x′ν
uρ . (15)

Exercise 6. Prove this, starting from the covector transformation rule:

uµ → u′µ =
∂xν

∂x′µ
uν . (16)

The transformation rule for the derivative ∂µT
...
... of general tensors can be derived from

these by constructing the tensor as a product of vectors and covectors. For each of the

tensor’s indices, we will get one unwanted term in the transformation law, as in (14) (for

upper indices) or (15) (for lower indices).

Why is this happening? The problem is that when we take the derivative ∂µv
ν , we are

comparing (or, in this case, subtracting) values of vν at two adjacent points, xµ and xµ+dxµ.

But the tangent spaces at these points are different! The coordinate basis, with respect to

which we evaluate the components vν , is no longer the same when we move to an adjacent

point!

There are some important exceptions to the fact that derivatives ∂µ aren’t tensorial.

These exceptions all have to do with closed loops in spacetime, so that we’re not really com-

paring components at different points. One such exception is the antisymmetrized derivative

(or “curl”) ∂[µuν] of a covector. Indeed, we can see from (15) that the unwanted transfor-

mation term is symmetric in µν, and thus vanishes upon antisymmetrization. As we recall

from our treatment of electromagnetism, what 2∂[µuν] measures is the circulation
∮
uµdx

µ

of uµ along an infinitesimal closed loop. In fact, it’s easy to check that any completely an-

tisymmetrized derivative ∂[µTν...ρ] makes a tensor. These higher-order “curls” can similarly

be interpreted in terms of higher-dimensional closed loops. The antisymmetrized derivative

is so important that it has its own special name and notation – it is known as the exterior

derivative d. It is no coincidence that this is the same d as in dxµ. He who understands why

will master the Universe.
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IV. LIE DERIVATIVES AND THE “GROUP” OF COORDINATE TRANSFOR-

MATIONS

Another important exception is the so-called Lie derivative. It can be understood as

follows. Consider the naive, non-tensorial derivative uν∂νv
µ of a vector vµ along the vector

uµ. For the sake of this exercise, it is helpful to imagine both uµ and vµ as infinitesimal. The

role of uµ in the derivative uν∂νv
µ is to drag the “tail” of the “arrow” vµ from the point xµ

to an adjacent point xµ + uµ, and then compare this “dragged” vµ(xν) to the actual value

at the new point, vµ(xν + uν). The problem with this procedure, the reason why uν∂νv
µ

doesn’t work as a tensor, is that nothing is telling us what to do with the “head” of vµ’s

arrow! But what if uµ was defined not only at xµ, but also at the point xµ + vµ, where the

“head” of vµ is located? Then we’d know how to use uµ to drag the both the tail and the

head of vµ! In particular, the tail will be dragged using uµ(x), but the head will be dragged

using uµ(xν + vν) = uµ + vν∂νu
µ. Overall the “dragged along uµ” version of vµ will read:

vµdragged = vµ + δ(head)µ − δ(tail)µ = vµ + (uµ + vν∂νu
ν)− uµ = vµ + vν∂νu

ν . (17)

On the other hand, the value of vµ at the new point xµ+uµ is just vµ+uν∂νv
µ. Subtracting

from this the dragged value, we obtain the so-called Lie derivative of vµ along uµ:

Luvµ = uν∂νv
µ − vν∂νuµ . (18)

Exercise 7. Show that Luvµ transforms correctly as a vector.

We can also take Lie derivatives along uµ of other tensor quantities. For a scalar, we

define trivially Luf = uµ∂µf .

Exercise 8. Demonstrate the Leibniz rule:

Lu(fvµ) = fLuvµ + vµuν∂νf . (19)

Exercise 9. By demanding the Leibniz rule for Lu(wµvµ), derive the formula for the Lie

derivative of a covector:

Luwµ = uν∂νwµ + wν∂µu
ν . (20)

Exercise 10. Use the Leibniz rule to derive a formula for the Lie derivative LuT µ1...µmν1...νn
of a general tensor.
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The geometric intuition for the Lie derivative of various tensors is essentially the same:

we use a vector field uµ(x), rather than just a vector uµ at one point, to define a flow that

drags both the “tails” and the “heads” of the relevant arrows. This can be expressed very

simply if we choose a coordinate system adapted to uµ, in which the components of uµ

are (1, 0, 0, 0) throughout spacetime. This is equivalent to choosing coordinates in which

e.g. uµ∂µ = ∂/∂x0, i.e. uµ corresponds to one of the coordinate axes. In such adapted

coordinates, all the ∂µu
ν derivatives in (18)-(20) vanish, and the Lie derivative Lu just

coincides with the naive derivative uµ∂µ. To sum up, we can think of a Lie derivative as a

flow along some coordinate. When taken together, such derivatives generate the symmetry

of general coordinate transformations! In fact, we can recognize the Lie derivative of a

vector (18) as the antisymmetric Lie bracket of this symmetry, i.e. the commutator between

flowing along uµ and flowing along vµ:

Luvµ = −Lvuµ ≡ [u, v]µ . (21)

Exercise 11. Show that flow along the vector field [u, v]µ indeed behaves as a commutator

between the flows along uµ and vµ:

(LuLv − LvLu)wµ = L[u,v]w
µ . (22)

If uµ and vµ correspond to two axes uµ = (1, 0, 0, 0) and vµ = (0, 1, 0, 0) in the same

coordinate system, then Lu and Lv must commute, since in these coordinates they become

simply the partial derivatives ∂0, ∂1. Thus, the commutator [uµ, vµ] measures the extent to

which the vector fields uµ(x) and vµ(x) fail to describe axes of the same coordinate system!
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