
GR lecture 3-2
Maxwell equations, some general field theory,
simple curved & slanted coordinates

I. MAXWELL EQUATIONS

So far in our discussion of electromagnetism, we’ve discussed the dynamics of a charge

in an external EM field. The dynamics of the field itself can be obtained by adding an

appropriate term to the particle action from the previous lecture:

S = −m
∫ √

−dxµdxµ + q

∫
Aµdx

µ − ε0
4

∫
FµνF

µν d4x . (1)

The new term is an integral over spacetime, and represents the action of a free EM field

(in the absence of charges). The interaction between the charges and the field is still fully

captured by the second term. This is the essence of Newton’s 3rd law in the context of the

action principle: the effects of dynamical objects (such as charges and the EM field) on each

other are always equal and opposite, because both are derived from the same interaction

term in the action. ε0 is the electric constant, which is often set to 1. Note that the magnetic

constant µ0 never needs to explicitly appear, since µ0 = 1/(ε0c
2).

The field equations obtained from varying Aµ in the action (1) read:

∂νF
µν = jµ/ε0 . (2)

Here, jµ = (ρ, j) is the 4-current of electric charge, which in the case of (1) consists of a

single point particle, but in general can describe some continuous distribution of charges

and currents. Due to the antisymmetry of Fµν , eq. (2) automatically implies local charge

conservation:

∂µj
µ = ε0∂µ∂νF

νµ = 0 . (3)

In space and time components, eq. (2) reads:

∂ · E = ρ/ε0 ; ∂ ×B− ∂E

∂t
= j/ε0 , (4)

which is half of Maxwell’s equations. The other half of Maxwell’s equations reads:

∂[µFνρ] = 0 , (5)
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or, in components:

∂ ·B = 0 ; ∂ × E +
∂B

∂t
= 0 . (6)

Exercise 1. Consider electromagnetism with no charges, i.e. the action (1) with just the

3rd term. Perform the variation of this action with respect to Aµ, and derive the charge-free

version of (2), i.e. ∂νF
µν = 0. It may be helpful to solve Exercise 5 first.

Exercise 2. Show that the second half (5) of Maxwell’s equations is automatically satis-

fied when Fµν is constructed from a potential via Fµν = 2∂[µAν]. Remember that partial

derivatives commute!

Exercise 3. Show that eqs. (2),(5) indeed decompose into eqs. (4),(6).

A key property of electromagnetism is the gauge symmetry:

Aµ → Aµ − ∂µθ ; Fµν → Fµν , (7)

where θ(xµ) is an arbitrary scalar function on spacetime.

Exercise 4. Show that the transformation (7) of Aµ indeed leaves Fµν invariant.

Note that both the EM force law mαµ = qFµνu
ν and the Maxwell equations (2),(5) can

be written purely in terms of the field strength Fµν , with no reference to the potential Aµ.

In other words, all physical quantities are actually invariant under the gauge transformation

(7). This means that the potential Aµ, which is not invariant, is not directly observable.

In fact, the only observable quantity is its circulation
∮
Aµdx

µ around closed loops. For

an infinitesimal loop, this circulation (per unit area) is measured by Fµν . Nevertheless, Aµ

is necessary for writing the interaction term in the action (1), as well as for deriving the

Maxwell equations from an action principle, even in the absence of charges (see Exercise 1).

II. THE STRESS-ENERGY TENSOR OF THE ELECTROMAGNETIC FIELD

The electromagnetic field carries energy and momentum. However, defining its stress-

energy tensor is somewhat tricky. One might try and start from first principles, as follows.

Consider a field theory of (for simplicity) scalar fields φ, with an action of the form:

S =

∫
L(φ, ∂µφ)d4x =

∫
L(φ,∂φ, φ̇) d3x dt . (8)
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The function L is sometimes called the Lagrangian density, since its d3x integral gives the

usual Lagrangian from analytical mechanics – the one that is integrated over dt to give the

action. However, when doing field theory, we often just call L itself the Lagrangian.

Exercise 5. By varying the action (8), derive the field theory version of the Euler-Lagrange

equations of motion:

∂L

∂φ
− ∂µ

∂L

∂(∂µφ)
= 0 . (9)

In mechanics, the energy E (or the Hamiltonian H) is defined as the Noether charge

conjugate to time translations, i.e. the variation −∂S/∂t of the action upon varying the

time of the trajectory’s endpoint. After crunching some integrations by parts, we eventually

learn the expression:

H =
∂L

∂q̇
q̇ − L . (10)

It isn’t too hard to guess the relativistic generalization of this, which 1) passes from overall

Lagrangian and energy to their densities, and 2) treats the energy as the time component

of a 4-vector:

T µν = Lδµν −
∂L

∂(∂µφ)
∂νφ . (11)

To make sense of (11) as a generalization of (10), including the sign difference, recall that

T tt = −T tt is the energy density.

Exercise 6. Prove that the stress-energy tensor (11) is conserved: ∂µT
µ
ν = 0.

Exercise 7. What is the appropriate generalization of (11) for the case of a vector field

Aµ? Use this to derive the stress-energy tensor T µν from the Lagrangian L = −ε0FµνF µν/4

of the electromagnetic field. Is this T µν symmetric in its indices? Is it gauge-invariant?

The answer to the last exercise suggests that deriving the stress-energy tensor of a field

theory can be unexpectedly tricky. There are ways to correct the stress-energy tensor (11)

so as to make it both symmetric and gauge-invariant. Later in the course, we will learn

a general prescription that replaces (11) entirely, and automatically produces a symmetric

and gauge-invariant T µν . For now, we can take a different, informal route to constructing

the T µν of the electromagnetic field. Gauge invariance demands that T µν be constructed
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solely out of Fµν and its derivatives. From dimensional analysis and the powers with which

Aµ and ∂µ enter the Lagrangian, the most general symmetric tensor that one can construct

is:

T µν = αF µ
ρF

νρ + βFρσF
ρσηµν . (12)

Exercise 8. Now, fix the unknown coefficients α and β, using the following facts:

• T µν should satisfy a conservation law.

• As we know from electrostatics, the energy density of an electric field is ε0E
2/2.

The total energy density of the electromagnetic field works out to be:

T tt =
ε0
2

(
E2 + B2

)
. (13)

The EM field’s momentum density is known as the Poynting vector:

T ti = ε0B
ijEj = ε0(E×B)i (14)

Exercise 9. Find the pressure p = T ii /3 of an electromagnetic field. Show that the elec-

tromagnetic stress-energy tensor is traceless T µµ = 0, just like the stress-energy tensor of

photons.

Curiously, the last statement – that T µµ = 0 for arbitrary EM fields just like for pho-

tons – is only true in 4 dimensions. This has to do with the fact that in 4 dimensions,

electromagnetism has conformal symmetry, while in general, it only has scale symmetry.

III. SOME CURVED COORDINATES: POLAR, SPHERICAL, RINDLER

We are now ready to start working with curved coordinates. We begin with a few simple

examples. We know and love the polar coordinate system (ρ, φ) for the plane, where ρ is

the distance from the origin, and φ is the angle from the horizontal line. These are related

to the Cartesian coordinates (x, y) via:

x = ρ cosφ ; y = ρ sinφ . (15)

Consider now an infinitesimal displacement dxi, which we may express as either (dx, dy)

or (dρ, dφ). What is the length-squared of this vector? In Cartesian coordinates, it is
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ds2 = dx2 + dy2. In polar coordinates, we can notice that the radial direction is orthogonal

to the azimuthal one, so we can continue using the Pythagoras theorem. However, while the

length of a radial displacement is dr, the length of an angular displacement is not dφ, but

rdφ! Thus, the length-squared of an infinitesimal displacement reads:

ds2 = dρ2 + ρ2dφ2 . (16)

On the other hand, we know that length-squared should take the general quadratic form

ds2 = gijdx
idxj. We deduce the metric in polar coordinates as:

gij =

1 0

0 ρ2

 ⇐⇒ gρρ = 1 ; gφφ = ρ2 ; gρφ = 0 . (17)

If we directly add a third dimension z, we get cylindrical coordinates, with metric:

gρρ = gzz = 1 ; gφφ = ρ2 , (18)

with all other components vanishing.

Another useful coordinate system for 3d space is given by the spherical coordinates

(r, θ, φ), defined via:

x = r sin θ cosφ ; y = r sin θ sinφ ; z = r cos θ . (19)

Again, we can guess the metric. The r, θ and φ directions are still orthogonal to each other.

The length of a radial displacement is dr, while the lengths of angular displacement are

scaled by the radius r of the relevant sphere. In addition, while displacements in θ are along

large circles of radius r, displacements in φ are along smaller circles, or radius r sin θ. The

metric thus reads:

ds2 = dr2 + r2(dθ2 + sin2 θdφ2) ⇐⇒ grr = 1; gθθ = r2; gφφ = r2 sin2 θ , (20)

with all other components vanishing.

Exercise 10. Instead of using geometric intuition, derive the polar and spherical metrics

by plugging the coordinate relations (15),(19) directly into ds2 = dx2 + dy2 or ds2 = dx2 +

dy2 + dz2.

Exercise 11. Write down the components of the inverse metric gij in polar and spherical

coordinates.
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We can play the same kind of game in spacetime. Instead of polar coordinates in the xy

plane, consider the tx plane. The role of circles x2 + y2 = ρ2 is now played by hyperbolas

x2 − t2 = ρ2. In fact, in the same way that circles are lines of constant curvature in

the Euclidean plane, these hyperbolas are lines of constant curvature in the Lorentzian

plane. When such lines are timelike, they can be interpreted as worldlines with constant

acceleration. By analogy with polar coordinates, we can define an angular coordinate τ (not

proper time!) that runs along these hyperbolas:

t = ρ sinh τ ; x = ρ cosh τ . (21)

The coordinates (ρ, τ) are called Rindler coordinates.

Exercise 12. Write down the metric components gρρ, gττ , gρτ in Rindler coordinates.

Exercise 13. A particle is traveling along a ρ = const worldline. Consider this particle at

Rindler time τ . In terms of the inertial (t, x) basis, write down the particle’s 4-velocity uµ

and 4-acceleration αµ. What is the magnitude |a| of the particle’s ordinary acceleration in

its rest frame?

Unlike polar coordinates, Rindler coordinates do not span the full tx plane (at least, not

without using complex values). In particular, the ordinary range 0 < ρ < ∞ for the radial

coordinate, together with the full range −∞ < τ < ∞ for the boost angle, covers only the

“right-hand wedge” of the plane, enclosed between the t = ±x lightrays at x > 0. This

quarter of Minkowski spacetime is sometimes confusingly called “Rindler space”, as if it

were something different entirely. A better name is “Rindler wedge”. The importance of

Rindler coordinates is that they provide the simplest, prototypical example, of a spacetime

divided by causal horizons. In particular:

• An accelerated observer along a ρ = const worldline can receive causal signals only

from below the t = x line, and can send causal signals only above the t = −x line.

• The Rindler wedge is the causal domain of dependence of the x > 0 half-space: given

an initial state on the x > 0 half-axis at t = 0, the Rindler wedge is the region

within which we can deduce the past and future from causal equations of motion

without requiring any knowledge about the degrees of freedom at x < 0. Note that in

Newtonian mechanics, where there is no lightspeed barrier on causal influences, such

a spacetime region does not exist at all!
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Exercise 14. Consider a particle at rest at some positive x value x = L. Describe its

trajectory in Rindler coordinates. Where is the particle at τ → ∞? Is this relevant to

something you know about falling into a black hole?

Exercise 15. Construct an analogue of spherical coordinates for Minkowski spacetime. In

other words, express (t, x, y, z) in terms of suitable coordinates (R,χ, θ, φ), where R is the

radial distance from the origin, and (χ, θ, φ) are angles. Write down the metric in terms of

your coordinates. What is the region of Minkowski spacetime that your coordinates span?

For concreteness, suppose that the radius R is spacelike.

IV. SLANTED COORDINATES

In the examples above, we’ve seen coordinates that weren’t orthonormal, but were still

orthogonal: the metric didn’t develop any non-diagonal components. This is of course not

true for general coordinates. Even without introducing curvature, we can construct slanted

coordinates by considering a general linear transformation of (t, x, y, z):

x′µ = (M−1)ν
µxν ; g′µν = Mµ

ρMν
σgρσ . (22)

Starting with the orthonormal metric gµν = ηµν , the metric g′µν in the new coordinates

can be a general symmetric matrix (up to the constraint on its signature, as in the case of

ordinary space). In fact, it need not even be true that one coordinate is timelike, and the

others are spacelike. Minkowski spacetime can be spanned e.g. by 4 timelike vectors, or by

4 spacelike ones!

Exercise 16. Consider the coordinates:

t′ = t ; x′ = t+ 0.001x ; y′ = t+ 0.001y ; z′ = t+ 0.001z . (23)

Find the metric g′µν and the inverse metric g′µν in these coordinates. Hint: it may help to

invert the relations (23). What are the signs of the diagonal elements?

In general, we can say the following about the signs of the metric’s diagonal elements.

The diagonal element g11 is the length-squared gµνv
µvν of the vector vµ = (0, 1, 0, 0), i.e.

of a vector pointing along the “x1 axis” – the line of fixed (x0, x2, x3). Thus, g11 is pos-

itive/negative/zero when the x1 axis is spacelike/timelike/null. Now, consider the inverse
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metric element g11. This is the “length-squared” gµνuµuν of the covector uµ = (0, 1, 0, 0),

which “points along” the hypersurface of fixed x1 (which is spanned by the x0, x2 and x3

axes). Thus, g11 is positive/negative/zero when the normal to the constant-x1 hypersurface

is spacelike/timelike/null. Note that g11 and g11 can have different signs.

Consider now the off-diagonal elements of gµν . These indicate axes that are not orthog-

onal to each other (while nonzero off-diagonal elements of gµν indicate hypersurfaces that

aren’t orthogonal to each other). Of particular physical interest are the mixed space/time

components gti (assuming a “not-too-wild” coordinate system, in which t is timelike, and

the other coordinates xi are spacelike). When these components are non-vanishing, they in-

dicate that the t axis is non-orthogonal to some of the xi axes, i.e. that it is non-orthogonal

to the constant-t hypersurface. The physical meaning of this is that the t axis has nonzero

velocity with respect to the normal to the constant-t hypersurface. Another way to think of

this is that the t axis – the worldline of a particle at rest in our coordinate system – is being

“dragged along” some of the xi coordinates. This is a good way to describe the spacetime

near a rotating black hole.

Exercise 17. Express the mixed components gti of the inverse metric in terms of gtt, gti

and gij. For gµν that is not too different from ηµν, is it possible for gti to vanish while gti

doesn’t, or for gti to vanish while gti doesn’t?

When coordinatizing a Lorentzian plane, such as the tx plane, instead of using a timelike

t axis and a spacelike x axis, it is often useful to use a pair of null axes:

u = t+ x ; v = t− x . (24)

Unlike the t and x axes, these lightlike axes are unique – there are exactly two lightrays in

a given plane!

Exercise 18. Find the metric components guu, gvv and guv. To avoid factors of 2, don’t

forget that guv = gvu.

Exercise 19. Perform a Lorentz boost with rapidity θ on the (t, x) plane. How does it affect

the null coordinates (u, v)?
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