
GR lecture 4-1
Coordinate basis, general metric

I. SOLVING EXERCISES FROM LAST WEEK

II. GENERAL CURVED COORDINATES AND METRIC

Let us now formalize some of our previous discussion of curved coordinates. We can

use coordinates xµ = (x0, x1, x2, x3) for Minkowski space other than the inertial (t, x, y, z).

When these are general linear functions of (t, x, y, z), we get slanted coordinates. When

these are general non-linear functions of (t, x, y, z), we get curved coordinates. In slanted

coordinates, the metric gµν becomes a general symmetric matrix. When the coordinates are

curved, gµν can be different at different points – it becomes a field in spacetime gµν(x). In

Einstein’s formulation of GR, this is the gravitational field. The shift from merely curved

coordinates into curved spacetime consists in simply allowing gµν(x) to be general, rather

than restricting it to be a coordinate transformation of ηµν .

In curved coordinates, we can no longer think of vectors as stretching between two distant

points. In particular, the coordinates xµ themselves, or coordinate differences xµ − x̃µ

between two points, are not vectors. The reason is that the coordinate axes bend and

change across spacetime, so a vector’s components between two different points do not

have a consistent meaning. Every vector or tensor must live at some single spacetime point!

However, we can still talk of infinitesimal displacement vectors dxµ, as well as about covectors

∂f/∂xµ constructed as the gradients of scalar functions at the point x. Equivalently, we can

think of an infinitesimal vector εµ = (ε0, ε1, ε2, ε3) as an arrow connecting the two nearby

points (x0, x1, x2, x3) and (x0 + ε0, x1 + ε1, x2 + ε2, x3 + ε3). This construction defines a

particular basis of vectors at each spacetime point, which is derived from our coordinate

system. We call this a coordinate basis. This may also be a good time to recall the “dual”

point of view, in which dxµ is not a vector but a basis of covectors, and ∂/∂xµ is not a

covector but a basis of vectors. This is just another (in fact, more concise) way to express

the concept of a coordinate basis.

During most of the course, we will exclusively use coordinate bases. However, in principle,

the task of labelling points of spacetime with coordinates can be separated from the task of
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choosing a basis of vectors at each point. In fact, there exists a more powerful formulation

of GR, which we might learn about later, that uses non-coordinate bases.

Now, how should we imagine a vector that sits at the point x, but it not infinitesimal?

For some reason, my personal intuition never recognizes this as a problem, but yours might.

It might then be helpful to imagine the curved spacetime as a curved 4d surface within a

larger flat space, and to imagine the space of vectors at x as a 4d flat spacetime that is

tangent to “true” curved one. Vectors along this flat “tangent space”, with their “arrow’s

tail” at x, can be made as long or as short as we wish. However, unless they’re infinitesimal,

the “head” of their arrow won’t lie anywhere in the true, curved spacetime. Due to this

geometric intuition, the space of vectors at a point is in fact often called the “tangent space”.

Similarly, the space of covectors is called the “cotangent space”.

Given a coordinate system xµ, we can always transform to a different one x′µ, again

given by arbitrary non-linear functions of xµ. Under such a transformation, not only do the

coordinate labels on a spacetime point change, but so does the coordinate basis which we

use for writing the components of vectors and tensors. It’s easy to see that the appropriate

basis transformation matrix is given by the matrix of derivatives:

Mµ
ν =

∂xν

∂x′µ
; (M−1)µ

ν =
∂x′µ

∂xν
, (1)

where we note an important subtlety about the notation: the partial derivative ∂/∂x1 is

taken at fixed (x0, x2, x3), while the partial derivative ∂/∂x′1 is taken at fixed (x′0, x′2, x′3),

which is not the same! To prove that (1) is indeed the basis transformation matrix, we need

simply to write the chain rules for partial derivatives:

dx′µ =
∂x′µ

∂xν
dxν ;

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
. (2)

This proves that the components of the vector dxµ and the covector ∂µ indeed transform in

accordance with the basis transformation matrix (1). We can now write the transformation

rule for the components of an arbitrary tensor, such as:

T ′µνρ
σ =

∂xκ

∂x′µ
∂xλ

∂x′ν
∂xα

∂x′ρ
∂x′σ

∂xβ
Tκλα

β . (3)

In particular, the metric transforms as:

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ . (4)
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Note that this rule is actually equivalent to the trick we’ve been using until now to trans-

form the metric between coordinate system, e.g. in our discussion of polar and spherical

coordinates.

Armed with these tools, let us consider a final example of curved coordinates in flat

spacetime, which is arguably more realistic than (t, x, y, z) itself. Let’s construct a simplified

version of GPS! Let there be four “satellites”, hovering at rest at four corners of a tetrahedron

centered at the origin:

x1 = (−1,−1,−1) ; x2 = (−1, 1, 1) ; x3 = (1,−1, 1) ; x4 = (1, 1,−1) . (5)

On each satellite there is a clock, which measures the time t in the satellites’ rest frame.

Each satellite continually broadcasts the reading of its clock in all directions, using signals

that travel at the speed of light. Thus, an observer at any point in spacetime receives four

clock readings (τ 1, τ 2, τ 3, τ 4) from the two satellites. These can be used as coordinates for

the spacetime point!

Exercise 1.

1. Express (τ 1, τ 2, τ 3, τ 4) in terms of the usual (t, x, y, z).

2. Now, for simplicity, let’s restrict our attention to the symmetry axis (t, x, y, z) =

(t, 0, 0, 0). For points on this axis, find the components of the metric gµν and its

inverse gµν in the (τ 1, τ 2, τ 3, τ 4) basis. Which components vanish? Why?

III. COUNTING DEGREES OF FREEDOM

Let’s now return to the question of general metrics gµν(x) (curved spacetime) vs. trans-

formations of ηµν (curved coordinates in flat spacetime). First, let’s consider a simpler

analogous question from electromagnetism. A vanishing electromagnetic field can be de-

scribed by Aµ = 0, but also, through gauge symmetry, by Aµ = ∂µθ. This defines a family

of gauge potentials parameterized by 1 scalar function θ(xµ) of the 4 coordinates. However,

a general gauge potential Aµ(xν) is given by 4 functions of the coordinates – the 4 compo-

nents of Aµ. Therefore, a general gauge potential Aµ(x) is not a gauge-transformed version

of Aµ = 0, and does describe a non-trivial electromagnetic field.
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Now, consider a local version of this question – let us focus on Aµ and its derivatives at

a given point x, and similarly for the gauge transformation parameter θ. We can expand θ

around x in a Taylor series of derivatives θ, ∂µθ, ∂µ∂νθ, . . . , which can all be chosen arbitrarily.

From the gauge transformation Aµ → Aµ− ∂µθ, we see that ∂µθ will modify Aµ at x, ∂µ∂νθ

will modify ∂µAν at x, and so on. Now, let’s count degrees of freedom order by order. ∂µθ

at x is an arbitrary vector with 4 components, which can always be chosen to cancel the 4

components of Aµ. Thus, the value of Aµ at a single point is meaningless, and can always be

transformed to zero. However, at the next order, we notice that ∂µ∂νθ has only 4×5/2 = 10

independent components, because it’s a symmetric matrix! These 10 components are not

enough to cancel the 4× 4 = 16 components of ∂µAν ! We conclude that the “signature” of

a non-trivial electromagnetic field should appear at first order in derivatives of Aµ, and that

the “physical” part of ∂µAν has 16− 10 = 6 components that cannot be transformed away.

Of course, we recognize these as the 4× 3/2 independent components of Fµν = 2∂[µAν].

This is a good time to give some general formulas for component counting. The number

of independent components of a rank-k totally antisymmetric tensor T[µ1...µk] in n dimensions

is clearly: (
n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
. (6)

Somewhat less obviously, the number of components of a rank-k totally symmetric tensor

T(µ1...µk) is: (
n+ k − 1

k

)
=
n(n+ 1) . . . (n+ k − 1)

k!
(7)

Exercise 2. Prove this for k = 2, 3. Can you see how to prove the general case?

Now, let’s turn from gauge potentials back to metrics. A general metric consists of

10 functions – the 10 independent components of the symmetric matrix gµν – of the 4

coordinates. On the other hand, a general coordinate transformation xµ → x′µ(xν) consists

of 4 functions of 4 coordinates. Therefore, a general metric gµν(x) is not a coordinate-

transformed version of the flat metric ηµν . Now, let’s see what we can say about the Taylor

series of derivatives around a fixed point x. By the transformation law (4), the value of gµν

at x will be modified by the matrix of derivatives ∂µx
′ν = ∂x′ν/∂xµ (it doesn’t really matter

for this purpose whether we’re talking about the matrix itself or its inverse). This matrix

has 4×4 = 16 components – more than enough to set gµν to any value we want, in particular
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to set gµν = ηµν . At the next order in derivatives, we find that ∂µgνρ, with 4 × 10 = 40

components, is modified by ∂µ∂νx
′ρ, which again has 10×4 = 40 components. Thus, we have

enough degrees of freedom to transform also ∂µgνρ into whatever we want, in particular to

set ∂µgνρ = 0. At the next order, we find that ∂µ∂νgρσ, which has 10×10 = 100 components,

is modified by ∂µ∂ν∂ρx
′σ, which has only 20 × 4 = 80 components (note that by (7), the

number of components in the totally symmetric rank-3 object ∂µ∂ν∂ρ is 4× 5× 6/3! = 20).

We conclude that a general metric can be trivialized up to first order in derivatives, but at

the second order ∂µ∂νgρσ, there are 100− 80 = 20 components which cannot be transformed

away. Thus, we expect that spacetime curvature should be described by some 20-component

tensor constructed out of the metric’s second derivatives. As we will learn, this is in fact

the Riemann curvature tensor.

Let us compare this conclusion to our discussion of Newtonian gravity and non-inertial

frames. The metric elements gµν are roughly analogous to velocities in the Newtonian story

– in particular, we’ve seen that gti should be thought of as a velocity. The first derivatives

∂µgνρ are then roughly analogous to accelerations. The fact that gµν and ∂µgνρ can be

transformed into the flat values ηµν and 0 means that neither velocity nor acceleration are

absolute – they can be transformed away by a choice of frame. Finally, ∂µ∂νgρσ is analogous

to gradients of the acceleration, which cannot be completely transformed away, and which

indicate the definite presence of a non-trivial gravitational field.
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