
GR lecture 1-1
Historical & conceptual intro, tensor indices in a Cartesian frame

I. HISTORICAL INTRO

Arik Einstein was cool, retreated from public life in the 80’s to avoid celebrity status.

Albert Einstein was cool too, has immense celebrity status. Is it justified? Um, yes.

• 1666: Year of Miracles. Newton does calculus, mechanics, gravity, geometric optics.

• 1905: 2nd Year of Miracles. Einstein does Special Relativity, photons, Brownian

motion.

• 1916: Einstein finishes GR.

In 1905, Einstein is established as the greatest scientist of his generation. Special Rela-

tivity needs no introduction. Photons get a Nobel. The Brownian motion thing is very cool,

and often overlooked. It leads to the first-ever estimate of the absolute size of atoms, or,

in other words, the actual value of Avogadro’s Number. All these activities are remarkable,

but still within the normal scope of science. In particular, SR is sometimes depicted as an

out-of-the-blue lone genius’ breakthrough, but it absolutely wasn’t. The 19th century has

already produced a full-fledged special-relativistic theory – Maxwell’s electromagnetism. It

was constructed gradually, through a century’s worth of interplay between theory and exper-

iment. SR is simply the general framework that electromagnetism was suggesting. Several

others were working it out at the same time – Lorentz, Poincare. They lacked some of Ein-

stein’s insight, but they could have gotten there eventually. So, the 1905 Einstein is merely

the greatest scientist of his time. Boring.

1916 is a different story. Here, Einstein is not quite doing science as usually conceived.

Here, there is no preceding century of experiments and theory, just a conceptual gap –

between SR and Newtonian gravity. GR is ahead of its time in many respects. Eliezer

Yudkowski has an essay about it on LessWrong titled “faster than science”. Einstein did

not produce GR by experimenting, not by model-building, not by trying to fit observational

anomalies. He was working on a higher level of abstraction – he was meditating on the

nature of physical law.
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GR was ahead of its time in other ways too. These days, in field theory class, we teach

a succession of theories in increasing order of subtlety – scalars (spin 0), fermions (spin

1/2), electromagnetism (spin-1 that interacts with lower spins), Yang-Mills (spin-1 that also

interacts with itself), and finally GR (spin-2). But historically, Yang-Mills was invented

only 40 years after GR. Even in the case of electromagnetism, its full theoretical structure

– in particular, its gauge symmetry – was only understood in the light of GR.

The reason I rant about this stuff is that we in quantum gravity / string theory are

all trying to be Einstein of the 1910’s. We are trying to achieve the next revolution in

theoretical physics without experimental input, by meditating on the nature of physical law

(which in practice involves a lot of calculations set in imaginary worlds). God help us.

II. STATEMENT OF ATTITUDE, EXPECTATIONS, LEARNING GR IS A SOLI-

TARY ENTERPRISE

III. CONCEPTUAL INTRO – CURVED COORDINATES, CURVED SPACE

In this course, we will deal with curved spacetime. This is a good time to inject some

initial intuition about the concept. You know a lot about working with flat space. You

also know that sometimes, curved coordinates can be useful – e.g. cylindrical and spherical.

But they’ve always been just a trick to more efficiently solve some particular problem. The

laws of Nature always look simpler when written in flat, Cartesian coordinates. However,

the existence of such coordinates is actually a good definition for flat space. When such

coordinates do not exist, we say that space is curved. So, space is curved when all coordinates

are curved. Then we have no choice but to write our laws in curved coordinates!

All of this has a precise analogue in the discussion of inertial reference frames. We know

that sometimes, a non-inertial frame can be useful – e.g. an accelerated or a rotating one.

However, the laws are always simplest in inertial frames. Curved spacetime is when all frames

are non-inertial. This is not just an analogy of words. Inertial motion at constant velocity

describes a straight line in spacetime. Velocity is spacetime slope. Accelerated motion is

when the line through spacetime curves. So, an inertial frame is defined by straight lines in

spacetime, and a non-inertial one by curved lines! When there is no inertial frame, spacetime

itself must be curved.
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IV. TENSOR INDICES IN FLAT 3D SPACE

Before we start discussing inertial frames, let’s make sure we’re all synchronized on tensor

notation in 3d space. For now, we’re not worrying about the distinction between upper

and lower indices – that will come soon. We use indices (i, j, . . . ) that can take the 3

values (x, y, z), or (1, 2, 3), or however you like to label your 3 Cartesian axes. So, a vector

v = (vx, vy, vz) is denoted as vi. The scalar product of two vectors is:

u · v = uxvx + uyvy + uzvz = uivi , (1)

where a repeated index always means that we sum over all 3 values. We sometimes say that

repeated indices are “contracted”, or “traced over”. Indices that aren’t repeated are called

“free”. An equation must have the same free indices on both sides, and is meant to hold for

any substitution of values for the indices. For example:

a = b− 2(b · c)c ⇐⇒ ai = bi − 2bjcjbi . (2)

Exercise 1.

1. Assume that ci is a unit vector. What is the geometric meaning of eq. (2)?

2. What is the geometric meaning if we remove the factor of 2?

All of matrix algebra can be captured in this language, if we denote a matrix as a quantity

with two indices:

Aij :


Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

 (3)

In particular, we have:

Au = v ⇔ Aijuj = vi ; AB = C ⇔ AikBkj = Cij ;

A = BT ⇔ Aij = Bji ; trA = Aii .
(4)

We leave determinants and inverse matrices for later, as those are a bit tricky.

The identity matrix is denoted as δij, so that e.g. uivi = δijuivj. In addition to scalars,

vectors and matrices, we can write quantities with arbitrary numbers of indices. These are
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called tensors. The largest interesting tensor that we’ll encounter in this course will have 4

indices. Among all tensors, δij has a special property: its components are unchanged under

rotations or reflections of the Cartesian axes. This is just a statement of the invariance of

the scalar product.

Spatial derivatives form a vector ∂, which in index notation becomes:

∂i =
∂

∂xi
(5)

(we reserve the notation ∇ for the covariant derivative, which will appear later on). Thus,

the gradient of a scalar is ∂if , and the divergence of a vector is ∂ifi.

One additional piece of notation that will be very useful is symmetrization and anti-

symmetrization brackets, which pick out the symmetric or anti-symmetric component of a

tensor under the permutation of some set of indices. For example:

A(ij) =
1

2
(Aij + Aji) ; A[ij] =

1

2
(Aij − Aji) ; (6)

A(ijk) =
1

6
(Aijk + Aikj + Ajik + Ajki + Akij + Akji) ;

A[ijk] =
1

6
(Aijk − Aikj − Ajik + Ajki + Akij − Akji) .

(7)

Exercise 2. Write an arbitrary matrix Aij as a sum of three terms: a multiple of δij (“spin-

0”), an antisymmetric matrix (“spin-1”) and a traceless symmetric matrix (“spin-2”).

V. THE LEVI-CIVITA TENSOR AND AXIAL STUFF

In addition to δij, there is another “universal” tensor. It is also invariant under rotations,

but flips sign under reflections. This is the “Levi-Civita tensor” εijk, which we define as the

totally antisymmetric tensor εijk = ε[ijk] with εxyz = 1.

Exercise 3. Deduce all the components of εijk.

While δij defines the scalar product, εijk defines the vector product:

u× v = w ⇐⇒ εijkujvk = wi . (8)

In particular, the curl of a vector field fi is εijk∂jfk. The Levi-Civita tensor is also closely

related to the concept of volume: εijkuivjwk is the volume of the parallelogram spanned by

ui, vi and wi, up to a sign that depends on their mutual orientation.
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Exercise 4.

1. Show that this is true when the 3 vectors are orthogonal to each other.

2. Now, keeping one of the orthogonal vectors fixed, “slant” the others via vi → vi + αui

and wi → wi + βui + γvi. Show that the volume εijkuivjwk is unchanged.

A lot of elementary physics is written with vector products, forcing poor students to

remember “right-hand rules”, and creating the impression that Nature is not left-right sym-

metric. That impression is actually true, but only for the weak interactions. In mechanics

and electromagnetism, all the εijk’s and right-hand rules always cancel out, via the identity:

εijkεlmn = δilδjmδkn − δilδjnδkm − δimδjlδkn + δimδjnδkl + δinδjlδkm − δinδjmδkl , (9)

which means simply: “if ijk is some permutation of xyz and so is lmn, then ijk must be

either lmn, or lnm, or mln, or. . . ”.

Exercise 5. Similarly, write down εijmεklm, εiklεjkl and εijkεijk.

We can write most of physics without any εijk’s at all, but that requires a small sacrifice.

Recall that u×v is the vector orthogonal to the plane element spanned by ui and vi. Instead

of taking that extra step, we can just talk about the plane element directly! This will not

be a vector, but an antisymmetric matrix (also called a bivector) 2u[ivj] = uivj − ujvi. If

we allow such objects in our equations, then the right-hand rule becomes unnecessary. In

addition, this is good practice for life in 4d spacetime, where there is no unique vector

orthogonal to a given plane element.

In elementary physics, there are three main “axial vectors”, i.e. vectors that contain in

them a right-hand rule: angular velocity ωi, angular momentum Li, and the magnetic field

Bi. We can replace them once and for all by bivectors via:

ωij = εijkωk ; ωi =
1

2
εijkωjk . (10)

Exercise 6. Rewrite the following equations using index notation and the bivectors ωij, Lij

an Bij, without any εijk’s in the final result.

1. Rotational velocity: v = ω × r.

2. Angular momentum from angular velocity and moment of inertia: Li = Iijωj.
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3. Magnetic force: F = qv ×B.

4. Maxwell’s equations:

∂ · E = ρ/ε0 ; ∂ × E = −Ḃ ; ∂ ·B = 0; ∂ ×B = µ0(j + ε0Ė) . (11)

A. Determinants and inverse matrices

The determinant of a matrix Aij can be nicely defined using the product (9) of two

Levi-Civitas:

detA =
1

6
εijkεlmnAilAjmAkn . (12)

Exercise 7.

1. Make sure you understand what the factor of 1/6 is doing here. What would be the

corresponding expression for 2× 2 matrices? How about 4× 4?

2. Use the decomposition (9) to express detA without using εijk’s.

The inverse of a matrix can be expressed via the formula:

(A−1)ij =
(adjA)ij

detA
, (13)

where adjAij is the adjugate matrix:

(adjA)ij =
1

2
εjklεimnAkmAln . (14)

If you look closely, you’ll see that these are the standard expressions from Linear Algebra.

We can also use index notation to prove from scratch that (13) is indeed the inverse matrix:

Exercise 8 (TRICKY). Prove that (13) is the inverse of Aij, i.e. that:

(adjA)ikAkj = (detA)δij . (15)

As an intermediate step, it helps to prove:

εlmnAliAmjAnk = εijk detA . (16)

To prove the latter, note that anything antisymmetric in ijk must be proportional to εijk,

and you can use (12) to find the proportionality coefficient.
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