
GR lecture 3-1
Lorentz matrices, relativistic particle action, 4-current and stress-
energy tensor, particle in EM field

I. MORE ON LORENTZ TRANSFORMATIONS

Let us bridge a small gap in our discussion of Lorentz transformations. In Lecture 2-2, we

discussed rotations, in a context where upper and lower indices are the same. We then had

the transformation law xi → Rijxj, or x → Rx in matrix notation, with the orthogonality

constraint RRT = 1, i.e. R−1 = RT . On the other hand, in Lecture 1-2, we discussed general

basis transformations, without any constraints, which acted differently on upper vs. lower

indices: ui → Mi
juj (u → Mu in matrix notation) vs. vi → (M−1)j

ivj (v → (M−1)Tv in

matrix notation).

Lorentz transformations occupy a middle ground in this respect. On one hand, they are

not arbitrary basis transformations: they are constrained to preserve the Minkowski metric

ηµν . On the other hand, since ηµν is not the identity matrix, there is a difference between

upper and lower indices. Let us now sort out this slightly confusing situation.

To begin with, let’s obey our convention for general basis transformations: vectors trans-

form as vµ → (Λ−1)ν
µvν , covectors as uµ → Λµ

νuν . In particular, the Minkowski metric

transforms as:

ηµν → Λµ
ρΛν

σηρσ . (1)

The Lorentz transformations are those matrices Λµ
ν that preserve ηµν , i.e. satisfy Λµ

ρΛν
σηρσ =

ηµν . In matrix notation, this reads:

ΛηΛT = η ⇐⇒ Λ−1 = ηΛTη−1 . (2)

This is the Lorentzian generalization of the orthogonality condition we had for rotations.

Converting the last equation back into index notation, we get:

(Λ−1)µ
ν = ηµρΛσ

ρησν ≡ Λν
µ , (3)

where Λν
µ had its indices raised and lowered using the metric ηµν and its inverse ηµν . Thus,

the Lorentz transformation of vectors and covectors can be written in essentially the same
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way:

vµ → Λµ
νv

ν ; uµ → Λµ
νuν . (4)

In fact, this is another way of saying that the Lorentz transformations preserve the metric:

they commute with the raising and lowering of indices.

Next, let’s consider the infinitesimal version of a Lorentz transformation:

Λµ
ν = δνµ + εMµ

ν ; (Λ−1)µ
ν = δνµ − εMµ

ν , (5)

where ε is a small parameter, and Mµ
ν is a Lorentz generator. The condition (3) now

becomes:

Mν
µ = −Mµ

ν ⇐⇒ Mµν = −Mνµ . (6)

Thus, the Lorentz generators are antisymmetric matrices Mµν = M[µν], just like ordinary

rotation generators! Note, however, that this is only true after we use the metric ηµν to lower

the second index of Mµ
ν . The antisymmetric generators Mµν have the same meaning as in

ordinary space: they specify the plane in which the infinitesimal rotation is taking place.

Exercise 1. Consider a Lorentz boost:

t → t− vx√
1− v2

; x → x− vt√
1− v2

, (7)

in the limit of infinitesimal v (but otherwise relativistically, i.e. without assuming |t| � |x|).

Parameterizing this boost as xµ → xµ+vMµ
νx

ν, write the components of the generator Mµ
ν.

Write also the lowered-index components Mµν.

II. ACTION OF A FREE MASSIVE PARTICLE

The action of a free relativistic particle is simply −m times the length of its path through

spacetime (also called its worldline):

S = −m
∫
dτ = −m

∫ √
−dxµdxµ . (8)

Exercise 2. Show that this action leads to uniform motion in a straight line. You can use

your geometric intuition from ordinary space – there is no need for fancy calculations.
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Exercise 3. Why is there a minus sign in front of the action? What difference between

spacetime and ordinary space does it reflect?

Exercise 4. Again, use geometric intuition from ordinary space to argue that pµ = muµ is

the canonical momentum derived from the action (8) by varying the trajectory’s final point.

Exercise 5. In the limit of small velocities, show how the action (8) relates to the usual

action m
2

∫
v2dt of a non-relativistic particle.

We can also derive uniform motion in a straight line from the action (8) by brute force,

following the prescription of Lagrangian mechanics:

S =

∫
L(q, q̇)dt =⇒ ∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (9)

However, in the relativistic setting, it would be unfortunate to treat the time coordinate t

as special and separate from the spatial position x. What we can do instead is introduce

an arbitrary parameter λ that runs along the particle’s worldline, and parameterize the

trajectory as xµ(λ). Then t is treated together with x as part of the “configuration variables

q”, while λ assumes the old role of t. It is possible to define λ as the proper time τ along

the worldline, but enforcing that actually leads to unnecessary complications. The action

(8) now becomes:

S =

∫
L(ẋµ)dλ ; L = −m

√
−ẋµẋµ , (10)

where the dots now represent d/dλ derivatives. The Euler-Lagrange equations then read:

0 = − d

dλ

∂L

∂ẋµ
= −m d

dλ

(
ẋµ√
−ẋµẋµ

)
= −mduµ

dλ
. (11)

Where we recognized ẋµ/
√
−ẋµẋµ as the unit tangent vector to the worldline, i.e. the 4-

velocity uµ = dxµ/dτ . Thus, the equations of motion demand that uµ remains constant

along the trajectory, as expected.

III. 4-CURRENTS AND CONSERVATION LAWS

In non-relativistic physics, we often talk about the density ρ of some scalar quantity, such

as electric charge or the number of atoms, i.e. the quantity per unit volume. In non-static
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situations, we also talk about the current density j, i.e. the quantity flowing per unit time

through a unit area in each direction. Local conservation laws take the form:

∂ρ

∂t
= −∂ · j . (12)

When integrated over a volume, the LHS becomes the time derivative of the charge in a

region, and the RHS becomes the flux of current into the region.

In SR, the charge density ρ and current density j become unified into a 4-vector jµ = (ρ, j),

which we refer to as the 4-current.

Exercise 6. Show that jµ indeed transforms a 4-vector. Consider a uniform charge density

at rest, jµ = (ρ0,0). Using the Lorentz transformation of the coordinates xµ = (t,x), find the

components of jµ = (ρ, j) in a boosted frame, and compare with the expected transformation

of a 4-vector’s components.

Like dxµ, uµ and pµ, the 4-current jµ tends to be associated with the motion of particles.

It is useful to note a property that all these 4-vectors share. Their spatial components are

related to the timelike one via:

dx = vdt ; p = Ev ; j = ρv . (13)

Note that p = Ev is a relativistic generalization of the non-relativistic p = mv, since, at

small velocities, we have E = m+mv2/2 + · · · ≈ m.

Let’s now return to the current conservation law (12). In spacetime notation, this becomes

simply:

∂µj
µ = 0 . (14)

More generally, for charges that are not necessarily conserved, ∂µj
µ is the amount of charge

created per unit time per unit volume after taking into account the ingoing/outgoing flux

∂ · j.

Let us understand this in more detail. Consider integrating (14) over some spacetime

4-volume Ω. The result should be the amount of charge created inside this 4-volume. On

the other hand, we know from Gauss’ law that the integral of a divergence is a flux:∫
Ω

∂µj
µd4x =

∫
∂Ω

jµdVµ . (15)
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Here, ∂Ω is the 3d boundary of the 4d region Ω, and dVµ is a 3d volume element with

direction. Note that dVµ is naturally a covector, since its “direction” is that of a 3d surface,

not a 1d line. The flux element jµdVµ is analogous to familiar 3d expressions such as E ·dS,

where E is an electric field, and dS is a directed 2d area element.

Let us now get more specific, and consider a prism-like spacetime region Ω, composed of

a spatial volume V that evolves in time for some interval ∆t = tf − ti. The boundary ∂Ω

then consists of an “initial snapshot” of V (ti) in the past, a “final snapshot” of V (tf ) in the

future, and a timelike “wall” consisting of the 2d boundary ∂V times the interval ∆t. The

flux (15) then decomposes as:∫
∂Ω

jµdVµ =

∫
V (tf )

jtdV −
∫
V (ti)

jtdV +

∫ tf

ti

dt

∫
∂V

j · dS (16)

Recalling that jt is charge per unit volume and j is current per unit area, this becomes:∫
∂Ω

jµdVµ = Q(tf )−Q(ti) +

∫ tf

ti

I(t)dt , (17)

where Q is total charge, and I is total outgoing current. We see that the integral in-

deed describes the charge produced between ti and tf , having taken into account any ingo-

ing/outgoing flow in the intervening time.

To get slightly philosophical, Special Relativity teaches us that “existence is a flow

through time”: the property of something like charge to exist in a given place – its local

volume density – is actually the time component of its current! This is of a piece with the

perspective switch from thinking about point particles in space to thinking about worldlines

in spacetime.

IV. THE STRESS-ENERGY TENSOR

Note that the construction of 4-currents doesn’t apply to every kind of non-relativistic

density. For instance, mass density isn’t part of any 4-vector. At best, we can think of it as

an approximation for the energy density. But we can’t make a 4-vector out of energy density,

either: energy itself is not a scalar, but the time component of the 4-momentum pµ. Thus,

its density and current must be incorporated into a rank-2 tensor T µν , which includes the

density and current of both energy and spatial momentum. Thus, T tt is energy density, T it

is energy current density, T ti is momentum density, and T ij is momentum current density.

5



This latter quantity is well-loved in the physics of solids, and is called the stress tensor:

since the current of momentum ṗ is a force, T ij measures force per unit area! As a result,

T µν as a whole is called the “stress-energy tensor”. In the same way that ∂µj
µ = 0 encodes

the conservation of charge, ∂µT
µν = 0 encodes the conservation of 4-momentum.

Let us get some initial intuition about T µν . Consider a uniform distribution of n particles

per unit volume, each with energy E, moving at the same velocity v. The energy density is

then T tt = nE. By the logic of j = ρv, the energy current density is then T it = T ttvi = nEvi.

On the other hand, since p = Ev, the momentum density is T ti = nEvi. Finally, employing

j = ρv again, the momentum current density is T ij = T tjvi = nEvivj. We see that T µν is

symmetric: we have T ti = T it and T ij = T ji.

Let’s repeat this construction in a more spacetime-covariant way. Consider a uniform

distribution of particles, each with mass m and 4-velocity uµ, whose density per unit volume

in their rest frame is nrest. As opposed to the density n in an arbitrary frame, which changes

under boosts (see Exercise 6), nrest is an invariant spacetime scalar. In the rest frame, T µν

is clearly given by T tt = mnrest, with all other components vanishing. There is exactly one

tensor that can be constructed out of the scalars m,nrest and the 4-vector uµ that satisfies

this property: T µν = mnrestu
µuν . By the same logic, if the particles have charge q, the

associated charge 4-current is jµ = qnrestu
µ.

Exercise 7. Consider a gas of n particles per unit volume. Each particle has the same

mass m and velocity of magnitude v. The directions of the particles’ velocities are uniformly

distributed. Show that the stress-energy tensor has the form:

T µν =


ε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (18)

and find the values of ε and p. What is the physical meaning of p?

Exercise 8. Now, consider a gas of n photons per unit volume. Each photon has energy E,

and the directions of the photons’ velocities are again uniformly distributed. Show that T µν

is again of the form (18), and find ε and p. What is the trace of the stress-energy tensor

T µµ ? Can you relate the answer to some property of the 4-momentum of a single photon?
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Fields also have a stress-energy tensor, but that is a more delicate issue, as we will see in

the next lecture.

V. ELECTROMAGNETISM

In electrostatics, we learn about the electric potential φ. Quite a bit later, we learn

about the magnetic potential A. In full electrodynamics, the electric and magnetic field are

derived from these potentials via:

E = −∂φ− ∂A

∂t
; B = ∂ ×A . (19)

It turns out that, just like energy and momentum, the electric and magnetic potentials

also combine into a 4-vector Aµ = (φ,A) – the electromagnetic potential. The electric and

magnetic field strengths (19) can now be rewritten as:

Ei = ∂iAt − ∂tAi ; Bij = 2∂[iAj] = ∂iAj − ∂jAi , (20)

where we replaced the axial vector Bi with a bivector Bij, as in Lecture 1-1. We see that E

and B are also components of a single spacetime object – an antisymmetric matrix Fµν :

Fµν = 2∂[µAν] = ∂µAν − ∂νAµ ; Ei = Fit = −Fti ; εijkBk = Bij = Fij . (21)

In other words, an electric field is just like a magnetic field, but in a timelike plane! We

refer to Fµν as the electromagnetic field strength.

The 4-potential Aµ “wants” to have a lower index, due to the way in which it enters the

action of a charged particle:

S = −m
∫ √

−dxµdxµ + q

∫
Aµdx

µ . (22)

Quite remarkably, the second term in (22) completely captures the interaction between a

charged particle and an electromagnetic field: the covector Aµ simply defines an “extra bit

of action” for a charged particle traveling along an interval dxµ!

The derivation of the charge’s equation of motion from (22) isn’t difficult, but we will

simply state the results here. A very flexible form of the equations that is also close to a

Newtonian force law is given by:

dpµ = qFµνdx
ν , (23)
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where pµ = muµ is the particle’s 4-momentum. Dividing by the proper time dτ , we get the

4-acceleration in an EM field as:

αµ =
q

m
Fµνu

ν . (24)

Exercise 9. Derive from (23) the Lorentz force law F = q(E+v×B), which is exact even at

relativistic velocities, if we define the force F as the time derivative of the correct relativistic

momentum p = mv/
√

1− v2.
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