GR lecture 2-2
More on rotations; Special Relativity

I. MORE ON ROTATIONS

There is a bit more to say about rotations of orthonormal bases; in particular, there are
some insights to be gained from using matrix notation. A rotation matrix acts on vectors

as:
r, - Rjz; <= x — Rx. (1)

Acting on a matrix, a rotation does the same to each of the matrix’s indices, i.e.:
M;; — RyRyMy <<= M — RMR". (2)

The defining property of rotation (and reflection) matrices is that they preserve the identity

matrix d;;, which defines the scalar product in an orthonormal basis:
Ri.Rjr = Ry Rjidp = 6 <= RR"=RIR" =1. (3)

Now let’s consider a uniform rotation R;; in some plane, with a constant angular velocity.
The infinitesimal rotation over a time interval dt is given by a matrix of the form 4;; 4 w;;dt,
where w;; should clearly have the interpretation of angular velocity. In matrix notation, this
can be written as 1+ wdt = e“?. If we continue the same rotation over a finite time interval

wdt

t, then we must multiply all the infinitesimal e““ rotations, to obtain a finite rotation of the

form:

R=¢""; R=wR=Ruw. (4)
In terms of the matrix w, the orthogonality condition on R becomes:

— T —
RT=R"!'" < '=e" = v =-w, (5)

i.e. we've rediscovered the fact that the angular velocity w;; = €;jxwy is an antisymmetric
matrix! In Lie group language, the rotation matrices R form the Lie group SO(3), while the

angular velocities w form the Lie algebra so(3), and are called the generators of the group



SO(3). What we’ve discovered is that orthogonal group elements arise from exponentiating

antisymmetric generators.

We might also consider a rotation process with non-constant angular velocity. In partic-
ular, the angular velocity at different times may be along different planes, which means that
the rotations at different times do not commute with each other. Then we have two candi-
date definitions of the angular velocity matrix w at time ¢, both antisymmetric: w = RTR
vs. w = RRT. However, these two definitions are related via w — RwRT, which means
that they are actually the same angular velocity, but measured in two different orthonormal
bases: before and after the rotation R.

Now we are ready to properly address Exercise 5 from Lecture 1-2. Consider an arbitrary

change of reference frame in Newtonian physics:
x — X' =R(t)x+u(t), (6)

where R(t) is an orthogonal rotation matrix, and u(t) is a displacement of the origin. Con-
sider a particle with a particular trajectory x(t). Our goal was to find its acceleration X' in
the new frame, and identify the various inertial forces. To begin, we differentiate twice with

respect to time and find:
x' = Rx + 2R% + R(t)X + ii . (7)

The 4th term is the uniform acceleration of the frame’s origin. The 3rd term is the acceler-
ation of the particle in the original frame, simply rotated into the new, rotated, basis. The

other terms can be brought into the same form, using:
R=Rw; R=Rw+ Ri=RW+w). (8)
We then get:
X' = R(w?X + Wx + 2wX + X) + i . (9)

The first term corresponds to the centrifugal force, the second term to the angular acceler-

ation of the frame’s rotation, and the third term — to the Coriolis force.

II. THE LORENTZ TRANSFORMATIONS OF SPECIAL RELATIVITY

In the last lecture, we discussed the Galilean boost symmetry:

t > t; x = x—vt, (10)



which is not respected by electromagnetism. One fine day, Lorentz noticed that there is a
deformed version of the boost transformations (10) under which Maxwell’s equations and

the electromagnetic force law are invariant:

HZV_—'T’;//;; X%X_J#W(Hxvj(m_l)). (1)

Slightly less horrifyingly, if we set v along the x direction, this becomes:

L t—ovw/c? R x — vt R
—— T = :
V1—=v?/c? V1—v?/c? Y Y

For Lorentz, this discovery was just a mathematical curiosity. Einstein’s greatness was to

z = z. (12)

say:

e Electromagnetism is more like gravity than like hydrodynamics: it’s a fundamental

law of Nature.

e The laws of Nature do have a boost symmetry, and it’s important. However, the

correct boost symmetry is given by (12), and (10) is just an approximation.

Before electromagnetism, we simply never had to notice corrections of the order v?/c?.
Magnetism brought them to our attention by historical accident, because the tiny v?/c* was
being multiplied by the enormous magnitude of the electric force (which is usually almost
perfectly canceled out, since matter is neutral overall).

So, what are these ugly formulas (12)7 They're a rotation in the (¢, ) plane in spacetime.

Indeed, we can bring an ordinary rotation to the same kind of ugly form. Consider the

rotation:
r — xcosh —ysinf; y — ycosl+ xsind . (13)

Now, instead of the angle 6, let’s use the slope v = tanf (remember: velocity is slope in

spacetime!). Then our rotation becomes:

. T — vy _ y+vx (14)
z 1 —_—.
V14 02 Y V1+0?

Finally, suppose that x measures horizontal distance along the surface of the Earth, and y
measures vertical distance. Normally, humans and their transport devices travel horizontally

much further than vertically. So it’s often useful to use larger units for the horizontal axis.



E.g. on a plane, the height is often given in feet, and the horizontal distance — in miles.
Then the slope v is measured in feet/miles, and we need to insert a unit conversion constant

¢ = b, 280feet /miles. Our rotation formula finally becomes:

. 2
RN s (15)

So now we understand how to clean up the Lorentz boost formula (12). First, we need
to stop using different units for space and time, and realize that the “speed of light” ¢ ~
3-10%m/s is just a conversion constant: there are about 3-10® meters in a second, and that’s
that. So we redefine our units such that ¢ = 1, and forget about it. Then the boost formula
simplifies to:

t— — vt
p 0y 220 (16)

V12’ VI—?’
where we forgot about the (y,z) axes for simplicity. As the next step, we may want to
identify v as tan @ of some spacetime angle. However, the signs in (16) are not the same as
in (14), so that doesn’t work. To take care of the signs, we pass from ordinary trigonometry
into hyperbolic trigonometry, and define v = tanhf. The boost formula then simplifies

further:
t — tcoshf —xsinhf; x — xcoshf —tsinhf , (17)

and we're beginning to glimpse the basic idea of spacetime geometry. Note that |v| is
restricted in the range (0,c¢ = 1), which corresponds to the full range (0, 00) of the so-called
“rapidity” angle 6.

Setting ¢ = 1 means that various quantities now have the same units. In particular, in

SR units, we have:

length] = [time] ; [velocity] =1 ; [acceleration] = 1/[length] ;
h (18)
[mass] = [momentum| = [energy] ; [charge] _ [current]
[volume] [area]

III. TIME DILATION, LENGTH CONTRACTION, RELATIVITY OF SIMUL-
TANEITY, INVARIANCE OF THE SPEED OF LIGHT

Let’s quickly work out the two famous effects of a Lorentz boost. First, let’s focus on

two of my birthdays in my rest frame: (t1,21) = (0,0) and (f3, z2) = (7,0). In other words,

4



we consider a process that happens to me while I'm at rest in the origin, and takes time 7
in my reference frame. Now let’s pass to a frame moving at velocity —v (so that I'm now

moving at velocity v).

Exercise 1. Find the time interval ty —t| in the new reference frame. Is it longer or shorter

than 79

The frame shift also affects the x coordinates — in the new frame, the two events no longer

happen in the same place:

zh=0; x’zz\/%#x’l (19)

Apart from the 1/4/1 — v2, this phenomenon is familiar from Galilean physics: for two events
at different times, whether or not they happened at the same place depends on the reference
frame.

Now, consider the opposite situation: in some reference frame, two events happen at the
same time, but in different places: (t1,z1) = (0,0) and (t2, z2) = (0, L). Now we pass into a
new frame, moving at velocity v. In Galilean physics, time never transforms, so the events
will be simultaneous in the new frame as well. However, in SR, space and time are placed
on an equal footing, so something like the effect (19) should apply again: for two events
at different places, whether or not they happened at the same time should depend on the

reference frame.

Exercise 2. Work this out explicitly. What is the time shift t; — t| between the events
(t1,21) = (0,0) and (t2,z2) = (0, L) in the new frame?

Exercise 3. What is the spatial distance between the events in the new frame? Is it longer

or shorter than L?¢

From the last exercise, it may be unclear why people talk about relativistic length

contraction. That actually refers to a slightly more involved scenario:

Exercise 4. Consider a stick of length L in its rest frame, such that its endpoints stay at
1 = 0 and xo = L at all times. Now pass into a reference frame moving at velocity —v,
so that the stick now moves at velocity v. What’s the length of the stick in the new frame,

defined as the distance xy — x| between its endpoints at a fized time t'?
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The above effects can all be understood intuitively by imagining Lorentz boosts as rota-
tions in spacetime, which tilt the various spacetime vectors. However, the sign of the effect
may come out opposite from our naive Euclidean intuition. For example, if we draw x and
t axes on Euclidean paper, then the Lorentz transformation (17) doesn’t look like an actual
rotation; instead, it tilts both axes either towards or away from each other, while preserving

the midline at 45°.

Exercise 5. Let’s understand the last statement physically. Consider a photon with trajec-
tory x = ct, i.e. simply v =t. Find the trajectory x'(t') in a boosted frame with velocity v

along the x direction. What is the photon’s velocity in the new frame?

Exercise 6. Now let’s find the transformation rule for general velocities, not necessarily
along the x axis. Consider a particle with trajectory x = ut. Find the paritcle’s new velocity
u’ in a boosted frame with velocity v. Check that the speed of light is still invariant, regardless

of the boost’s direction.

IV. CAUSALITY

The relativity of simultaneity, which we’ve seen in Exercise 2, raises a pertinent question
about causality. Two events that were simultaneous in one frame may occur at different
times in another, and their time ordering will depend on the chosen frame. Thus, if we

insist on consistent ordering of causes and effects, then we must never allow instantaneous

influence across a spatial distance: that would allow us to flip the order of cause and effect
by changing the reference frame! This why SR tends to guide us towards field theory, where
interactions are always local in both space and time.

Of course, even if the microscopic laws are local, their effects will end up propagating far
away from the original cause. We should therefore understand when is it possible to speak of
a consistent causal relationship between events in spacetime. Consider two events (0,0) and
(t,x). A key property of Lorentz boosts is that they can change the events’ separation in

space only within certain ranges, never crossing from one range to the other. These different

types of separation are:

e |t| > |x|, t > 0: timelike-separated, second event is in the future.
o |t| > |x|, t < 0: timelike-separated, second event is in the past.
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o |t| = |x|, t > 0: lightlike-separated, second event is in the future.
o |t| = |x|, t < 0: lightlike-separated, second event is in the past.
e |t| < |x|: spacelike-separated (the time ordering depends on the reference frame).

Proving this assertion is not too hard, but it will become obvious once we introduce 4-vector

language below. The point for now is that causal relationship is non-ambiguous between

timelike- or lightlike-separated events. In other words, causal influence can only travel at,

or below, the speed of light.

V. 4-VECTOR NOTATION, THE MINKOWSKI METRIC AND THE LORENTZ
GROUP

Enough of this non-relativistic notation! Time to grow up, as well as to start putting
index notation to good use. From now on, we unify ¢ and x into a 4-vector z* = (¢, x,y, 2),
where the index p runs over (¢, x,y, z), or (0, 1,2,3). The crucial property of Lorentz boosts

is that they preserve the spacetime interval:

z, 2" =n,atc’ = - + 2P+t + 27, (20)
where 7, is the metric of flat spacetime, known as the Minkowski metric:

-1000

0 100
Nuy = . (21)
0 010

0 001

Exercise 7. Write down the inverse metric n*”.
Exercise 8. Prove that Lorentz boosts indeed preserve x,a".

More precisely, the full group of “spacetime rotations” that preserve the “squared distance

from the origin” x,z" consists of:
e Ordinary spatial rotations in the zy, yz and zx planes.

e Lorentz boosts in the x,y and z directions. We think of these as rotations in the tz,

ty and tz planes.



Together, these symmetries are called the Lorentz group. Both the rotations and boosts
take the general linear form z# — A¥,z”. If we combine the Lorentz group with translations
of the origin, we obtain the Poincare group z*# — A*,x" 4+ w*, which preserves the spacetime

distance Az,Az* between pairs of points.

The minus sign in the metric (21) is the one and only distinction between space and
time in SR. It cannot be removed by any change of basis, unless we allow complex numbers.
Thus, the (¢, x,y, z) basis is “as orthonormal as it gets”, and we’re forced to pay attention
to upper vs. lower indices: z* = (¢, z,vy, 2) vs. z, = (—t,2,y, 2).

The distance-squared Az,Az* can be positive, negative or zero. This corresponds pre-
cisely to the notions of spacelike, timelike and lightlike (also known as null) separation from
the previous section. The causality statements from the previous section follow from the in-
variance of Az, Ax#, together with the fact that one cannot rotate a future-pointing timelike
or null vector into a past-pointing one without going through the spacelike region in between.
Due to the different possible signs, we sometimes define the actual distance between events
as § = \/W (if we expect it to be spacelike), and sometimes as 7 = \/W (if
we expect it to be timelike). Since 7 is the same as time in the rest frame x = const, it
is often called “proper time”. The notation s is often used for timelike separations as well.
Also, some people prefer to define the entire metric with opposite signs, i.e. 2 — 22 —y% — 22,
so be careful.

In Euclidean space, we define a sphere as the surface of constant distance \/x - x from the
origin. In Minkowski spacetime, we can similarly consider “spheres” at constant z,z", but
their topology is now different. When drawn on Euclidean paper, they look like hyperboloids.
A surface of constant positive z,z" is a single-sheeted hyperboloid, while the surface of
negative constant x,x* is a two-sheeted hyperboloid. The limiting case, z,2* = 0, is a
cone — the lightcone. It demarcates the boundary between spacelike-separated and timelike-

separated regions.

VI. 4-VELOCITY, 4-ACCELERATION AND 4-MOMENTUM

Many familiar quantities arrange themselves into spacetime vectors and tensors. We
refer to a quantity v* as a spacetime vector, or a 4-vector, if its components transform

under Lorentz boosts like the components of z# = (¢, v).
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Let us start with velocity. The standard non-relativistic notion of velocity dx/dt is not
a good starting point: the denominator is just one component of the 4-vector dx*. Instead,

it’s better to treat v as an approximation to the spatial components of the 4-vector:

dz" dat (L)
dr  \/—dr,dz" 102’

which is called the 4-velocity. This is just the unit tangent vector to the (timelike!) trajectory

ut =

(22)

of a massive particle through spacetime, which is also known as its worldline. Similarly, the
appropriate generalization of acceleration given by the 4-vector:

odut d?xt

n
a = —_———
dr dr? ’

(23)
called the 4-acceleration.

Exercise 9. Ezpress the space and time components of o in terms of the ordinary velocity

v and the ordinary acceleration a.

The appropriate generalization of momentum p = mv is the 4-momentum:

ph= = (\/ﬁm’ \/r_vm) | (24)

What’s the meaning of the ¢ component of this 4-vector? Let us Taylor-expand in small

velocities v < 1:

1
pt:m+§mv2+... (25)

We recognize the second term as the non-relativistic kinetic energy. The first term is new:

it is the rest energy m = mc? of a particle with mass m. Together, p' is just the total energy
of the particle! To see why this makes sense, consider the rule from analytical mechanics for

the variation of the action under changing the location (¢,x) of the trajectory’s final point:
dS =—FEdt+p-dx, (26)

which relativistically gets rewritten simply as dS = p,dz*. Note that the mass m is just the

(timelike) length of the 4-momentum:

m:w/—pup“:EQ—p~p. (27)



When several particles interact, the total 4-momentum P* = > p# is conserved. However,
in SR, there is no conservation of the total mass > m. Mass can be created and destroyed,
such as an electron-positron pair turning into two photons. In fact, the “total mass” of a
given system is an ambiguous concept. Is it the sum > m of individual particle masses,
or the length \/W of the total 4-momentum? What if we zoom out of the composite
system so that it appears as a point particle? For the 4-momentum itself, such problems do
not arise: it is additive and conserved.

For massless particles m = 0, such as photons, a slightly different approach is needed,
which we won’t spell out in full here. While massive particles travel along timelike trajec-
tories, massless particles travel along lightlike ones. A free massless particle travels along a
lightlike geodesic, which we call simply a lightray. The proper time along a lightlike line van-
ishes, and thus the 4-velocity is ill-defined. Though the particle’s worldline has a direction,
there is no special unit vector u* = dz* /dr along this direction. The particle’s 4-momentum

is then just an arbitrary lightlike vector p* tangent to the worldline, satisfying:
pp=E—-p’=0. (28)

A pair of parallel lightlike 4-momenta can describe e.g. a pair of photons that are both
flying at the speed of light in the same direction, but with different energies (i.e. different
frequencies of light).
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