
GR lecture 11
Linearized GR and gravitational waves

I. CARROLL’S BOOK: SECTIONS 7.1, 7.2, 7.4

II. IS GR MORE SINGULAR OR LESS SINGULAR THAN OTHER FIELD THE-

ORIES?

In the previous lectures, we learned about Schwarzschild black holes. Some of their

features are overly idealized. Astrophysical black holes, which aren’t eternal, don’t come

with a white hole, or with a second external universe. However, the formation of horizons

and singularities is a very generic feature: GR predicts it for a wide range of initial conditions

for e.g. collapsing stars (future singularity – black hole), or expanding cosmologies (past

singularity – Big Bang). This is a consequence of two features of GR. First, gravity (even

in the Newtonian version) always attracts, and thus tends to produce collapses. This is

in contrast to electromagnetism, where attraction always comes together with repulsion.

Second, in GR, gravity can be self-reinforcing: the non-linearity of the Einstein equation

means that the gravitational field itself can contribute to the attraction that eventually

causes collapse into a singularity. In this sense, when we look at short-distance phenomena,

GR is more singular than other field theories: it is more prone to producing infinities, such

as infinite density and curvature. The same pattern continues when we try to quantize GR:

we find infinities in the Feynman diagrams which can’t be renormalized away.

At the same time, there is a different sense in which GR is less singular than electro-

magnetism. To see this, let’s consider the question of the electromagnetic self-interaction

of a point charge. On one hand, we must accept that a point charge must interact with

its own electromagnetic field: otherwise, we are in conflict with the observed fact that ac-

celerated charges lose energy by emitting light. On the other hand, if we try to calculate

the electrostatic energy associated with a ball of charge Q and radius R, we get ∼ Q2/R,

which of course diverges as R → 0. The interpretation/treatment of this infinite energy in

electromagnetism is a subtle and non-trivial issue. It is partially alleviated at the quantum

level through the existence of antiparticles with opposite charge, but it never completely

goes away.
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In contrast, consider a “gravitational point charge”, i.e. a “point mass”, i.e. a black hole.

Here, the “gravitational self-interaction energy” is difficult to define, or to separate from the

“intrinsic energy” of the collapsed matter. However, the total energy of this system is very

clearly defined, and is manifestly finite! Indeed, in gravity, energy, which in the rest frame

is the same as mass, is just the “charge” that couples to the gravitational field. Thus, we

can find the energy inside a volume by applying Gauss’ law, i.e. by calculating the flux of

the gravitational field through an enclosing closed surface. We should note that in GR, as

opposed to Newtonian gravity, such a flux is difficult to define, unless our enclosing surface

is at infinity; but, ultimately, it can be done. Another way to phrase this is that a black

hole’s total energy can be inferred by probing its gravitational field at a large distance,

where (disregarding cosmological complications) the Newtonian limit applies. This was in

fact what allowed us to confidently identify the parameter M in the Schwarzschild metric

as the black hole’s mass!

Let us make two more comments about the way in which GR leads to a finite total energy.

First, this is a non-perturbative phenomenon: it cannot be seen in weak-field perturbation

theory. Indeed, consider the Newtonian approximation. There, just as for electrostatics, the

gravitational self-interaction energy for a small ball will be ∼ GM2/R (and, in this case, it

will be negative). Now consider GR corrections to this Newtonian answer. These will be

organized in powers of the dimensionless ratio GM/R:

Eself-interaction =
GM2

R

∞∑
n=0

cn

(
GM

R

)n
. (1)

Each additional term in this expansion diverges even more badly as R → 0. The finite

result becomes apparent only in the full, non-perturbative answer! The second comment is

that the finite energy of a black hole can be interpreted in terms of the horizon providing a

short-distance cutoff. In other words, a gravitational “point charge” is never really pointlike:

as far as outside observers can tell, it can never become smaller than the horizon radius

R ∼ GM . Plugging this into the naive energy formula ∼ GM2/R, we get an answer ∼ M ,

as we should.

Thus, on one hand, GR is more singular than electromagnetism at short distances. But

on the other hand, there exists a class of questions (such as a system’s total energy), in

which electromagnetism is stuck with short-distance singularities, while GR can give sensible

finite answers by rephrasing the question from the point of view of distant observers. This
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observation is at the heart of the holographic approach to quantum gravity.

III. INFINITESIMAL COORDINATE TRANSFORMATIONS AND LIE DERIVA-

TIVES

So far in this course, we neglected to spell out explicitly the relation between Lie deriva-

tives and infinitesimal coordinate transformations.

Consider a coordinate transformation xµ → x′µ(x). Then the components of a tensor Aµν

with e.g. one upper and one lower index transform as:

A′µ
ν(x

′) =
∂x′µ

∂xρ
∂xσ

∂x′ν
Aρσ(x) , (2)

where we took care to notice not just the basis transformation matrices, but also the fact

that Aµν and A′µ
ν are evaluated at different values of the coordinates. Now, suppose that

our coordinate transformation is infinitesimal, so that x′µ = xµ+ξµ(x), where ξµ(x) is small.

The LHS of the tensor transformation law (2) now reads:

A′µ
ν(x

′) = A′µ
ν(x) + ξρ∂ρA

′µ
ν(x) = A′µ

ν(x) + ξρ∂ρA
µ
ν(x) , (3)

where, in the second term, we interchanged A′µ
ν and Aµν : since they’re already multiplied

by ξµ, the difference would only contribute at second order.

Let us now turn to the RHS of (2). The basis transformation matrices read:

∂x′µ

∂xν
= δµν + ∂νξ

µ ;
∂xµ

∂x′ν
= δµν − ∂νξµ . (4)

To obtain the second matrix, we can simply invert first one, taking into account that ∂νξ
µ is

infinitesimal. Equivalently, we can derive it from xµ = x′µ− ξµ(x), taking into account that

ξµ(x) and ξµ(x′) are interchangeable, since the difference between them would be second-

order in ξµ. We can now express the RHS of (2) as:

(δµρ + ∂ρξ
µ)(δσν − ∂νξσ)Aρσ = Aµν + Aρν∂ρξ

µ − Aµσ∂νξσ . (5)

Putting this together with (3), we obtain the change in the components of Aµν as:

δAµν(x) ≡ A′µ
ν(x)− Aµν(x) = −ξρ∂ρAµν(x) + Aρν∂ρξ

µ − Aµσ∂νξσ , (6)
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which we identify as the Lie derivative:

δAµν(x) = −LξAµν . (7)

Of course, this derivation works for tensors with any number of upper and lower indices:

each index will come with its own term in (5) from the basis transformation matrix, which

will match the corresponding term in the Lie derivative. As a special case, we get the

transformation law for the metric under infinitesimal coordinate changes:

δgµν = −Lξgµν = − (ξρ∇ρgµν + gρν∇µξ
ρ + gµρ∇νξ

ρ) = 0−∇µξν −∇νξµ = −2∇(µξν) , (8)

where we wrote out the Lie derivative in terms of covariant derivatives, and then used the

covariant derivative’s metric compatibility.

EXERCISES

Exercise 1. Calculate the Riemann tensor Rµνρσ(x) to first order in a small metric pertur-

bation hµν(x).

Exercise 2. Calculate the first-order Riemann tensor Rµνρσ(x) for a gravitational wave

hµν(x) = Cµνe
ikρxρ that satisfies the linearized vacuum Einstein equations.

Exercise 3. Consider again a gravitational wave hµν(x) = Cµνe
ikρxρ. Calculate its gauge

transformation δhµν(x) under an infinitesimal diffeomorphism ξµ(x) = εµeikρx
ρ
. Show that

de Donder gauge Cµνk
ν = 1

2
Cν
ν kµ is preserved.
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