GR lecture 3-1

Lorentz matrices, relativistic particle action, 4-current and stressenergy tensor, particle in EM field

I. MORE ON LORENTZ TRANSFORMATIONS

Let us bridge a small gap in our discussion of Lorentz transformations. In Lecture 2-2, we discussed rotations, in a context where upper and lower indices are the same. We then had the transformation law $x_i \to R_{ij}x_j$, or $\mathbf{x} \to R\mathbf{x}$ in matrix notation, with the orthogonality constraint $RR^T = 1$, i.e. $R^{-1} = R^T$. On the other hand, in Lecture 1-2, we discussed general basis transformations, without any constraints, which acted differently on upper vs. lower indices: $u_i \to M_i{}^j u_j$ ($u \to Mu$ in matrix notation) vs. $v^i \to (M^{-1})_j{}^i v^j$ ($v \to (M^{-1})^T v$ in matrix notation).

Lorentz transformations occupy a middle ground in this respect. On one hand, they are not arbitrary basis transformations: they are constrained to preserve the Minkowski metric $\eta_{\mu\nu}$. On the other hand, since $\eta_{\mu\nu}$ is not the identity matrix, there is a difference between upper and lower indices. Let us now sort out this slightly confusing situation.

To begin with, let's obey our convention for general basis transformations: vectors transform as $v^{\mu} \to (\Lambda^{-1})_{\nu}{}^{\mu}v^{\nu}$, covectors as $u_{\mu} \to \Lambda_{\mu}{}^{\nu}u_{\nu}$. In particular, the Minkowski metric transforms as:

$$\eta_{\mu\nu} \rightarrow \Lambda_{\mu}{}^{\rho}\Lambda_{\nu}{}^{\sigma}\eta_{\rho\sigma} .$$
 (1)

The Lorentz transformations are those matrices $\Lambda_{\mu}^{\ \nu}$ that <u>preserve</u> $\eta_{\mu\nu}$, i.e. satisfy $\Lambda_{\mu}^{\ \rho}\Lambda_{\nu}^{\ \sigma}\eta_{\rho\sigma} = \eta_{\mu\nu}$. In matrix notation, this reads:

$$\Lambda \eta \Lambda^T = \eta \quad \Longleftrightarrow \quad \Lambda^{-1} = \eta \Lambda^T \eta^{-1} \ . \tag{2}$$

This is the Lorentzian generalization of the orthogonality condition we had for rotations. Converting the last equation back into index notation, we get:

$$(\Lambda^{-1})_{\mu}{}^{\nu} = \eta_{\mu\rho} \Lambda_{\sigma}{}^{\rho} \eta^{\sigma\nu} \equiv \Lambda^{\nu}{}_{\mu} , \qquad (3)$$

where Λ^{ν}_{μ} had its indices raised and lowered using the metric $\eta_{\mu\nu}$ and its inverse $\eta^{\mu\nu}$. Thus, the Lorentz transformation of vectors and covectors can be written in essentially the same

way:

$$v^{\mu} \to \Lambda^{\mu}_{\nu} v^{\nu} \; ; \quad u_{\mu} \to \Lambda_{\mu}^{\nu} u_{\nu} \; . \tag{4}$$

In fact, this is another way of saying that the Lorentz transformations preserve the metric: they commute with the raising and lowering of indices.

Next, let's consider the infinitesimal version of a Lorentz transformation:

$$\Lambda_{\mu}{}^{\nu} = \delta_{\mu}^{\nu} + \epsilon M_{\mu}{}^{\nu} \; ; \qquad (\Lambda^{-1})_{\mu}{}^{\nu} = \delta_{\mu}^{\nu} - \epsilon M_{\mu}{}^{\nu} \; , \tag{5}$$

where ϵ is a small parameter, and M_{μ}^{ν} is a Lorentz generator. The condition (3) now becomes:

$$M^{\nu}_{\mu} = -M_{\mu}^{\nu} \iff M_{\mu\nu} = -M_{\nu\mu} .$$
 (6)

Thus, the Lorentz generators are antisymmetric matrices $M_{\mu\nu} = M_{[\mu\nu]}$, just like ordinary rotation generators! Note, however, that this is only true after we use the metric $\eta_{\mu\nu}$ to lower the second index of M_{μ}^{ν} . The antisymmetric generators $M_{\mu\nu}$ have the same meaning as in ordinary space: they specify the plane in which the infinitesimal rotation is taking place.

Exercise 1. Consider a Lorentz boost:

$$t \rightarrow \frac{t - vx}{\sqrt{1 - v^2}}; \quad x \rightarrow \frac{x - vt}{\sqrt{1 - v^2}},$$
 (7)

in the limit of infinitesimal v (but otherwise relativistically, i.e. without assuming $|t| \gg |x|$). Parameterizing this boost as $x^{\mu} \to x^{\mu} + vM^{\mu}_{\nu}x^{\nu}$, write the components of the generator M^{μ}_{ν} . Write also the lowered-index components $M_{\mu\nu}$.

II. ACTION OF A FREE MASSIVE PARTICLE

The action of a free relativistic particle is simply -m times the length of its path through spacetime (also called its worldline):

$$S = -m \int d\tau = -m \int \sqrt{-dx_{\mu}dx^{\mu}} . \tag{8}$$

Exercise 2. Show that this action leads to uniform motion in a straight line. You can use your geometric intuition from ordinary space – there is no need for fancy calculations.

Exercise 3. Why is there a minus sign in front of the action? What difference between spacetime and ordinary space does it reflect?

Exercise 4. Again, use geometric intuition from ordinary space to argue that $p_{\mu} = mu_{\mu}$ is the canonical momentum derived from the action (8) by varying the trajectory's final point.

Exercise 5. In the limit of small velocities, show how the action (8) relates to the usual action $\frac{m}{2} \int v^2 dt$ of a non-relativistic particle.

We can also derive uniform motion in a straight line from the action (8) by brute force, following the prescription of Lagrangian mechanics:

$$S = \int L(q, \dot{q})dt \implies \frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0.$$
 (9)

However, in the relativistic setting, it would be unfortunate to treat the time coordinate t as special and separate from the spatial position \mathbf{x} . What we can do instead is introduce an arbitrary parameter λ that runs along the particle's worldline, and parameterize the trajectory as $x^{\mu}(\lambda)$. Then t is treated together with \mathbf{x} as part of the "configuration variables q", while λ assumes the old role of t. It is possible to define λ as the proper time τ along the worldline, but enforcing that actually leads to unnecessary complications. The action (8) now becomes:

$$S = \int L(\dot{x}^{\mu})d\lambda \; ; \quad L = -m\sqrt{-\dot{x}_{\mu}\dot{x}^{\mu}} \; , \tag{10}$$

where the dots now represent $d/d\lambda$ derivatives. The Euler-Lagrange equations then read:

$$0 = -\frac{d}{d\lambda} \frac{\partial L}{\partial \dot{x}^{\mu}} = -m \frac{d}{d\lambda} \left(\frac{\dot{x}_{\mu}}{\sqrt{-\dot{x}_{\mu} \dot{x}^{\mu}}} \right) = -m \frac{du_{\mu}}{d\lambda} . \tag{11}$$

Where we recognized $\dot{x}_{\mu}/\sqrt{-\dot{x}_{\mu}\dot{x}^{\mu}}$ as the unit tangent vector to the worldline, i.e. the 4-velocity $u_{\mu} = dx_{\mu}/d\tau$. Thus, the equations of motion demand that u_{μ} remains constant along the trajectory, as expected.

III. 4-CURRENTS AND CONSERVATION LAWS

In non-relativistic physics, we often talk about the <u>density</u> ρ of some scalar quantity, such as electric charge or the number of atoms, i.e. the quantity per unit volume. In non-static

situations, we also talk about the <u>current density</u> \mathbf{j} , i.e. the quantity flowing <u>per unit time</u> through a unit area in each direction. Local conservation laws take the form:

$$\frac{\partial \rho}{\partial t} = -\boldsymbol{\partial} \cdot \mathbf{j} \ . \tag{12}$$

When integrated over a volume, the LHS becomes the time derivative of the charge in a region, and the RHS becomes the flux of current into the region.

In SR, the charge density ρ and current density \mathbf{j} become unified into a 4-vector $j^{\mu} = (\rho, \mathbf{j})$, which we refer to as the 4-current.

Exercise 6. Show that j^{μ} indeed transforms a 4-vector. Consider a uniform charge density at rest, $j^{\mu} = (\rho_0, \mathbf{0})$. Using the Lorentz transformation of the coordinates $x^{\mu} = (t, \mathbf{x})$, find the components of $j^{\mu} = (\rho, \mathbf{j})$ in a boosted frame, and compare with the expected transformation of a 4-vector's components.

Like dx^{μ} , u^{μ} and p^{μ} , the 4-current j^{μ} tends to be associated with the motion of particles. It is useful to note a property that all these 4-vectors share. Their spatial components are related to the timelike one via:

$$\mathbf{dx} = \mathbf{v}dt$$
; $\mathbf{p} = E\mathbf{v}$; $\mathbf{j} = \rho\mathbf{v}$. (13)

Note that $\mathbf{p} = E\mathbf{v}$ is a relativistic generalization of the non-relativistic $\mathbf{p} = m\mathbf{v}$, since, at small velocities, we have $E = m + mv^2/2 + \cdots \approx m$.

Let's now return to the current conservation law (12). In spacetime notation, this becomes simply:

$$\partial_{\mu}j^{\mu} = 0 \ . \tag{14}$$

More generally, for charges that are not necessarily conserved, $\partial_{\mu}j^{\mu}$ is the amount of charge created per unit time per unit volume after taking into account the ingoing/outgoing flux $\partial \cdot \mathbf{j}$.

Let us understand this in more detail. Consider integrating (14) over some spacetime 4-volume Ω . The result should be the amount of charge created inside this 4-volume. On the other hand, we know from Gauss' law that the integral of a divergence is a flux:

$$\int_{\Omega} \partial_{\mu} j^{\mu} d^4 x = \int_{\partial \Omega} j^{\mu} dV_{\mu} . \tag{15}$$

Here, $\partial\Omega$ is the 3d boundary of the 4d region Ω , and dV_{μ} is a 3d volume element with direction. Note that dV_{μ} is naturally a covector, since its "direction" is that of a 3d surface, not a 1d line. The flux element $j^{\mu}dV_{\mu}$ is analogous to familiar 3d expressions such as $\mathbf{E} \cdot \mathbf{dS}$, where \mathbf{E} is an electric field, and \mathbf{dS} is a directed 2d area element.

Let us now get more specific, and consider a prism-like spacetime region Ω , composed of a spatial volume V that evolves in time for some interval $\Delta t = t_f - t_i$. The boundary $\partial \Omega$ then consists of an "initial snapshot" of $V(t_i)$ in the past, a "final snapshot" of $V(t_f)$ in the future, and a timelike "wall" consisting of the 2d boundary ∂V times the interval Δt . The flux (15) then decomposes as:

$$\int_{\partial\Omega} j^{\mu} dV_{\mu} = \int_{V(t_f)} j^t dV - \int_{V(t_i)} j^t dV + \int_{t_i}^{t_f} dt \int_{\partial V} \mathbf{j} \cdot \mathbf{dS}$$
 (16)

Recalling that j^t is charge per unit volume and \mathbf{j} is current per unit area, this becomes:

$$\int_{\partial\Omega} j^{\mu} dV_{\mu} = Q(t_f) - Q(t_i) + \int_{t_i}^{t_f} I(t) dt , \qquad (17)$$

where Q is total charge, and I is total outgoing current. We see that the integral indeed describes the charge produced between t_i and t_f , having taken into account any ingoing/outgoing flow in the intervening time.

To get slightly philosophical, Special Relativity teaches us that "existence is a flow through time": the property of something like charge to exist in a given place – its local volume density – is actually the time component of its current! This is of a piece with the perspective switch from thinking about point particles in space to thinking about worldlines in spacetime.

IV. THE STRESS-ENERGY TENSOR

Note that the construction of 4-currents doesn't apply to every kind of non-relativistic density. For instance, mass density isn't part of any 4-vector. At best, we can think of it as an approximation for the energy density. But we can't make a 4-vector out of energy density, either: energy itself is not a scalar, but the time component of the 4-momentum p^{μ} . Thus, its density and current must be incorporated into a rank-2 tensor $T^{\mu\nu}$, which includes the density and current of both energy and spatial momentum. Thus, T^{tt} is energy density, T^{it} is energy current density, T^{ti} is momentum density, and T^{ij} is momentum current density.

This latter quantity is well-loved in the physics of solids, and is called the <u>stress tensor</u>: since the current of momentum $\dot{\mathbf{p}}$ is a force, T^{ij} measures force per unit area! As a result, $T^{\mu\nu}$ as a whole is called the "stress-energy tensor". In the same way that $\partial_{\mu}j^{\mu}=0$ encodes the conservation of charge, $\partial_{\mu}T^{\mu\nu}=0$ encodes the conservation of 4-momentum.

Let us get some initial intuition about $T^{\mu\nu}$. Consider a uniform distribution of n particles per unit volume, each with energy E, moving at the same velocity \mathbf{v} . The energy density is then $T^{tt} = nE$. By the logic of $\mathbf{j} = \rho \mathbf{v}$, the energy <u>current</u> density is then $T^{it} = T^{tt}v^i = nEv^i$. On the other hand, since $\mathbf{p} = E\mathbf{v}$, the momentum density is $T^{ti} = nEv^i$. Finally, employing $\mathbf{j} = \rho \mathbf{v}$ again, the momentum current density is $T^{ij} = T^{tj}v^i = nEv^iv^j$. We see that $T^{\mu\nu}$ is symmetric: we have $T^{ti} = T^{it}$ and $T^{ij} = T^{ji}$.

Let's repeat this construction in a more spacetime-covariant way. Consider a uniform distribution of particles, each with mass m and 4-velocity u^{μ} , whose density per unit volume in their rest frame is n_{rest} . As opposed to the density n in an arbitrary frame, which changes under boosts (see Exercise 6), n_{rest} is an invariant spacetime scalar. In the rest frame, $T^{\mu\nu}$ is clearly given by $T^{tt} = mn_{\text{rest}}$, with all other components vanishing. There is exactly one tensor that can be constructed out of the scalars m, n_{rest} and the 4-vector u^{μ} that satisfies this property: $T^{\mu\nu} = mn_{\text{rest}}u^{\mu}u^{\nu}$. By the same logic, if the particles have charge q, the associated charge 4-current is $j^{\mu} = qn_{\text{rest}}u^{\mu}$.

Exercise 7. Consider a gas of n particles per unit volume. Each particle has the same mass m and velocity of magnitude v. The directions of the particles' velocities are uniformly distributed. Show that the stress-energy tensor has the form:

$$T^{\mu\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} , \qquad (18)$$

and find the values of ε and p. What is the physical meaning of p?

Exercise 8. Now, consider a gas of n photons per unit volume. Each photon has energy E, and the directions of the photons' velocities are again uniformly distributed. Show that $T^{\mu\nu}$ is again of the form (18), and find ε and p. What is the trace of the stress-energy tensor T^{μ}_{μ} ? Can you relate the answer to some property of the 4-momentum of a single photon?

Fields also have a stress-energy tensor, but that is a more delicate issue, as we will see in the next lecture.

V. ELECTROMAGNETISM

In electrostatics, we learn about the electric potential ϕ . Quite a bit later, we learn about the magnetic potential \mathbf{A} . In full electrodynamics, the electric and magnetic field are derived from these potentials via:

$$\mathbf{E} = -\partial \phi - \frac{\partial \mathbf{A}}{\partial t} \; ; \quad \mathbf{B} = \partial \times \mathbf{A} \; . \tag{19}$$

It turns out that, just like energy and momentum, the electric and magnetic potentials also combine into a 4-vector $A^{\mu} = (\phi, \mathbf{A})$ – the <u>electromagnetic</u> potential. The electric and magnetic field strengths (19) can now be rewritten as:

$$E_i = \partial_i A_t - \partial_t A_i \; ; \quad B_{ij} = 2\partial_{[i} A_{j]} = \partial_i A_j - \partial_j A_i \; , \tag{20}$$

where we replaced the axial vector B_i with a bivector B_{ij} , as in Lecture 1-1. We see that \mathbf{E} and \mathbf{B} are also components of a single spacetime object – an antisymmetric matrix $F_{\mu\nu}$:

$$F_{\mu\nu} = 2\partial_{[\mu}A_{\nu]} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \; ; \quad E_i = F_{it} = -F_{ti} \; ; \quad \epsilon_{ijk}B_k = B_{ij} = F_{ij} \; .$$
 (21)

In other words, an electric field is just like a magnetic field, but in a timelike plane! We refer to $F_{\mu\nu}$ as the electromagnetic field strength.

The 4-potential A_{μ} "wants" to have a lower index, due to the way in which it enters the action of a charged particle:

$$S = -m \int \sqrt{-dx_{\mu}dx^{\mu}} + q \int A_{\mu}dx^{\mu} . \qquad (22)$$

Quite remarkably, the second term in (22) completely captures the interaction between a charged particle and an electromagnetic field: the covector A_{μ} simply defines an "extra bit of action" for a charged particle traveling along an interval dx^{μ} !

The derivation of the charge's equation of motion from (22) isn't difficult, but we will simply state the results here. A very flexible form of the equations that is also close to a Newtonian force law is given by:

$$dp_{\mu} = qF_{\mu\nu}dx^{\nu} , \qquad (23)$$

where $p_{\mu} = mu_{\mu}$ is the particle's 4-momentum. Dividing by the proper time $d\tau$, we get the 4-acceleration in an EM field as:

$$\alpha_{\mu} = \frac{q}{m} F_{\mu\nu} u^{\nu} \ . \tag{24}$$

Exercise 9. Derive from (23) the Lorentz force law $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$, which is exact even at relativistic velocities, if we define the force \mathbf{F} as the time derivative of the correct relativistic momentum $\mathbf{p} = m\mathbf{v}/\sqrt{1-v^2}$.