
GR lecture 1-2
Newtonian gravity vs. inertial forces,
non-orthonormal bases, upper and lower indices

I. INERTIAL FORCES AND NEWTONIAN GRAVITY

We return to our discussion of reference frames. In Newtonian physics, inertial frames

are the ones in which the laws are written. A particle’s velocity is ill-defined, because it

can appear different in different inertial frames. However, acceleration is well-defined: it is

the same in all inertial frames, and it enters the force law Fi = mai. Non-inertial frames

are marked by extra, spurious, accelerations. To fit them artificially into the force law, we

multiply them by the mass, and package them as “inertial forces”. Conversely, if we notice

a force that is conspicuously proportional to the particle’s mass, and doesn’t depend on any

other intrinsic property, we should deduce that it is an inertial force.

But wait! When we first learn about the Earth’s gravity, we learn it as an acceleration!

Only later do we slap on the m to make it into a force mgi. That looks just like an inertial

force! Key in our intuition from before: non-inertial frames are curvature of coordinates,

gravity is curvature of spacetime itself. Gravity is when all reference frames are non-inertial.

It is the inertial force that you can’t get rid of by switching frames! Conversely, gravity

takes away the notion of well-defined acceleration: there are no longer preferred (inertial)

reference frames in which acceleration should be measured. This is one sense of the “extra

layer of relativity” that we acquire when switching from SR to GR.

Now let’s get more specific. Let there be a bunch of particles in space. They might be

interacting with each other via some force laws. We would like to understand two questions:

• Are we in an inertial frame?

• Are the particles subject to a gravitational field?

First, consider the particles’ positions. These aren’t enough to decide anything: they are

arbitrary initial conditions. The same goes for the particles’ velocities: even if they look

momentarily like the particles are e.g. rotating around an empty point, we cannot deduce

that we’re in a rotating frame: it could be a weird initial condition. Things get interesting

once we come to accelerations. Now we can ask: are the particles’ accelerations accounted
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for by all the (non-gravitational) forces? If not, perhaps there is some force that we missed.

But, with enough statistics, we can be smarter, and ask: do the extra accelerations depend

in any way on the particles’ intrinsic properties? For example, particles of different charges

in an electric field will accelerate differently. If that is not the case, if the extra accelerations

depend only on the particles’ positions and velocities, then we’re either dealing with an

inertial force or with gravity. Now, how to tell the difference between the two?

Well, we could just “cheat” and use Newton’s force acceleration formula:

ai(x) = G

∫
d3x′ρ(x′)

x′i − xi[
(x′j − xj)(x′j − xj)

]3/2 . (1)

The acceleration that is given by this formula is gravity, and any additional acceleration

must be an inertial force. This is the attitude that everyone took before Einstein. But,

fundamentally speaking, something is off with eq. (1). It is non-local: it requires knowing

all the masses in the Universe and their positions. Jumping ahead in the story, Special

Relativity makes us very suspicious of non-local laws: we like our laws to be local in time, but

then SR means that they must also be local in space. So, is there some local measurement,

one not requiring information about faraway masses, that would tell gravity from an inertial

force?

The mere presence of acceleration is definitely not enough: it can always arise from an

accelerated frame. A time-dependent acceleration is not a smoking gun for gravity either:

it can always be reproduced by a frame shift of the form xi → xi + fi(t). So the difference

must lie in spatial derivatives of the acceleration: we should be treating acceleration as a

field ai(x). What spatial derivatives of this field can we write? The simplest one is the

divergence ∂iai. This is actually fixed by the local version of Newton’s formula (1):

∂iai = −Gρ(x) . (2)

In fact, eq. (1) is equivalent to (2) together with the non-local assumption that the acceler-

ation “at infinity”, i.e. far from all masses, vanishes. So, the divergence (2) is a promising

candidate for a locally measurable quantity that signals the presence of gravity.

Exercise 1. Consider a surface composed of probe particles. The surface initially encloses

a volume V , within which there is a mass M . The probe particles’ initial velocity is zero.

Find the second time derivative V̈ in the first instant after the particles are released.
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The divergence (2) has one crucial limitation as a probe of gravity: it is only non-vanishing

at points where ρ(x) is nonzero, i.e. when we’re on top of the gravity’s source. Can gravity

be measured away from its source? Is there a local observation on the Earth that can detect

the gravitational influence of the Moon? There is, but we must look at more detailed spatial

derivatives of ai. We may try to consider the curl εijk∂jak (or simply its bivector version

2∂[iaj] = ∂iaj−∂jai). However, that always vanishes: otherwise, inertial/gravitational forces

would not be conservative, and we could use them to build a perpetual motion machine!

Exercise 2 (ADVANCED). Identify the property of the Riemann tensor that is responsible

for the vanishing of ∂[iaj].

This leaves the symmetric traceless (“spin-2”) component of the spatial derivative ∂iaj,

i.e. ∂(iaj) − ∂kakδij/3. That is indeed non-vanishing for the Newtonian field (1), even away

from source masses. This component of ∂iaj is responsible for the tides, and it is what kills

you when you fall into a black hole.

Exercise 3. Consider a small block of probe particles hanging above the Earth, at radius R

from the Earth’s center. The Earth’s mass is M . The block’s height is h, and its base area

is A. The particles are initially at rest. Find the second time derivatives ḧ and Ä in the

first instant after the particles are released. Check for consistency with exercise 1!

Our analysis has one remaining weakness. While the focus on ∂iaj rules out inertial forces

from uniform acceleration, it does not rule out inertial forces from rotation!

Exercise 4. Consider centrifugal acceleration arising from a rotating frame with angular

velocity ωij. Calculate ∂iaj(x). Is there a mass distribution whose gravity would reproduce

the same acceleration field? The answer is a bit subtle.

In fact, in our lives on the surface of the Earth, we experience centrifugal acceleration due

to the Earth’s rotation together with the acceleration of gravity, and the two are difficult

to distinguish. One could, of course, notice that the stars are rotating overhead, but that

is not a local observation. . . However, a rotating frame can, quite famously, be detected by

local observation, via the Coriolis force acceleration 2ωijv
j. This goes beyond considering

ai(x) for particles initially at rest, and probes the dependence of the acceleration on the

particle’s velocity vi. So, we arrive at the following conclusions vis. Newtonian gravity and

inertial forces:
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• Gravity is not a force, and also not quite an acceleration: acceleration at a single point

can be either due to gravity or due to an inertial force. There is no way to tell. This

is called the “equivalence principle”. In fact, the main difference between a Universe

with gravity and one without is that without gravity, acceleration is well-defined (after

ruling out inertial forces), but with gravity it’s not.

• Having ruled out a rotating frame by measuring the Coriolis force, the gravitational

field is locally measured by the gradient of the acceleration ∂iaj. The antisymmetric

part ∂[iaj] always vanishes. The trace part ∂iai measures the local density of the masses

which source the gravitational field. The traceless part is capable of “propagating”

away from the source masses, into the surrounding space.

Exercise 5. Let’s be more systematic about the classification of inertial forces.

1. Write down the most general coordinate transformation xi → x′i(xj, t) such that the x′i

are still Cartesian coordinates at every time t. What parameters does your transfor-

mation depend on? If the parameters are subject to constraints, specify them.

2. Consider a particle with trajectory xi(t) in the initial frame. Write down its accel-

eration ẍ′i in the new frame. Identify terms that reproduce the effects of 1) uniform

acceleration, 2) angular acceleration, 3) the centrifugal force, and 4) the Coriolis force.

Show that this exhausts all the possible inertial forces.

P.S. We’ve seen that if we allow some assumptions about spatial infinity – e.g. that all

the masses are clustered in some finite volume, that the “true” gravitational acceleration at

infinity vanishes, that there exist “fixed stars” which we can use to notice a rotating frame,

etc. – then the “extra layer of relativity” goes away: accelerations can again be well-defined,

not just their gradients. This is the basis of the holographic approach to quantum gravity,

where we avoid the complications of GR by purposefully focusing on spatial infinity.

II. ARBITRARY BASES, UPPER AND LOWER INDICES

So far, in our treatment of tensors and indices, we’ve been assuming an orthonormal basis

(x, y, z). Sometimes, it’s a good idea to consider non-orthonormal bases for our tensors:
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• In condensed matter, there is sometimes a non-orthonormal basis adapted to a crystal

lattice.

• In Special Relativity, there isn’t quite an orthonormal basis in the usual sense, because

t is different from (x, y, z).

• In General Relativity, spacetime is curved, thus we will have no choice but to deal

with non-orthonormal coordinate axes.

When discussing non-orthonormal bases, the difference between covariant (“lower”) and con-

travariant (“upper”) indices becomes important. We will now gradually begin to introduce

these. In addition, we will switch to denoting our axes as (1, 2, 3) rather than (x, y, z), to

emphasize that they can be more general. Finally, for the current discussion, it’s instructive

to combine the old-fashioned vector notation with the modern index notation: a vector v is

defined by its components vi, via:

v = v1e1 + v2e2 + v3e3 = viei , (3)

where ei = (ex, ey, ez) are the basis elements. Suppose for now that this basis is orthonormal:

ei · ej = δij. Then all the formulas from the last lecture make sense. We can change to a

different orthonormal basis by a rotation (and perhaps reflection) of the basis: ei →Mi
jej.

To preserve the orthonormality, we must have Mi
kMj

lδkl = δij, or, in matrix notation,

MTM = 1. As expected, the symmetry group that preserved orthonormality is the group

O(3) of orthogonal matrices.

Now, let us allow arbitrary linear changes of basis:

ei → Mi
j ej . (4)

Thus, we “extend our symmetry group” from O(3) to the full group GL(3) of 3×3 matrices.

Now we no longer have the orthonormality ei ·ej = δij. Instead, the right-hand side becomes:

ei · ej = Mi
kMj

k ≡ gij . (5)

This matrix gij is called the metric, and will be absolutely crucial for us in the future. For an

arbitrary basis ei, the metric is an arbitrary symmetric matrix, up to a small but important

caveat: its square-type structure g = MMT (using matrix notation) serves as a kind of
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positivity constraint. This constraint actually encodes the existence of an orthonormal

basis, in which the basis elements all square to 1. A completely general symmetric matrix

gij describes a geometry in which there is at best a “pseudo-orthonormal” basis, in which

the basis elements can square to either 1, −1 or 0.

Under the basis change (4), the components vi of a vector v must change as well (this is

of course true for both orthogonal and non-orthogonal transformations). In particular, for

the decomposition (3) to remain true, the components vi must transform as:

vi → (M−1)j
i vj , (6)

where (M−1)i
j is the matrix inverse to Mi

j. Note that, if we pay attention to the index

placement, the matrices acting on ei vs. vi are related through an inverse and transpose

operation M ↔ (M−1)T . Since the basis is no longer orthonormal, the scalar product is no

longer given by uivi. Instead, combining (3) and (5), we have:

u · v = giju
ivj . (7)

In particular, the length-squared of a vector is given by v · v = gijv
ivj. More generally, the

scalar product (7) contains all the geometric information about lengths and angles. Thus,

the metric gij is all we need to do geometry in the general basis ei.

Some rules are beginning to emerge here:

• Upper and lower indices transform differently under changes of basis.

• An upper index can be contracted with a lower index.

• To take a scalar product, we cannot contract two upper indices directly. Instead, we

must contract them both with the two lower indices of gij.

In principle, at this point we can forget about the basis vectors ei, and go back to using

just vector components vi (and higher-order tensor components T ijk...), armed with the

metric gij for whenever we want to contract two upper indices. Or we can even remember

the scalar product rule (7) at the back of our heads, revert to using the old notation uivi,

and forget all about upper vs. lower indices. That is the approach of old books on Special

Relativity, including the Feynman Lectures. Instead, the modern approach takes a middle

path, which we will now describe.

6



III. THE CO-BASIS; COVARIANT VS. CONTRAVARIANT VECTORS

Let’s have our cake and eat it whole. Our basis elements ei are non-orthonormal, as in

(5). But we can introduce a second basis ei (note the different index placement!) whose

elements are chosen to have nice 0 or 1 scalar products with the elements of the original one:

ei · ej = δij . (8)

Thus, the direction of e.g. e1 is chosen orthogonal to the plane of e2 and e3; its magnitude

is then chosen to give a unit scalar product with e1. Explicitly, this can be achieved by

choosing:

e1 =
e2 × e3

e1 · (e2 × e3)
, (9)

and similarly for e2 and e3. If the ei are our original basis, then we refer to the ei as the

co-basis (just like in sine vs. cosine). We can define the components vi of a vector v in the

co-basis, via:

v = vie
i . (10)

Under a general change of basis (4), the co-basis must change as well, so as to preserve (8):

ei → (M−1)j
i ej . (11)

Then, to preserve (10), the components vi of a vector must transform as:

vi → Mi
j vj . (12)

Since the components vi in the co-basis transform just like the basis elements ei, they are

called covariant. Since the components vi in the original basis transform in the opposite

way, they are called contravariant. Yes, this is confusing, and in practice I prefer simply

saying “upper-index” or “lower-index”.

What is the relationship between the components vi and vi of the same vector v? Let us

start from vie
i = viei, and take the scalar product of both sides with ej. Using (5) and (8),

this gives:

vi = gijv
j . (13)

Thus, the metric gij can be used to lower indices.
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Exercise 6. Prove that this also works for the basis elements, i.e. that ei = gije
j.

It follows that, to raise indices, we can use the inverse of the metric:

vi = (g−1)ijvj . (14)

From now on, we will refer to the inverse matrix (g−1)ij simply as gij. As always, whatever

can be done to a vector, can also be done to separate indices of a tensor, e.g.:

Tijkl = glmTijk
m . (15)

Similarly, under a change of basis, the components of a tensor will transform as:

Tijk
m →Mi

nMj
pMk

q(M−1)r
m Tnpq

r . (16)

Exercise 7. Prove that (g−1)ij ≡ gij really is the raised-index version of gij, according to

the rules (13)-(14).

Exercise 8. Prove that gij can be defined alternatively as ei · ej.

The main upshot of this song and dance is that the scalar product of two vectors can

now be written simply as:

u · v = giju
ivj = uiv

i = uivi . (17)

Thus, we come back to the simple contraction of repeated indices, as long as we remember

that one has to be upper, and the other lower.

The above discussion in terms of basis vs. co-basis should be illuminating for some, and

mystifying for others. At the end of the day, we can again throw away the explicit basis

vectors, and work just with components vi or vi. The metric now almost never has to appear

in formulas explicitly – we can hide it away most of the time as in (17). The important new

rules to remember are:

1. Free indices must be the same on both sides of an equation, including their upper/lower

placement.

2. A contracted index pair must always be one upper & one lower.
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IV. INVARIANT TENSORS

When we were working with orthonormal bases, we had the special tensor δij, invariant

under O(3), and the special tensor εijk, invariant under SO(3). In the new general frame-

work, the role of δij splits into three different objects. Two of these we’ve encountered: the

metric gij and the inverse metric gij. Their components are not invariant under general

GL(3) changes of basis. However, there is also a version with one index up and the other

down, which is again a Kronecker delta δij, with components 0 for i 6= j and 1 for i = j.

Exercise 9.

1. Prove that δij is invariant under a general change of basis.

2. Prove that δij can be regarded as a version of gij with one index raised, or of gij with

one index lowered.

For the Levi-Civita tensor εijk in the context of general bases, there are two commonly

used conventions, each with advantages and disadvantages. In one of them, we maintain

ε123 = ε123 = 1; then the Levi-Civita does not depend on the metric, but doesn’t quite behave

as a tensor. In the other, we set ε123 =
√
g and ε123 = 1/

√
g, where g is the determinant

of the metric gij; this definition does behave as a tensor, at the cost of depending on the

metric. It may be best to avoid this discussion for now - we’ve had enough ε’s for the time

being.
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