Carroll Symmetry and Cosmology

Jelle Hartong

University of Edinburgh, School of Mathematics

OIST Quantum Gravity Unit 20 October 2021

In collaboration with:

Jan de Boer (University of Amsterdam), Niels Obers (Nordita & Niels Bohr Institute) Watse Sybesma (University of Iceland), Stefan Vandoren (Utrecht University)

arXiv:2110.02319 and WIP

Introduction

- The Carroll limit is the speed of light to zero contraction of the Poincaré group. [Lévy-Leblond, ¹⁹⁶⁵]
- • In this limit you can 'run' (boost yourself) without moving inspace.
- \bullet Reminiscent of the Red Queen's race from Lewis Carroll'sThrough the Looking-Glass.
- What happens when we expand ^a relativistic theory around $c=0$ and is it good for anything?

Introduction

- The Carroll group is ^a kinematical group and it is possible todefine Carrollian manifolds.
- • Carrollian manifolds admit vielbeine that transform underlocal Carroll boosts (as opposed to local Lorentz boosts). [Bekaert, Morand, ²⁰¹⁵], [JH, ²⁰¹⁵], [Figueroa-O'Farrill, Prohazka, ²⁰¹⁸]
- Null hypersurfaces are examples of Carrollian manifoldsand this includes null infinity of asymptotically flat spacetime. [Duval, Gibbons, Horvathy, ²⁰¹⁴]

Introduction

- An incomplete list of examples where Carroll symmetriesemerge:
	- \circ black hole membrane paradigm [Donnay, Marteau, ²⁰¹⁹], [Penna, ²⁰¹⁸]
	- \circ 'flat space holography' (Carroll perspective so far only in 3D)[Bagchi, Detournay, Fareghbal, Simón, ²⁰¹²], [JH, ²⁰¹⁵], [Ciambelli, Marteau, Petkou, Petropoulos, Siampos, ²⁰¹⁸]
	- \circ tensionless limits of strings [Bagchi, ²⁰¹³]
	- \circ limits of GR [Henneaux, ¹⁹⁷⁹], [Bergshoeff, Gomis, Rollier, ter Veldhuis, ²⁰¹⁷]
	- \circ Inflationary cosmology [de Boer, JH, Obers, Sybesma, Vandoren, 2021]
	- \circ and generally whenever there is an effective speed of light that is much smaller than the velocity of concern

Outline

- •Carroll symmetries
- \bullet Field theories and fluids
- •Inflationary cosmology
- \bullet • Null infinity and a boundary stress tensor for \mathcal{I}^+ in 3D

The Carroll limit

• Lorentz transformations with parameter $\vec{\beta}$:

$$
ct' = \gamma(ct - \vec{\beta} \cdot \vec{x}), \qquad \gamma = (1 - \vec{\beta}^2)^{-1/2}
$$

$$
\vec{x}'_{\parallel} = \gamma(\vec{x}_{\parallel} - \vec{\beta}ct), \qquad \vec{x}'_{\perp} = \vec{x}_{\perp}
$$

• Carroll limit: $\vec{\beta}$ $=$ c \vec{b} , rescale $c \to \varepsilon c$ and $\varepsilon \to 0$ with \vec{b} fixed.

Carroll transformation: $t'=t-\vec{b}\cdot\vec{x}, \qquad \vec{x}'=\vec{x}$

- Space is absolute and time is relative.
- \bullet • No Lorentz contraction or time dilation as $\gamma \to 1$ in the Carroll limit Carroll limit.

The Carroll limit

- If a Carroll observer measures time and space differences Δt and $\Delta\vec{x}$ between two events, then a boosted Carroll observer measures the same distance, but ^a time difference $\Delta t' = \Delta t - \vec{b} \cdot \Delta \vec{x}.$
- If \vec{b} is large enough $\Delta t' < 0$ while $\Delta t > 0$, i.e. two observers do not perceptive array on which event becaused first not necessarily agree on which event happened first.
- Coordinate time is not ^a good clock to describe the motion of ^aparticle. Instead we use proper time, the affine parameteralong the worldline.
- Velocities transform by rescaling $\vec{v}' = \frac{d\vec{x}'}{dt'} = \frac{\vec{v}}{1-\vec{b}\cdot\vec{v}}$
- $\vec{v} = 0$ and $\vec{v} \neq 0$ are not related by a Carroll boost: either you stand still or you always move.

Carroll metric

• Spatial distances are Carroll invariant:

$$
ds^2 = -c^2 dt^2 + d\vec{x}^2 \to h = d\vec{x}^2
$$

- At ^a fixed point in space you can measure time intervals.
- Limit of inverse Poincaré metric tells us that $v = \frac{\partial}{\partial t}$ is Carroll invariant.
- The light cone $-c^2t^2 + \vec{x}^2 = 0$ becomes the line $\vec{x} = 0$ for all t: light is not moving in space!

Carroll algebra

• Lorentz transformation of energy and momentum:

$$
E' = \gamma (E - c\vec{\beta} \cdot \vec{p}), \qquad \vec{p}'_{\parallel} = \gamma \left(\vec{p}_{\parallel} - \vec{\beta} \frac{E}{c} \right), \qquad \vec{p}'_{\perp} = \vec{p}_{\perp}
$$

• Carroll limit: $\vec{\beta}$ $=$ c \vec{b} , rescale $c \to \varepsilon c$ and $\varepsilon \to 0$ with \vec{b} fixed.

Carroll transformation: $E'=E$, $\vec{p}'=\vec{p}-\vec{b}E$

• The Carroll algebra is spanned by H, P_i, C_i, J_{ij} with the nonzero brackets $(i, j = 1, \ldots, d)$:

> $[P_i, C_j] = \delta_{ij} H$, $[J_{ij}, P_k] = 2\delta_{k[i} P_{j]}, \qquad [J_{ij}, C_k] = 2\delta_{k[i} C_{j]}$ $[J_{ij},J_{kl}] = -2\delta_{i[k}J_{l]j} + 2\delta_{j[k}J_{l]i}$

• The Hamiltonian is ^a central element.

Current conservation

• On shell conserved currents for ^a field theory with Carroll symmetries:

$$
\partial_{\mu} \left(T^{\mu}{}_{\nu} K^{\nu} \right) = 0
$$

• $T^{\mu}{}_{\nu}$ is the energy-momentum tensor and K^{ν} is one of the generators:

$$
H = \partial_t, \qquad P_i = \partial_i, \qquad C_i = x^i \partial_t, \qquad J_{ij} = x^i \partial_j - x^j \partial_i
$$

These are the 'Killing' vectors of the Carroll metric data: $v = \partial_t$ and $h = \delta_{ij} dx^i dx^j$.

• This implies:

$$
\partial_{\mu}T^{\mu}{}_{\nu}=0\,,\qquad T^{i}{}_{t}=0\,,\qquad T^{i}{}_{j}=T^{j}{}_{i}
$$

• We conclude that the energy flux $T^i{}_t$ must vanish!

No energy flux

- The vanishing of the energy flux also follows from the $c \to 0$
limit of the relativistic preparty $\frac{1}{T^i} + e^{T^t} = 0$ limit of the relativistic property $\frac{1}{c}T^i{}_t + cT^t{}_i = 0.$
- It follows that $\partial_t T^0{}_0 = 0$ or $\frac{d}{dt} \int_V d^dx T^0{}_0 = 0$ for any volume V .
- Contrast this with $\frac{d}{dt} \int_V d^dx T^0{}_0 = \int_{\partial V} d^{d-1}x n_i T^i{}_0.$
- • Single particle: if the energy is nonzero it cannot move and if it can move the energy must be zero.

Irreps of the Carroll algebra $(d = 3)$

• Eigenstates of H and the quartic Casimir $W_i W_i$

 $W_i = HS_i + \varepsilon_{ijk}C_jP_k$

- •• Consider energy-momentum eigenstates (E, p_i) of H and P_i .
- When $E\neq 0$ we can always go to a frame where $p_i=0$ by performing a Carroll boost. In this case the little group is $SO(3)$ and the eigenvalues of $W_i W_i$ are E^2 $^{2}s(s+1)$ with $s = 0, 1/2, 1, \ldots$
- When $E = 0$ the momentum p_i is Carroll boost invariant. Using ϵ and the set of the a rotation we can WLOG set \vec{p} $W_i=\varepsilon_{ijk}C_jP_k$ so that $W_3=0.$ The little group is $ISO(2)$ $=p\hat{e}_3$. On such states generated by W_1, W_2, L where $L=P_iS_i$ (helicity).

Carroll field theory

• Consider ^a relativistic field theory:

$$
\mathcal{L}=\frac{1}{2c^2}\dot{\phi}^2-\frac{1}{2}(\partial_i\phi)^2-V(\phi)
$$

• Sending $c \rightarrow 0$ (and rescaling \mathcal{L}) gives

$$
\mathcal{L}=\frac{1}{2}\dot{\phi}^2-\tilde{V}(\phi)
$$

where \tilde{V} is whatever is left of the potential in the limit.

- For \tilde{V} a quadratic potential this corresponds to the $E\neq 0$ irrep.
- •The energy flux vanishes due to missing gradient term.

Carroll field theory

• Rewrite the relativistic theory as

$$
\mathcal{L} = \chi \dot{\phi} - \frac{c^2}{2} \chi^2 - \frac{1}{2} (\partial_i \phi)^2 - V(\phi)
$$

•• Sending $c \rightarrow 0$ leads to

$$
\mathcal{L}=\chi\dot{\phi}-\frac{1}{2}(\partial_i\phi)^2-\tilde{V}(\phi)
$$

•The latter is Carroll boost invariant under

$$
\delta \phi = \vec{b} \cdot \vec{x} \dot{\phi} , \qquad \delta \chi = \vec{b} \cdot \vec{x} \dot{\chi} + \vec{b} \cdot \vec{\partial} \phi
$$

- χ is a Lagrange multiplier for $\dot{\phi}$ $\rho=$ ⁰. This corresponds to the $E=0$ irrep.
- •• The energy flux vanishes on shell due to the constraint $\phi=0$.

Electric Carroll

• Electric $c \rightarrow 0$ limit of Maxwell:

$$
\mathcal{L} = \frac{1}{2} E_i E_i , \qquad E_i = \partial_i A_t - \partial_t A_i
$$

- This is Carroll invariant under: $\delta A_t =$ $\vec{b} \cdot \vec{x} \partial_t A_t$ and $\delta A_i =$ $\vec{b} \cdot \vec{x} \partial_t A_i + b_i A_t.$
- Energy-momentum tensor:

$$
T^{t}{}_{t} = -\frac{1}{2}E_{i}E_{i}\,,\quad T^{i}{}_{t} = 0\,,\quad T^{t}{}_{j} = (\vec{E} \times \vec{B})_{j}\,,\quad T^{i}{}_{j} = -E_{i}E_{j} + \frac{1}{2}\delta_{ij}E^{2}
$$

•EOM:

$$
\partial_i B_i = 0, \qquad \partial_t B_i + \left(\vec{\nabla} \times \vec{E}\right)_i = 0
$$

$$
\partial_i E_i = 0, \qquad \partial_t E_i = 0 \text{ Ampère's law without } \vec{\nabla} \times \vec{B} \text{ term}
$$

Magnetic Carroll

•• Magnetic $c \rightarrow 0$ limit of Maxwell:

$$
\mathcal{L} = \chi_i E_i - \frac{1}{2} B_i B_i , \qquad E_i = \partial_i A_t - \partial_t A_i , \qquad B_i = \left(\vec{\nabla} \times \vec{A} \right)_i
$$

- χ_i is a Lagrange multiplier transforming under Carroll boosts as $\delta \chi_i =$ ~ $\vec{b} \cdot \vec{x} \partial_t \chi_i + \left(\vec{b} \times \vec{B}\right)_i.$
- •Energy-momentum tensor:

$$
T^t{}_t = -\frac{1}{2}B_iB_i
$$
, $T^i{}_t = 0$, $T^t{}_j = (\vec{\chi} \times \vec{B})_j$, $T^i{}_j = -B_iB_j + \frac{1}{2}\delta_{ij}B^2$

•• EOM (χ_i plays the role of the electric field):

> $\partial_i B_i = 0 \, , \qquad \partial_t B_i = 0 \ \ \textsf{Faraday without} \ \vec{\nabla} \times \vec{E} \ \textsf{term}$ $\partial_i \chi_i = 0$, $\partial_t \chi_i - \left(\vec{\nabla} \times \vec{B}\right)_i = 0$

Carroll fields in 2D

- In $1 + 1$ dimensions the Carroll algebra admits a central extension allowing for more interesting theories.
- For $i,j=1,\ldots,2n$ and ω_{ij} a constant antisymmetric invertible matrix consider

$$
\mathcal{L}=\frac{1}{2}\partial_{\tau}X^{i}\partial_{\tau}X^{j}-\omega_{ij}X^{i}\partial_{\sigma}X^{j}
$$

- •• This is Carroll invariant with $\delta X^i = b\sigma \partial_\tau X^i - b\tau \omega_{ij} X^j$.
- This model can be obtained as ^a gauged fixed version of ^a Polyakov-type theory for ^a closed string whose worldsheet isCarrollian. [Bidussi, Harmark, JH, Obers, Oling, to appear]

Carroll perfect fluids

• The most general perfect fluid is (in LAB frame) [de Boer, JH, Obers, Sybesma, Vandoren, ²⁰¹⁷]

 $T^t{}_t = -\mathcal{E}$, $T^i{}_t = -(\mathcal{E} + P)v^i$, $T^t{}_j = \mathcal{P}_j$, $T^i{}_j = P\delta^i_j + v^i\mathcal{P}_j$

- Momentum density $\mathcal{P}_i = \rho v^i$
- •• All functions depend on the fluid variables: T and v^i .
- From the transformation of $T^{\mu}{}_{\nu}$ under diffeos we conclude that $\mathcal{P}_i =$ $\rho = \rho v^i$ transforms under a Carroll boost as

$$
\mathcal{P}'_i = \rho' v'^i = \rho' \frac{v^i}{1 - \vec{b} \cdot \vec{v}} = \rho v^i (1 - \vec{b} \cdot \vec{v}) - b_i (\mathcal{E} + P)
$$

- Hence we need $\mathcal{E} + P = 0$ for any Carroll fluid!
- •• Reminiscent of the equation of state in cosmology $(w$ $w = -1$).

- Hubble law: $v = Hd$
- Hubble radius: $R_H = cH^{-1}$
- If distances d are much larger than R_H we have $v \gg c$.
- super-Hubble scales are Carrollian
- As $c \to 0$, the Hubble radius vanishes, so the entire universe
hecomes super-Hubble i.e. Carrollian becomes super-Hubble, i.e. Carrollian.
- This is an ultra-local limit.
- •• As we expand away from $c = 0$, Hubble cells grow containing more and more d o f more and more d.o.f.
- •• Expanding inflationary solutions around $c = 0$ naturally leads to small slow roll parameters.

- •• Consider an FRW metric and single scalar field $\phi = \phi(t)$.
- Formally ^a single scalar is like ^a perfect fluid with $P = \frac{1}{2c^2} \dot{\phi}^2 - V$ and $\mathcal{E} = \frac{1}{2c^2} \dot{\phi}^2 + V$. $w =$ $\, P \,$ $\frac{\ }{E}=-1 +$ π^2_ϕ \bar{V} $\frac{\partial^2 \phi}{\partial V}c^2 + O(c^4)$
- $\pi_{\phi} = \dot{\phi}/c^2$ is the canonical momentum.
- Expanding around $c = 0$, for V nonzero, and π_{ϕ} finite, leads to small deviations from de Sitter (w $w = -1$).
- π_{ϕ} finite for small $c,$ implies small $\dot{\phi}$ ϕ , (cf. slow roll).
- •• Friedmann equation: $H^2 = \frac{8\pi G_N}{3c^2} (c^2 \pi_\phi^2/2 + V)$. We keep H fixed as $c \rightarrow 0$ (exponential expansion), so G_N/c^2 is fixed as well.

- Dark energy: w $w = -1$ and $\phi = \mathsf{cst}$. In the Carroll limit de Sitter becomes conformal to \mathbb{R}^3 $(ds^2 = e^{Ht} d\vec{x}^2)$.
- The expansion around $c = 0$ opens up Hubble patches with radius cH^{-1} within which the Hawking temperature is constant and the entropy scales like c^3 .
- Inflation: $w = w(t)$. As an example we will consider chaotic inflation: $V = \frac{1}{2} \frac{m^2 c^2}{\hbar^2} \phi^2$ with ϕ large at early times.

$$
H^{2} = \frac{4\pi G_{N}}{3} \left(\pi_{\phi}^{2} + \frac{m^{2}\phi^{2}}{\hbar^{2}}\right)
$$

$$
0 = \dot{\pi}_{\phi} + 3H\pi_{\phi} + \frac{m^{2}c^{2}}{\hbar^{2}}\phi
$$

•• Standard assumptions: π_{ϕ} is small in the Friedmann equation and $\dot{\pi}_{\phi}$ in the scalar EOM (slow roll conditions).

•Solution:

$$
H = \sqrt{\frac{4\pi G_N}{3c^2}} \frac{mc}{\hbar} \phi , \qquad \phi = \phi_{t=0} - \frac{c^2}{\sqrt{12\pi G_N/c^2}} \frac{mc}{\hbar} t
$$

- We need to keep the Compton wavelength $\frac{\hbar}{mc}$ fixed as $c \to 0$.
- \bullet Slow roll approx.: Hubble radius [≪] Compton wavelength.
- \bullet Consider again the same problem

$$
H^{2} = \frac{4\pi G_{N}}{3} \left(\pi_{\phi}^{2} + \frac{m^{2}\phi^{2}}{\hbar^{2}}\right)
$$

$$
0 = \dot{\pi}_{\phi} + 3H\pi_{\phi} + \frac{m^{2}c^{2}}{\hbar^{2}}\phi
$$

but let us now expand around $c = 0$ with G_N/c^2 and mc/\hbar fixed.

• We expand as follows:

$$
\phi = \phi_0 + c^2 \phi_1 + O(c^4), \qquad H = H_0 + c^2 H_1 + O(c^4)
$$

- Solving the equations at LO and NLO in c^2 we recover the inflationary solution where we naturally find $R_H = cH_0^{-1} \ll \lambda = \frac{\hbar}{mc}$.
- •• The slow roll parameters are $\epsilon = \eta = \frac{8\pi}{3} \left(\frac{R_H}{\lambda}\right)^2 \ll 1$.
- We thus see that the $c = 0$ expansion of a real scalar field and the FRW metric agrees with inflation.

3D Asymptotically flat spaces

• Minkowski space-time in EF coordinates: ds^2 $^2=-du^2$ parameter of null geodesics, φ angular coordinate. $^2-2dudr+r^2d\varphi^2$ $^{2};$ u is retarded time, r ;
;

• Asymptotically flat space-time in BMS gauge (large r expansion) [Barnich, Compère, ²⁰⁰⁶]:

 $g_{rr}~=~r^{-2}$ $^{2}h_{rr}+\mathcal{O}(r^{-3}%)^{2}h_{rr}^{3}+^{2}h_{rr}^{3}+^{2}h_{rr}^{2}\nonumber\\ +\mathcal{O}(r^{-3})^{2}h_{rr}^{3}+^{2}h_{rr}^{2}\nonumber\\ +h_{rr}^{2}h_{rr}^{2} \label{tr1}%$ $\big) \, , \qquad \qquad g_{uu}$ $=$ $h_{uu}+\mathcal{O}(r^{-1}$ $^{1})$, $g_{ru} = -1 + r^{-1}$ ${}^1h_{ru}+{\cal O}(r^{-2}$ $\big) \, , \qquad g_{u\varphi}$ = $h_{u\varphi}+\mathcal{O}(r^{-1})$ 1 $^{1})$, $g_{r\varphi}$ = $h_1(\varphi) + r^-$ 1 ${}^1h_{r\varphi}+{\cal O}(r^-)$ 2 $)\,,\,\,\,\,g_{\varphi\varphi}$ $=$ $\,r\,$ 2 $t^2 + rh_{\varphi\varphi} + \mathcal{O}(1)$.

• Most general Taylor expansion for ^a flat boundary at null infinity in 3D.

• We generalize this by allowing for arbitrary sources: $\Phi,$ $\hat{\tau}_{\mu},\,h_{\mu\nu}$ (vanishing determinant).

$$
g_{rr} = 2\Phi r^{-2} + \mathcal{O}(r^{-3}),
$$

\n
$$
g_{r\mu} = -\hat{\tau}_{\mu} + r^{-1}h_{(1)r\mu} + \mathcal{O}(r^{-2}),
$$

\n
$$
g_{\mu\nu} = r^2h_{\mu\nu} + rh_{(1)\mu\nu} + h_{(2)\mu\nu} + \mathcal{O}(r^{-1}).
$$

• In terms of vielbeine $ds^2 = -2UV + EE$ the metric boundary conditions are:

$$
U_r = 1 + \mathcal{O}(r^{-1}), \qquad V_\mu = \tau_\mu + \mathcal{O}(r^{-1})
$$

\n
$$
U_\mu = rU_{(1)\mu} + \mathcal{O}(1), \qquad E_r = r^{-1}e_\nu M^\nu + \mathcal{O}(r^{-2})
$$

\n
$$
V_r = r^{-2}\tau_\mu M^\mu + \mathcal{O}(r^{-3}), \qquad E_\mu = r e_\mu + \mathcal{O}(1)
$$

• Relation to the metric sources:

 $h_{\mu\nu} = e_{\mu}e_{\nu}\,, \qquad \hat{\tau}_{\mu} = \tau_{\mu} {-} e_{\mu}e_{\nu}M^{\nu}\,, \qquad \Phi = -\tau_{\mu}M^{\mu} {+} \frac{1}{2}$

$$
\Phi = -\tau_{\mu}M^{\mu} + \frac{1}{2}\left(e_{\mu}M^{\mu}\right)^{2}
$$

Null Infinity is described by Carrollian geometry

• Consider bulk local Lorentz transformations that keepthe normal U fixed. These act on the boundary vielbeins as Carroll boosts, i.e.

$$
e'_{\mu} = e_{\mu} \,, \qquad \tau'_{\mu} = \tau_{\mu} + \lambda e_{\mu} \,, \qquad M'^{\mu} = M^{\mu} + \lambda e^{\mu} + \frac{1}{2} \lambda^{2} v^{\mu} \,.
$$

- Together with near boundary bulk diffeomorphismsthese generate all the local symmetries acting on thesources $\tau_\mu, \, e_\mu$ and M^μ .
- It can be shown that the M^{μ} source is pure gauge.

Well-posed variational problem

• Bulk plus Gibbons–Hawking boundary terms at \mathcal{I}^+ :

$$
S = \int d^3x \sqrt{-g}R + \alpha \int_{\mathcal{I}^+} \frac{1}{2} \epsilon_{MNP} dx^M \wedge dx^N V^P \left(E^R E^S \nabla_R U_S \right)
$$

- The GH term at \mathcal{I}^+ is the unique term that is invariant under: i). bulk local Lorentz transformations that leave U invariant and ii). bulk local Lorentz transformations that act as δU_M symmetry is special for null hypersurface orthogonal = $=\bar{\lambda}U$ $\,M$ \bar{M} , and δV_M $=-\bar\lambda V_M$ $V_M.$ The last vectors.
- We will demand that δS is finite i.e. $\mathcal{O}(1)$ in r and that it is zero when the variations of the sources vanish at $\mathcal{I}^{+}.$

• Variation of the bulk action:

$$
\delta S_{\text{bulk}} = -\frac{1}{2} \int_{\partial \mathcal{M}} \epsilon_{MNP} dx^M \wedge dx^N V^P U_Q J^Q
$$

where $J^P = g^{MN} \delta \Gamma^P_{MN} - g^{MP} \delta \Gamma^N_{NM}$.

- No counterterm to cancel leading divergence at r^2 . Need to set $\partial_{\mu}e_{\nu}-\partial_{\nu}e_{\mu}=0$ to remove divergence.
- We then find at $O(1)$:

$$
\frac{1}{2} \epsilon_{MNP} dx^M \wedge dx^N V^P U_Q J^Q |_{\partial \mathcal{M}} = e d^2 x \Big(-\mathcal{T}^{\mu} \delta \tau_{\mu} + \frac{1}{2} \mathcal{T}^{\mu \nu} \delta h_{\mu \nu} + \mathcal{O}(r^{-1}) \Big)
$$

• We thus do not need the GH boundary term, i.e. $\alpha = 0$.

Well-posed variational problem

- Local Carroll boost invariance leads to $h_{\mu\rho}v^{\nu}$ $^\nu {\cal T}^\mu$ ν $_{\nu} = 0.$
- Demanding invariance under boundary diffeos we findthe Ward identity:

$$
\nabla_{\mu} \mathcal{T}^{\mu}{}_{\nu} - 2\Gamma^{\mu}_{[\mu\rho]} \mathcal{T}^{\rho}{}_{\nu} + 2\Gamma^{\rho}_{[\mu\nu]} \mathcal{T}^{\mu}{}_{\rho} = 0
$$

where we defined \mathcal{T}^{μ} r_{ν} $=$ $=-\mathcal{T}^{\mu}$ ${}^{\mu}\tau_{\nu}+{\cal T}^{\mu\rho}h_{\rho\nu}.$

• Hit the diffeo Ward identity with any vector K :

$$
e^{-1}\partial_{\mu}\left(eK^{\nu}\mathcal{T}^{\mu}_{\nu}\right)+\mathcal{T}^{\mu}\mathcal{L}_{K}\tau_{\mu}-\frac{1}{2}\mathcal{T}^{\mu\nu}\mathcal{L}_{K}h_{\mu\nu}=0
$$

BMS Symmetries

• When the boundary is flat any solution to

$$
\mathcal{L}_K \tau_\mu = \Omega \tau_\mu + h_{\mu\nu} \zeta^\nu \,, \qquad \mathcal{L}_K h_{\mu\nu} = 2\Omega h_{\mu\nu}
$$

gives rise to ^a conserved current.

- Here $v^{\mu}\partial_{\mu}\Omega=0$ due to the constraint $\partial_{\mu}e_{\nu}-\partial_{\nu}e_{\mu}=0$. Recall $h_{\mu\nu}=e_{\mu}e_{\nu}$.
- The resulting 'Killing' vectors K are

 K^φ $=$ $f(\varphi), \qquad K^u = f'(\varphi)u + g(\varphi),$ $\Omega = f'(\varphi), \qquad \zeta^u = 0, \qquad \zeta^{\varphi} = f''(\varphi)u + g'(\varphi).$

which generate the BMS algebra.

Outlook

- \bullet Carroll strings
- \bullet Tensionless strings
- \bullet 4D asymptotically flat spacetimes
- \bullet • Expansions around $c = 0$ and cosmology
- \bullet Carroll fluids: applications to supersonic behaviour?